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Abstract. XCS, a Genetic Based Machine Learning model that com-
bines reinforcement learning with evolutionary algorithms to evolve a
population of classifiers in the form of condition-action rules, has been
used successfully for many classification tasks. However, like many other
machine learning algorithms, XCS becomes less effective when it is ap-
plied to high-dimensional data sets. In this paper, we present an anal-
ysis of two XCS extensions – FS-XCS and GRD-XCS – in an attempt
to overcome the dimensionality issue. FS-XCS is a standard combina-
tion of a feature selection method and XCS. As for GRD-XCS, we use
feature quality information to bias the evolutionary operators without
removing any features from the data sets. Comprehensive numerical sim-
ulation experiments show that both approaches can effectively enhance
the learning performance of XCS. While GRD-XCS has obtained signif-
icantly more accurate classification results than FS-XCS, the latter has
produced much quicker execution time than the former.

1 Introduction

Classification tasks arise in many areas of science and engineering. One such ex-
ample is disease classification based on gene expression profiles in bioinformatics.
Gene expression profiles provide important insights into, and further our under-
standing of, biological processes. They are key tools used in medical diagnosis,
treatment, and drug design [21]. From a clinical perspective, the classification
of gene expression data is an important problem and a very active research area
(see [3] for a review). DNA microarray technology has advanced a great deal
in recent years. It is possible to simultaneously measure the expression levels
of thousands of genes under particular experimental environments and condi-
tions [22]. However, the number of samples tends to be much smaller than the
number of genes (features)1. Consequently, the high dimensionality of a given
1 Generally speaking, the number of samples must be larger than the number of fea-

tures for good classification performance.

AIH 2012

21



2 Mani Abedini, Michael Kirley, and Raymond Chiong

data set poses many statistical and analytical challenges, which often degrade
the performance of classification methods used.

XCS – the eXtended Classifier System – is a Genetic Based Machine Learning
(GBML) method that has been successfully used for a wide variety of classifi-
cation applications, including medical data mining. XCS can learn from sample
data in multiple iterative cycles. This is a great characteristic, but it also ex-
hibits two common pitfalls that most classification methods have: sensitivity to
data noise and “the curse of dimensionality” [22]. Both issues can easily jeopar-
dise the learning process. A well-known solution is to use a cleansing stage. For
example, feature selection/ranking techniques can remove unnecessary features
from the data set. Reducing the dimensionality and removing noisy features can
improve learning performance. Nevertheless, there exist data sets with highly
co-expressed features, such as those studying Epistasis phenomena, that do not
allow effective feature reduction. Examples of this include protein structure pre-
diction and protein-protein interaction.

In this paper, we study two extensions of XCS inspired by feature selection
techniques commonly used in machine learning: FS-XCS with effective feature
reduction in place and GRD-XCS [1] that does not remove any features. The pro-
posed model uses some prior knowledge, provided by a feature ranking method,
to bias the discovery operators of XCS. A series of comprehensive numerical
experiments on high-dimensional medical data sets has been conducted. The re-
sults of these simulation experiments suggest that both extensions can effectively
enhance the XCS’s learning performance. While GRD-XCS has performed sig-
nificantly more accurate than FS-XCS, the latter is shown to have much quicker
execution time compared to the former.

The remainder of this paper is organised as follows: Section 2 briefly describes
some related work on XCS. In Section 3, we present the details of our proposed
model. Section 4 discusses the experimental settings and results. Finally, we draw
conclusion and highlight future possibilities in Section 5.

2 Related Work

GBML concerns applying evolutionary algorithms (EAs) to machine learning.
EAs belong to the family of nature-inspired optimisation algorithms [9, 10]. As
a manifestation of population-based, stochastic search algorithms that mimic
natural evolution, EAs use genetic operators such as crossover and mutation for
the search process to generate new solutions through a repeated application of
variation and selection [11].

It is well documented in the evolutionary computation literature that the im-
plementation of EA’s genetic operators can influence the trajectory of the evolv-
ing population. However, there has been a paucity of studies focused specifically
on the impact of selected evolutionary operator implementations in Learning
Classifier Systems (LCSs), a type of GBML algorithm for rule induction. Here,
we briefly describe some of the key studies related to LCSs in general and XCS
– a Michigan-style LCS – in particular.
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In one of the first studies focused on the rule discovery component specifically
for XCS, Butz et al. [7] have shown that uniform crossover can ensure success-
ful learning in many tasks. In subsequent work, Butz et al. [6] introduced an
informed crossover operator, which extended the usual uniform operator such
that exchanges of effective building blocks occurred. This approach helped to
avoid the over-generalisation phenomena inherent in XCS [14]. In other work,
Bacardit et al. [4] customised the GAssist crossover operator to switch between
the standard crossover or a new simple crossover, SX. The SX operator uses a
heuristic selection approach to take a minimum number of rules from the par-
ents (more than two), which can obtain maximum accuracy. Morales-Ortigosa et
al. [16] have also proposed a new XCS crossover operator, BLX, which allowed
for the creation of multiple offspring with a diversity parameter to control differ-
ences between offspring and parents. In a more comprehensive overview paper,
Morales-Ortigosa et al. [17] presented a systematic experimental analysis of the
rule discovery component in LCSs. Subsequently, they developed crossover op-
erators to enhance the discovery component based on evolution strategies with
significant performance improvements.

Other work focused on biased evolutionary operators in LCSs include the
work of Jos-Revuelta [18], who introduced a hybridised Genetic Algorithm-Tabu
Search (GA-TS) method that employed modified mutation and crossover oper-
ators. Here, the operator probabilities were tuned by analysing all the fitness
values of individuals during the evolution process. Wang et al. [20] used Infor-
mation Gain as part of the fitness function in an EA. They reported improved
results when comparing their model to other machine learning algorithms. Re-
cently, Huerta et al. [5] combined linear discriminant analysis with a GA to
evaluate the fitness of individuals and associated discriminate coefficients for
crossover and mutation operators. Moore et al. [15] argued that biasing the
initial population, based on expert knowledge preprocessing, would lead to im-
proved performance of the evolutionary based model. In their approach, a statis-
tical method, Tuned ReliefF, was used to determine the dependencies between
features to seed the initial population. A modified fitness function and a new
guided mutation operator based on features dependency was also introduced,
leading to significantly improved performance.

3 The Model

We have designed and developed two extensions of XCS, both inspired by fea-
ture selection techniques commonly used in machine learning. The first exten-
sion, which we call FS-XCS, is a combination of a Feature Selection method and
the original XCS. The second extension, which we call GRD-XCS, incorporates
a probabilistically Guided Rule Discovery mechanism for FS-XCS. The moti-
vation behind both extensions was to improve classifier performance (in terms
of accuracy and execution time), especially for high-dimensional classification
problems.
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Fig. 1. Here, Information Gain has been used to rank the features. The top Ω features
(in this example Ω = 5) are selected and allocated relatively large probability values
∈ [γ, 1]. The RDP vector maintains these values. The probability value of the highest
ranked feature is set to 1.0. Other features receive smaller probability values relative to
their rank (in this example γ =0.5). Features that are not selected based on Information
Gain are assigned a very small probability value (in this example ξ = 0.1).

FS-XCS uses feature ranking methods to reduce the dimension of a given
data set before XCS starts to process the data set. It is a fairly straightfor-
ward hybrid approach. However, in GRD-XCS information gathered from feature
ranking methods is used to build a probability model that biases the evolution-
ary operators of XCS. The feature ranking probability distribution values are
recorded in a Rule Discovery Probability (RDP ) vector. Each value of the RDP
vector (∈ [0, 1.0]) is associated with a corresponding feature. The RDP vector
is then used to bias the feature-wise uniform crossover, mutation, and don’t care
operators, which are part of the XCS rule discovery component.

The actual values in the RDP vector are calculated based on the rank of the
corresponding feature as described below:

RDPi =

⎧⎨
⎩

1−γ
Ω × (Ω − i) + γ if i ≤ Ω

ξ otherwise
(1)

where i represents the rank index in ascending order for the selected top ranked
features Ω. The probability values associated with the top ranked features would
be some relatively large values (∈ [γ, 1]) depending on the feature rank; for the
others a very low probability value ξ is given. Thus, all features have a chance
to participate in the rule discovery process. However, the Ω-top ranked features
have a greater chance of being selected (see Figure 1 for an example).

GRD-XCS uses the probability values recorded in the RDP vector in the pre-
processing phase to bias the evolutionary operators used in the rule discovery
phase of XCS. The modified algorithms describing the crossover, mutation and
don’t care operators in GRD-XCS are very similar to standard XCS operators:

– GRD-XCS crossover operator: This is a hybrid uniform/n-point function. An
additional check of each feature is carried out before the exchange of genetic
material. If Random[0, 1) < RDP [i] then feature i is swapped between the
selected parents (Algorithm 1).
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Algorithm 1 Guided Uniform Crossover algorithm
Require: Individuals: Cl1,Cl2 ∈[A], Probability Vector: RDP , Crossover Probability:

χ
if Random[0,1) < χ then

for i = 1 To SizeOf(Features) do
if Random[0,1) < RDP [i] then

SWAP(Cl1[i],Cl2[i])
end if

end for
end if

Algorithm 2 Guided Mutation algorithm
Require: Individual: Cl ∈[A], Probability Vector: RDP , Mutation Probability: μ

for i = 1 To SizeOf(Features) do
if Random[0,1) < RDP [i] ×μ then

Mutate(Cl[i])
end if

end for

Algorithm 3 Guided Don’t Care algorithm
Require: Individuals: Cl ∈[A], Probability Vector: RDP , Don’t Care Probability: P#

for i = 1 To SizeOf(Features) do
if Random[0,1) < (1−RDP [i]) ×P# then

P1[i] ← #
end if

end for

– GRD-XCS mutation operator: It uses the RDP vector to determine if feature
i is to undergo mutation; the base-line mutation probability is multiplied by
RDP for each feature. Therefore, the mutation probability is not a uniform
distribution anymore. The more informative features have better chance to
be selected for mutation (Algorithm 2).

– GRD-XCS don’t care operator: In this special mutation operator, the values
in the RDP vector are used in the reverse order. That is, if feature i has
been selected to be mutated and Random[0, 1) < (1−RDP [i]), then feature
i is changed to # (“don’t care”) (see Algorithm 3).

The application of the RDP vector reduces the crossover and mutation prob-
abilities for “uninformative” features. However, it increases the “don’t care” op-
erator probability for the same feature. Therefore, the more informative features
should appear in rules more often than the “uninformative” ones.

4 Experiments and Results

We have conducted a series of independent experiments to compare the perfor-
mance of FS-XCS and GRD-XCS. A suite of feature selection techniques have
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Table 1. Data set details

Data Set #Instances #Features Cross Validation Reference

High-dimensional data sets (Microarray DNA gene expression)
Breast cancer 22 3226 3 [13]
Colon cancer 62 2000 10 [2]
Leukemia cancer 72 7129 10 [12]
Prostate cancer 136 12600 10 [19]

been tested: Correlation based Feature Selection (CFS), Gain Ratio, Informa-
tion Gain, One Rule, ReliefF and Support Vector Machine (SVM). Four DNA
microarray gene expression data sets have been used in the experiments. The
details of these data sets are reported in Table 1.

Our algorithms were implemented in C++, based on the Butz’s XCS code2.
The WEKA package (version 3.6.1)3 was used for feature ranking. All exper-
iments were performed on the VPAC 4 Tango Cluster server. Tango has 111
computing nodes. Each node is equipped with two 2.3 GHz AMD based quad
core Opteron processors, 32GB of RAM and four 320GB hard drives. Tango’s
operating system is the Linux distribution CentOS (version 5).

4.1 Parameter settings

Default parameter values as recommended in [8] have largely been used to config-
ure the underlying XCS model. For parameters specific to our proposed model,
we have carried out a detailed analysis to determine the optimal settings. In
particular, we have tested a range of Ω values Ω = 10, 20, 32, 64, 128, 256 and
population sizes pop size = 500, 1000, 2000, 5000. The analysis suggested that
Ω = 20 with a population size of 2000 can provide an acceptable accuracy level
within reasonable execution time for FS-XCS. As for GRD-XCS, the setting of
Ω = 128 and pop size = 500 was found to have produced the best results. As
such, these parameter values were used for the results presented in Section 4.3.

The limits used in probability value calculations in Equation 1 were set to
γ = 0.5 and ξ = 0.1. In all experiments, the number of iterations was capped at
5000.

4.2 Evaluation

For each scenario (parameter value–data set combination), we performed N -fold
cross validation experiments over 100 trials (see Table 1). The average accuracy
2 The source code is available at the Illinois Genetic Algorithms Laboratory (IlliGAL)

site http://www.illigal.org/
3 Weka 3 is an open source data mining tool (in Java), with a collection of ma-

chine learning algorithms developed by the Machine Learning Group at University
of Waikato – http://www.cs.waikato.ac.nz/ml/weka/

4 Victorian Partnership for Advanced Computing: www.vpac.org
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Table 2. Average accuracy (measured by AUC values) of the base-line XCS, FS-XCS
and GRD-XCS on all selected microarray gene expression data sets.

base-line XCS FS-XCS GRD-XCS

0.77 0.88 0.98

values for specific parameter combinations have been reported using the Area
Under the ROC Curve – the AUC value. The ROC curve is a graphical way to
depict the tradeoff between the True Positive rate (TPR) on the Y axis and the
False Positive rate (FPR) on the X axis. The AUC values obtained from the
ROC graphs allow for easy comparison between two or more plots. Larger AUC
values represent higher overall accuracy.

Appropriate statistical analyses using paired t-tests were conducted to deter-
mine whether there were statistically significant differences between particular
scenarios in terms of both accuracy and execution time. Scatter plots of the
observed and fitted values and Q-Q plots were used to verify normality assump-
tions. These statistical analyses were performed using the IBM SPSS Statistics
(version 19) software.

4.3 FS-XCS vs. GRD-XCS

To begin with, we have compared the average accuracy of FS-XCS and GRD-
XCS with the base-line XCS (without feature selection) using all the aforemen-
tioned feature ranking methods on the microarray gene expression data sets
listed in Table 1. The results, as shown in Table 2, indicate that GRD-XCS has
an overall better accuracy than FS-XCS: the average FS-XCS accuracy using
various feature selection techniques is 0.88 while the average accuracy of GRD-
XCS using the same feature ranking methods is 0.98. Meanwhile, both FS-XCS
and GRD-XCS are better than the base-line XCS – the latter has managed only
an average accuracy of 0.77. For the rest of this section, we will focus on a
detailed comparison between FS-XCS and GRD-XCS.

Figure 2 shows the AUC values of FS-XCS and GRD-XCS when different
feature ranking methods are used. From the figure, it is clear that GRD-XCS is
significantly more accurate than FS-XCS. The accuracy result of both FS-XCS
and GRD-XCS for every feature ranking method, except Information Gain over
the Breast Cancer data set, is significantly different (p < 0.001).

In Figure 3, FS-XCS is shown to be significantly faster than GRD-XCS (p <
0.001) in terms of execution time. This is much expected since FS-XCS works
with only a fraction of the original data set size (i.e., 20 features) while GRD-XCS
still accepts the entire data set with thousands of features. The only exception
is when Gain Ratio has been applied over the Breast Cancer data set – in this
case there is strong evidence that both FS-XCS and GRD-XCS have significantly
equal average execution time (p = 0.94).

Figures 4 and 5 depict some general insight into the population diversity. In
the majority of cases, GRD-XCS has less diversity.
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GRD-XCS

FS-XCS

(a) Breast Cancer

GRD-XCS

FS-XCS

(b) Prostate Cancer

GRD-XCS

FS-XCS

(c) Leukemia

GRD-XCS

FS-XCS

(d) Colon Cancer

Fig. 2. The accuracy (AUC) of FS-XCS vs. GRD-XCS when various feature ranking
methods are applied.

The average length of each classifier in GRD-XCS is almost always signifi-
cantly smaller than FS-XCS (p < 0.05). The significant similar cases are Gain
Ratio (p = 0.80) and ReliefF (p = 0.26) on the Prostate Cancer data set.

The average number of macro classifiers in GRD-XCS is significantly smaller
than the average number of macro classifiers in FS-XCS. As can be seen in Fig-
ures 5(b) and (d), the difference is getting more obvious when the dimensionality
increases (for Prostate Cancer and Colon Cancer). However, there is a different
story for the Breast Cancer data set where the average number of macro clas-
sifiers in the GRD-XCS population is larger than FS-XCS. It would be a fair
conclusion to say that GRD-XCS is exploring the solution space in a more fo-
cused manner than FS-XCS. In other words, the guided rule discovery approach
forces the learning process to generate less diverse testing hypothesis; however
this behaviour can evolve more accurate classifiers.

5 Conclusion and Future Work

In this paper, we have analysed the performance of FS-XCS and GRD-XCS
based on some high-dimensional classification problems. Comprehensive numer-
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GRD-XCS

FS-XCS

(a) Breast Cancer

GRD-XCS

FS-XCS

(b) Prostate Cancer

GRD-XCS

FS-XCS

(c) Leukemia

GRD-XCS

FS-XCS

(d) Colon Cancer

Fig. 3. The execution time (in seconds) of FS-XCS vs. GRD-XCS when various feature
ranking methods are applied.

ical simulations have established that GRD-XCS is significantly more accurate
than FS-XCS in terms of classification results. On the other hand, FS-XCS is
significantly faster than GRD-XCS in terms of execution time. The results of
FS-XCS suggest that normally 20 top-ranked features would be enough to build
a good classifier, although this classifier is significantly less accurate than the
equivalent GRD-XCS model. Nevertheless, both models have performed better
than the base-line XCS.

To sum up, using feature selection to highlight the more informative features
and using them to guide the XCS rule discovery process is better than applying
feature reduction approaches. This is mainly due to the fact that GRD-XCS can
transform poor classifiers (created from the uninformative features) into highly
accurate classifiers. From the empirical analysis presented it is clear that the
performance of different feature selection techniques varies inevitably depending
on the data set characteristic. Future work will therefore attempt to rectify
this through the idea of ensemble learning. That is, we can build an ensemble
classifier from multiple XCS based models (may it be FS-XCS or GRD-XCS).
Each of these XCS cores can use a distinctive feature selection method. The

AIH 2012

29

kha031
Rectangle



10 Mani Abedini, Michael Kirley, and Raymond Chiong

GRD-XCS

FS-XCS

(a) Breast Cancer

GRD-XCS

FS-XCS

(b) Prostate Cancer

GRD-XCS

FS-XCS

(c) Leukemia

GRD-XCS

FS-XCS

(d) Colon Cancer

Fig. 4. The proportion of macro classifiers to the population size of FS-XCS vs. GRD-
XCS when various feature ranking methods are applied.

results of all XCS cores are then combined to form the ensemble result – for
instance by using a majority voting technique.
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