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Abstract. In this work, we discuss appropriate formalisms to account for the 
representation of mathematical ontologies, and, particularly, the problems for 
employing Description Logics (DL) for the task.DL has proven to be not 
expressive enough to such tasks, because it cannot represent, for instance, 
simple numerical constraints, except of cardinality constraints over instances 
of individuals and relation instances. Therefore, for such representations, we 
advocate the use of a more expressive formalism, based at least on first-order 
logic using a top ontology as support vocabulary. We also provide a thorough 
example on the representation of an Artificial Neural Network (ANN) defined 
in KIF (Knowledge Interchange Format), along with a discussion on the 
requirements needed for such a representation and the results achieved. 

1 Introduction 
All In this work, we introduce a discussion on the appropriate formalism to carry out the 
task of representing mathematical knowledge, and particularly the problems for doing it 
with Description Logics (BAADER ET AL, 2003). It departed from an attempt to 
develop an Ontology of Multilayer Perceptron (MLP) Artificial Neural Networks 
(ANN). Our initial intent was to define it using the Semantic Web standardized 
description logic language OWL (Ontology Web Language) (WELTY ET AL, 2004), 
which would offer us a lot of benefits, like mature development tools, availability of  
reasoners, large community of users, etc. 
 On creating such ontology, our work was focused in developing a conceptual 
model that would include the necessary mathematics to enable the future development 
of knowledge-based applications that can reason over artificial neural networks, such as 
an intelligent agent capable of interacting with users to answer questions about neural 
networks that can even create and run them. 
 During the development of the ontology, we faced several representational 
problems while trying to represent the mathematical expressions inherent to neural 
networks in Description Logic (DL). Since this formalism is based on set theoretic 
semantics, it fits properly to representing domains in which relationships among sets 
suffice. For such domains, DL terminologies can accurately describe the domains’ 
classes. On the one hand, the choice of this formalism for the Semantic Web lies 
actually on these grounds. On the other hand, it is not endowed with any apparatus to 
deal with many types of mathematical operations and constraints that would turn it into 
a more generic formalism, like what can be represented by Prolog, for instance. 
Moreover, a core mathematical ontology is required as a vocabulary to make for the 
needed complex well-defined mathematical meanings. 
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 Therefore, for such representations, we advocate the use of a more expressive 
formalism, based at least on full first-order logic, and using a rich, well-defined support 
vocabulary. In order to illustrate the discussion, we first introduce the required basic 
mathematical definitions about MLP neural networks and the expressiveness 
requirements that a language should fulfill to represent the ontology.  Then, we discuss 
the practical expressiveness limitations that hamper the use of Description Logic for 
such representations. Finally, we present our MLP ANN ontology and some of its more 
important definitions. We developed it in the Standard Upper Ontology Knowledge 
Interchange Format (SUO-KIF) language (PEASE 2009) and used the top ontology 
Suggested Upper Merged Ontology (SUMO) (NILES & PEASE, 2001) as support 
vocabulary, which proved well-tailored for our mathematical representations. We 
complete the article giving a very brief introduction of the SUO-KIF language and the 
top ontology SUMO, discussing some related work, future work and conclusions.Full 
papers must respect the page limits defined by the conference. Conferences that publish 
just abstracts ask for one-page texts. 

2 An Example: Representing the MLP ANN in an Ontology 
Artificial Neural Networks (ANNs) were developed as a rough abstraction of biological 
neural networks. An ANN consists of a number of nodes that perform simple numerical 
processing. Its nodes are highly interlinked and grouped in layers. Mathematically 
speaking, it implements complex function approximators (HAYKIN, 1994). ANNs are 
used in the computer mainstream to perform pattern learning and recognition. 
 The most commonly used ANN is the Multilayer Perceptron (MLP) (HAYKIN, 
1994). It has three layers (entry, hidden and output) or more (when more than one 
hidden layer is used). Each layer consists of a set of “artificial neurons” connected with 
the neighbor layers, as displayed in the figure 1 below. 

Figure 1− A MLP Artificial Neural Network, its layers and neurons.

 
 A MLP ANN “learns” the implicit function it should approximate by computing, 
correcting and propagating classification errors throughout all its neurons, as follows. In 
the training phase, the MLP ANN is given a set of problem instances, usually 
represented as numerical values, along with their solutions, and process the data many 
times to assign correctly the neurons’ parameters. Synapses among artificial neurons are 
modeled via activation functions, which trigger the delivery of numerical stimuli as 
inputs to the next layer’s neurons. At the end of the learning phase, the network is tuned 
with the parameters so as to reflect as closely as possible the classification function 
implicit in the training set.  
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 The Backpropagation algorithm (HAYKIN, 1994) is used to train the MLP 
ANN. It is divided into two phases. In the forward phase, the network is run and a 
classification output is calculated. In the backward phase, it compares the output with 
the correct result and, if wrong, it calculates and propagates the error through the 
weights of the connections among all the neurons of the network. Therefore, the 
learning ability of MLP ANNs lies on the neurons. The algorithm iterates between these 
two phases until it reaches a stopping criteria. These two phases are explained in detail 
in the next subsections. 

2.1 Forward Phase 

Here, the ANN basically computes summations of a product. At first, each neuron 
receives its entry and propagates it to the first hidden layer’s neurons, if its activation 
function “triggers”. For each neuron of the hidden layer, the potential of activation of 
the neuron j (𝑛𝑒𝑡𝑗

𝑝, 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚𝑢𝑙𝑎) is calculated by summating all synapses weights 
(𝑤𝑗𝑖) from neurons i that reach neuron j, multiplied by the outputs of neurons ii: 

 𝑛𝑒𝑡𝑗
𝑝 =  �𝑥𝑖

𝑝𝑤𝑗𝑖

𝑛

𝑖= 1

 (1) 

 Then, the activation potential is applied to an activation function that will return 
the output of the neuron. One of the most used activation functions is the logistic 
function (also called sigmoid), that can be seen below:  
 
 

𝑃�𝑛𝑒𝑡𝑗
𝑝� =

1

1 + 𝑒−𝑛𝑒𝑡𝑗
𝑝      (2) 

 The output of the neuron, given by the result of the activation function, typically 
consists of a real value between -1 and 1. A synapse is defined as the propagation of the 
output as an entry to the next layer, or, if it is the last layer, one of the outputs belonging 
to the output vector of the network. Synapses in a neuron occur if its output is higher 
than a given threshold, usually set to 0. Synapses are then propagated (or not) through 
the network until they reach the output layer, finishing the forward phase. This phase is 
executed when the network is in the execution mode too. 

2.2 Backward Phase 

The first step of this phase consists in calculating the error between the output of the 
neuron j from the forward phase and the expected output from the instance of the 
training set, as in the following formula 
 𝛿𝑗 = �𝑑𝑗 − 𝑦𝑗�𝑓′(𝑛𝑒𝑡𝑗) (3) 

where 𝑑𝑗 is the desired output, 𝑦𝑗 the actual output, and 𝑓′(𝑛𝑒𝑡𝑗) the activation function 
of the neuron’s derivate. Hidden nodes’ errors are computed as follows: 
 

𝛿𝑗 = 𝑓′(𝑛𝑒𝑡𝑗)�𝛿𝑙𝑤𝑙𝑗

𝑛

𝑖= 1

 (4) 
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 They are the product of the activation function derivate of the current neuron 
and the summation of the products between the error (𝛿𝑗) and each of the last layers’ 
weights (𝑤𝑙𝑗). Finally, the synapse weights that connect current neuron j with its 
antecessors (neurons i) are given by: 
 𝑤𝑗𝑖(𝑡 + 1) = 𝑤𝑗𝑖(𝑡) + 𝜂𝛿𝑗(𝑡)𝑥𝑖(𝑡) (5) 

where 𝑤𝑗𝑖(𝑡) stands for the old weight, 𝑤𝑗𝑖(𝑡 + 1) means the new weight, 𝜂 is the 
learning rate that regulates learning speed, 𝛿𝑗(𝑡) is the error and 𝑥𝑖(𝑡) is the input signal 
of the neuron with the old weight. The rough idea is slowly (as tuned by 𝜂) distributing 
the error issued by the network through all the layers and neurons. 
 In the next section, we enlist the requirements for representing such knowledge. 

3 Requirements of Candidate Formalisms and Languages 
To address the problem of choosing the knowledge representation formalism and 
language to represent the MLP ANN, we had to consider a number of representation 
requirements. We needed enough expressive power to represent the mathematical 
concepts on the ontology. Potential candidate formalisms and languages should, at the 
same time, allow us to do it in an easy way, as well as give us the possibility of 
computing results afterwards. Below, we list the most important requirements for that: 

• Ability to represent numerical constraints - as seen above, MLP encompasses 
plenty of calculations. The ontology must be capable of representing them in an 
straight-forward way, as well as the constraints over them involving 
mathematical operations like summations, exponentiations or function 
derivations. 

• Availability of a rich vocabulary of abstract definitions - the MLP ANN 
Ontology makes use of a lot of abstract concepts that are fulfilled either by a 
core mathematical ontology or by a top ontology which must include 
mathematical expressions, set theory, graph theory, algorithms, sequences, etc.  

• Ability to represent n-ary relations - the freedom to use unlimited arities in 
relations leaves ontologists free to use some advanced constructs. For instance, a 
synapse connects two neurons, thus possessing a ternary relation named 
connects that has, as arguments, the synapse and the two neurons. 

• Ability to represent functions - when dealing with mathematics concepts, we 
often need to represent functions. In the MLP ANN, we had to represent the 
activation function and the stopping criteria based on functions.  

 In the next section, we discuss the difficulties in fulfilling such criteria with DL. 

4 Description Logics’ Representational Problems regarding Mathematical 
Ontologies 

DL and its Ontology Web Language OWL present in practice a number of limitations in 
expressiveness that prevented us from using it for representing the knowledge presented 
in the section 2. We discuss the main issues in the next subsections. 
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4.1 Description Logic Ontological Engagement 

The first aspect to remark when embarking in such a discussion relates to the conceptual 
and epistemological commitment (BRACHMAN 1978) of DL as a representation 
formalism. Its representation purposes and consequent grounding on precise and 
unambiguous set theoretic semantics (BAADER ET AL, 2003) allows the language 
mainly to describe quite precisely domains that involve sets (as concepts or classes 
according to the formalism’s jargon), elements (as class and relation instances), their 
relations (also called properties or roles) and simple constraints that can be expressed in 
axioms that use a limited set of constructs like  relations’ cardinality, type checking of 
relations’ domain and range, classes’ subsumption, complement, disjointness, 
equivalence, instance membership to a class and instance equality/inequality.. This is 
enough to make for the main reasoning task of concept classification, which means to 
entail class subsumption, when this relation is not declared explicitly1. Class 
subsumption, equivalence, disjointness and inconsistency (standing for a class that 
according to its definition cannot bear any instances) can be inferred by the reasoned, 
also called classifier. 

 In the next subsection we discuss the use of numerical constraints in DL.  

4.2 Numerical Representations and Constraints 

Despite consisting of a powerful family of semantically well-founded formalisms’, DLs 
are not endowed with the basic mathematical resources necessary for representing 
neural networks, for instance the arithmetical operations. The only type of arithmetical 
processing is counting and comparing the number of instances that participate in 
relations for solving queries, like with the following axiom: 

 Worried-Woman ≡ Woman ⊓ (≥ 3 child.Man)                                        (6) 
 It states that a worried woman is one who has three or more male children. The 
classifier is able to solve queries that searches for the instances of the class Worried-
Woman by counting the instances of Woman which are related to instances of the class 
Man via the relation child. 
 Although it is possible to define relations with numerical values as datatype 
properties in OWL (types integer and float and special types date, time and dateTime), 
we did not find in the literature DL extensions that address the general problem of 
solving arithmetical constraints, ranging from the simplest ones (like the ones that use 
the four basic arithmetical operations) to the most complex (using exponential, 
differential, integral operators, differential equations, etc). 
 Description Logic consists indeed in a smart purely declarative formalism that 
performs optimized classical reasoning. Sticking to this stance, no ultimate solution is 
expected to the posed problem of including arbitrary arithmetical constraints, because 
classifier will not cope with them, ought to the fact that elementary number theory has 
been proved undecidable by Gödel in his classical incompleteness theorem (GÖDEL, 

                                                 
1 Classification based on subsumption is also used for solving equivalence and disjointness between classes and class 
inconsistency. Even in assertional queries, i.e., the ones which include instances, subsumption checking is the basic 
processing behind the reasoning (BAADER ET AL, 2003).   
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1931) as well as rational number theory, since the elementary number theory could be 
defined in terms of the rationals, as proved by Julia Robinson (ROBINSON, 1949).  
 So, the hopes for proposing a general DL solution with arithmetical constraints 
probably lies both on restricting the constructs for a limited set of operations and 
solving them with built-in constructs that should be evaluated before classification (in 
the flavor of Prolog, for instance). Such extension, on the other hand, would change the 
formalism into a more procedural and less declarative one, and is not yet reported. 

4.3 The Need for a Mathematical Background Knowledge in a Top Ontology 

Due to the low expressiveness of OWL, any top-ontology developed using it would face 
a lot of problems in representing complex abstract mathematical concepts. This 
statement is corroborated by the fact that, despite the existence of several efforts for the 
translation the top ontology Supper Upper-Merged Ontology (SUMO) to OWL, none of 
them proved successful. Translations can be found in the SUMO site but they are in 
OWL Full (which is known to be undecidable (BAADER ET AL, 2003)). Besides this 
fact, any translations of full first order logic to DL will just prune the knowledge from 
the original ontology that cannot be expressed in DL. 
 We indeed have tried to work with these translations, encountering many 
practical problems. The two more relevant for us were the loss of a the rich set of 
mathematical axioms provided by SUMO upper and the necessary mathematical 
operations and constraints that could not be defined in DL, due to the lack of 
expressiveness. 

5 Solution: More Expressive Languages and Top Ontologies 

Since DL does not fulfill our expressivity needs, the solution lies on relying on 
employing a more expressive language, with first-order logic (FOL) expressivity at least 
and, if possible, capable of defining basic arithmetic operations, and a top ontology that 
includes some basic mathematical definitions. A Top Ontology defines a set of generic 
concepts to be shared by various domain-specific ontologies. Complying with it assures 
semantic interoperability among the ontologies and better ontological engagement 
(BRACHMAN, 1978). Thus, based on the requirements enlisted above, we decided to 
use the SUO-KIF (Standard Upper Ontology Knowledge Interchange Format) with 
SUMO as the background mathematical knowledge required. 
 The SUO-KIF language has declarative semantics and is quite comprehensive in 
terms of logical expressiveness, once it was intended primarily to implement the first-
order logic. It is an extension of KIF (GENESERETH, 1991), created with the objective 
of supporting the development of SUMO. The goal was simplifying KIF, by 
maintaining its syntax, logical operators and quantifiers, but leaving to the ontology 
itself the declarations defining classes and instances, and thus eliminating the 
dependency from the Frame-Ontology of KIF, what happens to Eng-Math (GRUBER & 
OLSEN, 1994). Instead, one must create instances based on the concepts defined in 
SUMO as an external resource. Another relevant capability of SUO-KIF when 
compared to KIF’s Eng-Math is the deployment of the Sigma reasoner (PEASE, 2003). 
Up to now, no reasoner can take KIF’s rich expressivity on. As for the top ontology, we 
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opted for SUMO, since it endows us with the math we needed. In the next section, we 
present the MLP ANN ontology, with some examples using SUO-KIF and SUMO. 

2. The Resulting MLP ANN Ontology in SUO-KIF 

In this section, we present the most important concepts of the Multi-Layer Perceptron 
Artificial Neural Network (MLP ANN) Ontology. We deploy the basic taxonomy of the 
ontology in Figure 2. Note that it uses plenty of concepts from SUMO, like the classes 
Abstract, Physical, Relation, BinaryRelation, IrreflexiveRelation, etc. Next, we take a 
deeper look at the ontology, describing some of the concepts and axioms that required a 
higher level of expressiveness. 

 
Figure 2. The ANN MLP Ontology basic taxonomy. 

5.1 Activation function 

The representation of the activation function constitutes a good example of a function 
definition that takes advantage of the SUO-KIF expressiveness and the richness of the 
mathematical vocabulary provided by SUMO. In the code below, we state the concept 
of ActivationFunction as a function (irreflexive, intransitive, assymetric relation) 
whose domain is the class Neuron.  
(instance activationFunction BinaryPredicate) 
(instance activationFunction IrreflexiveRelation) 
(domain activationFunction 1 Neuron) 
(domain activationFunction 2 UnaryFunction) 

Then we represent the concept of a Logistic function, which is an unary function that 
receives a real number as the only argument and returns an MLPRealNumber. 
(instance Logistic UnaryFunction) 
(instance Logistic TotalValuedRelation) 
(domain Logistic 1 RealNumber) 
(range Logistic 1 RealNumber) 
 

90



  

 MLPRealNumber is defined as a real number ranging between -1 and 1:  
(=>(instance ?NUMBER MLPRealNumber) 
   (and (or (greaterThan ?NUMBER -1)  

(equal ?NUMBER -1)) 
        (or (lessThan ?NUMBER 1)  

(equal ?NUMBER 1))))     

 Finally we define the logistic function, as defined in subsection 2.1., def. (2): 
(=>(equal (Logistic ?NUMBER1) ?NUMBER2) 
   (equal ?NUMBER2 (DivisionFn 1  
 (AdditionFn 1 (ExponentiationFn NumberE    
        (SubtractionFn 0 ?NUMBER1)))))) 

 Next, we describe the ANN learning process. 

5.2 Backpropagation algorithm process 

The process is an iteration alternating the backward and forward phases, until the 
halting criterion is met. We can represent it using four axioms. The first one states that 
the backpropagation algorithms starts defining its net structure 

 We can represent this process using four axioms. The first one states that for all 
backpropagation algorithms there exists a sub-process (the definition of the net 
structure) starting together with the backpropagation algorithm: 
(=>(and(instance ?B Backpropagation) 
       (instance ?NSD NetStructDefinition) 
       (subProcess ?NSD ?B)) 
   (exists (?BL) 
       (and(instance ?BL BackpropLoop) 
           (subProcess ?BL ?B) 
           (exactlyEarlier (WhenFN ?NSD) 
 (WhenFn ?BL))))) 

 The second axiom states that right after the net structure definition, we start the 
iteration over the backpropagation loop. The exactlyEarlier relation means that the 
first argument finishes at the same instant that the second starts. 
(=>(and(instance ?B Backpropagation) 
       (instance ?BL Backproploop) 
         (subProcess ?BL ?B) 
         (not (StopCriteriaFn ?B))) 
     (exists (?BL) 
         (and(instance ?BL2 BackpropLoop) 
           (subProcess ?BL2 ?B) 
           (exactlyEarlier (WhenFN ?BL)(WhenFn?BL2))))) 

 Finally, the last axiom states that, if the halting criterion is met, the algorithm 
ends. The finishes relation means that both arguments finish at the same time: 
(=>(and(instance ?B Backpropagation) 
       (instance ?BL BackpropLoop) 
         (subProcess ?BL ?B) 
         (StopCriteriaFn ?B)) 
     (finishes (WhenFn ?B) (WhenFn ?BL))) 
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 The weights are updated (subsection 2.2., definition 5) according to the axiom 
shown below. It states that if a weight is identified as one to be updated, then the old 
weight holds only until the loop cycle lasts, and the new weight is calculated and set. 
(=>  (and 

 (instance ?UPDATEWEIGHT UpdateSynapseWeight) 

 (synapseToUpdate ?UPDATEWEIGHT ?SYNAPSE) 

 (connects ?SYNAPSE ?NODEA ?NODEB) 

 (hasOutput ?NODEB ?OUTPUT) 

 (holdsDuring (BeginFn ?UPDATEWEIGHT) 

 (hasWeight ?SYNAPSE ?OLDWEIGHT))) 

 (holdsDuring (EndFn ?UPDATEWEIGHT) 

 (and 

    (hasWeight ?SYNAPSE ?NEWWEIGHT) 

    (equal ?NEWWEIGHT (AdditionFn ?OLDWEIGHT 

           (MultiplicationFn ?LEARNRATE  

           (MultiplicationFn ?OUTPUT 

                 (NeuronErrorFn ?SYNAPSE)))))))) 

5.3 An Example of Ternary Relation: The Synapse Definition 

In the next encodings, we show an example of a ternary relation, the relation 
connects, that links two neurons through a synapse. The first stretch of code shows 
the basic characterizations of the relation in terms of inputs and outputs: 
(instance connects TernaryPredicate) 
(domain connects 1 Synapse) 
(domain connects 2 Neuron) 
(domain connects 3 Neuron) 

Next, an axiom is defined, stating that all  connections of a neuron are 
linked with a neuron from its next layer. Note that a synapse takes part of the ternary 
relation, thus sufficing for our representation needs.  
(=>(and(instance ?N-A Neuron) 
       (connects ?SYNAPSE ?N-A ?N-B)) 
   (exists(?LAYERA ?LAYERB) 
          (and(instance ?LAYERB Layer) 
               (instance ?LAYERA Layer) 
               (neuronLayer ?N-A ?LAYERA) 
               (neuronLayer ?N-B ?LAYERB) 
(nextLayer ?LAYERA ?LAYERB))))  

In the next section, we discuss related work regarding mathematical ontologies.   
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5.4 Discussion 

The ontology defines the exact constraints that hold among the many elements of a 
MLP ANN, as well as the calculations and sequential operations needed to update it 
during the training phase. Once SUO-KIF is endowed with a reasoned able to deal with 
the mathematical constraints, an application that employs it – an intelligent agent, expert 
system, computer algebra system or theorem prover - is capable of creating a virtual 
MLP ANN, run it (including all the calculations and updates), and - more important in 
terms of declarativity – answer queries about each aspect of it, like stating how many 
layers at least a MLP ANN should possess, etc.  With that features, even an intelligent 
tutor system can make a good use from its knowledge. 
 Note that, when an expressive formalism is used with a supportive top ontology, 
most, if not all, mathematical knowledge can be represented by a similar solution. 
Simple examples are other types of neural networks (even recurrent, constructive) 

6 Related Work 

In the field of Artificial Intelligence, the first successful systems to deal with 
mathematical contents that go beyond simple numerical calculi came from the branch 
known as Computer Algebra Systems (CAS) (BERTOLI ET AL 1998). They are 
capable of performing algebraic and symbolic computation in an abstract way A 
representative example of this trend was the REDUCE system (HEARN 2004), which is 
still in use nowadays. It is able to  calculating algebraic derivates and integrals of 
complex functions among many other functionalities. Many of those systems employ 
declarative solutions for algebraic problems and some of them are able of using and 
presenting proofs indeed. A detailed comparison among computer algebra systems and 
their features can be found in [13]. Nevertheless, the integration between this type of 
system and the growing field of ontology is still lacking tough. The consequence is that 
some valuable mathematical knowledge available in mathematical ontologies, like the 
characterization of distinct relation types used here, are not being fully exploited in CAS 
systems.   
 As for the problem of mathematical knowledge in ontologies, we have searched 
the literature for possible solutions to our problems, before deciding for the SUO-KIF 
language. We found solutions ranging from simple syntactic agreements, like MathML 
(CARLISLE 2009) - a markup language without axioms -, to full-fledged languages and 
top ontologies like SUO-KIF and SUMO. Among them, we found a proposal to mix 
OWL with OpenMath to encode math contents (BUSWELL 2004). We indeed made 
attempts to employ this approach, by to representing the math needed in the MLP ANN 
ontology in OWL and processes using the Semantic Web Rule language (SWRL) built-
ins. However, none of these solutions fitted our needs. All of them were limited, in the 
sense of depending upon external features (like the rules in SWRL), instead of using a 
mathematical theory. They mostly represent the expressions in a structured way and 
even the solutions using rules will produce fragmented pieces of knowledge that could 
pose problems of maintenance in the future.  
 Furthermore, we tried out a more consistent approach, the use of EngMath 
(GRUBER & OLSEN, 1994), a mathematical ontology for engineering. EngMath could 
indeed constitute a sound alternative, as it takes advantage of the Kif-Numbers ontology 
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(GRUBER & OLSEN, 1994), a KIF vocabulary focused on numbers, arithmetic 
operations and related definitions. We chose SUMO and SUO-KIF because, we 
conclude that SUMO covers all definitions comprised in Kif-Numbers and EngMath.  

7 Future Work and Conclusions 

Despite the popularity and usefulness of DL languages, we claim that this formalism 
suffers from a lack of expressiveness for the representation of mathematical knowledge. 
In our practical experience portrayed here, the most relevant lesson learned was that we 
could only overcome DL representational problems by using at least a full first-order 
logic formalism with a supportive top ontology like SUMO, that contains the 
mathematical background knowledge required to qualify and define properly the math 
definitions for the new ontologies. We presented a thorough case study in that direction, 
on the field of automatic learning, the MLP ANN ontology. 
 We envisage two types of future work. As for the use of the developed ontology, 
we are heading for practical applications of the ontology. The creation of these 
applications, such as an intelligent agent capable of interacting with users answering 
questions about artificial neural networks (making use of the ontology) are in our 
agenda. We also consider the translation of the ontology to other languages, such as 
Prolog, so as to enable us to reason with it and run concrete applications. 
 Another more general future work lies on the investigation of ways to embed 
ontologies into computer algebra systems. Devising a solution for this general problem 
will certainly endow the latter with more powerful reasoning techniques while solving 
mathematical problems. For instance, CAS systems could take advantage during 
inference of the applicable mathematical constraints defined as relations qualifiers in the 
ontology. These constraints need not be hardcoded in the systems, thus increasing 
knowledge reuse. 
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