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Abstract. The timely notification of cancer cases is crucial for can-
cer monitoring and prevention. However, the abstraction and classifica-
tion of cancer from the free-text of pathology reports and other relevant
documents, such as death certificates, are complex and time-consuming
activities. In this paper we investigate approaches for the automatic de-
tection of cases where the cause of death is a notifiable cancer from
free-text death certificates supplied to Cancer Registries. A number of
machine learning classifiers were investigated. A large set of features
were also extracted using natural language techniques and the Medtex
toolkit; features include stemmed words, bi-grams, and concepts from
the SNOMED CT medical terminology. The investigated approaches
were found to be very effective in identifying death certificates where the
cause of death was a notifiable cancer. Best performance was achieved by
a Support Vector Machine (SVM) classifier with an overall F-measure of
0.9647 when evaluated on a set of 5,000 free-text death certificates. This
classifier considers as features stemmed token bigrams and information
from SNOMED CT concepts filtered by morphological abnormalities and
disorders. However, our analysis shows that it is the selection of features
that most influences the performance of the classifiers rather than the
type of classifier or the feature weighting schema. Specifically, we found
that stemmed token bigrams with or without SNOMED CT concepts
are the most effective feature. In addition, the combination of token bi-
grams and SNOMED CT information was found to yield the best overall
performance.

Keywords: death certificates, Cancer Registry, cancer monitoring and
reporting, machine learning, natural language processing, SNOMED CT

1 Introduction

Cancer notification and reporting is an important and fundamental process for
providing an accurate picture of the impact of cancer, the nature and extent of
cancer, and to direct research efforts for the cure of cancer. Cancer Registries col-
lect and interpret data from a large number of sources, helping to improve cancer
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prevention and control, as well as treatments and survival rates for patients with
cancer.

The manual coding of documents, such as pathology reports and death cer-
tificates, with respect to notifiable cancers and corresponding synoptic factors
(such as primary site, morphology, etc.) is a laborious and time consuming pro-
cess. Cancer Registries strive to provide timely and accurate information on
cancer incidence and mortality in the community. They receive large quantities
of data from a range of sources, including hospitals, pathology laboratories and
Registries of Births, Deaths and Marriages (which issues releases of death cer-
tificates). It is estimated that incident cases within Cancer Registries that have
death certificate only notifications amount to about 1-5% of the total cases; de-
lays in the processing of this data may cause underestimation of the incidence of
cancer. Computational methods for the automatic abstraction of relevant infor-
mation have the possibility to enhance a Cancer Registry’s workflow, providing
time and costs savings as well as timely cancer incidence information and mor-
tality information. This automatic process is however challenging, both for the
complex nature of the language used in the reports, and for the high level of
recall and accuracy required.

Previous works have attempted to provide automatic cancer coding from
free-text pathology reports collected by Cancer Registries. For example, Nguyen
et al. [1] used natural language processing techniques and a rule-based system
to automatically extract relevant synoptic factors from electronic pathology re-
ports. Similarly, Zuccon et al. [2] showed how these techniques could cope with
character recognition errors generated by scanning free-text pathology reports
stored in paper form. Machine learning approaches have also been considered; for
instance, D’Avolio et al. [3] have tested approaches based on supervised machine
learning (Conditional Random fields and Maximum Entropy) and have shown
its effectiveness for the classification of pathology reports that were consistent
with cancer in the domains of colorectal, prostate, and lung cancer.

Cancer Registries have access to a number of data sources beyond pathology
reports. One such data source is death certificates. Death certificates are a rich
source of data that can support cancer surveillance, monitoring and reporting.
These certificates contain free-text sections that report the cause of the death of
an individual. An example of the free-text content of a death certificate where
the cause of death is a notifiable cancer is given in Figure 1, while Figure 2 is
an example of a non-notifiable death certificate.

Limited works have focused on computational methods for automatically
classifing death certificates with respect to the cause of death. The Super-
MICAR system and its related tools1 provide a semi-automatic coding of the
cause of death in death certificates. The system identifies keywords and expres-
sions from the free-text documents that indicate possible causes of death; this
is done through the use of a standard set of expressions encoded in a predefined
vocabulary. Extracted free-text expressions are then converted to one or more

1 Consult http://www.cdc.gov/nchs/nvss/mmds/super_micar.htm (last visited 19th
November 2012) for further details.
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(I)A) MAXILLARY TUMOR, 2 YEARS B) PULMONARY OEDEMA, 1 WEEK

(II) CEREBROVASCULAR ACCIDENT/DYSPLASIA, 20 YEARS ASTHMA

Fig. 1. A de-identified death certificate where the cause of death is a notifiable cancer.

I(A) CEREBROVASCULAR ACCIDENT 48 HOURS (B) CEREBRAL ARTERIOSCLEROSIS YEARS

(C) HYPERTENSION YEARS II CHRONIC ALCOHOLISM YEARS

Fig. 2. A de-identified death certificate where the cause of death is not a notifiable
cancer.

ICD-10 codes which are then aggregated into a single ICD-10 underlying cause
of death through the use of a rule-base. While doctor reported death certificates
can be fed directly into the system, Coroner reported ones require additional
pre-processing. A consistent number (between 15 and 20 percent according to a
US study [4]) of death certificates cannot be coded through SuperMICAR and
related tools, and thus require manual coding. A recent work has successfully
classified death certificates related to pneumonia and influenza using a natural
language processing pipeline and rule-based system [5]. However, to the best
of our knowledge, no previous research has been conducted to investigate fully
automatic methods that go beyond keyword spotting of standard cause of death
expressions to classifying death certificates, in particular focusing on certificates
where the main cause of death is cancer. Furthermore, while Australian Can-
cer Registries can acquire free-text death certificates on a fortnightly basis from
the Registry of Births Deaths and Marriages, coded causes of death produced
by SuperMICAR (and related products) are released by the Australian Bureau
of Statistics on a yearly basis. Computational methods able to tackle the fast
identification of death certificates where the cause of death is a notifiable can-
cer would enhance the cancer reporting and monitoring capabilities of Cancer
Registries.

In this paper, we focus on the problem of automatically identifying death
certificates where the main cause of death is cancer. This problem is cast into
a binary classification problem, i.e. death certificates are classified as containing
a death cause related to cancer or vice versa as not containing a death cause
related to cancer. Several machine learning classifiers were investigated for this
task. These include support vector machine, Naive Bayes, decision trees, and
boosting algorithms. A state-of-the-art information extraction tool (Medtex [6])
is used to create different set of features that are used to train the classifiers; dif-
ferent feature weighting schemas were also considered. Features include stemmed
tokens, n-grams, as well as SNOMED CT concept ids and tokens from fully spec-
ified names of SNOMED CT concepts, among others. SNOMED CT is a medical
terminology which formally describes in detail the coverage and knowledge of
topics and terminology used in the medical domain.

Our approaches are tested on 5,000 de-identified death certificates acquired
from an Australian Cancer Registry, using 10-fold cross validation for allow-
ing robust training and testing. Our experimental results demonstrate that the
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choice of classifier and weighting schema, although being important, is not crit-
ical for achieving high classification effectiveness. Instead, the choice of features
used to represent content of death certificates is the determining factor for high
classification effectiveness. Specifically, stemmed token bigrams are found to be
the single most important features among those extracted. Furthermore, we
found that SNOMED CT features provide consistent increments in classification
effectiveness if used along with stemmed token bigrams; although not providing a
large increment, the combined use of stemmed token bigrams and SNOMED CT
morphology provide the best classification effectiveness in our experiments.

Next, we detail the approaches adopted in this paper. Then, in Section 3 we
outline our empirical evaluation methodology; classification results obtained by
the investigated approaches are reported in Section 4. An analysis of the results
is developed in Section 4.1. The paper concludes in Section 5 summarising our
main contribution and directions for future work.

2 Approaches for Automatic Classification of Death
Certificates

In this paper we investigate supervised machine learning approaches for the
detection of death certificates where the cause of death is a notifiable cancer.
These approaches are characterised by three main variables: (1) the features
extracted from the documents (Section 2.1), (2) the weighting schemas applied
to the features to represent documents (Section 2.2), and (3) the specific binary
classifier used to individuate certificates where the cause of death is a notifiable
cancer (Section 2.3).

2.1 Automatic Feature Extraction

Machine learning algorithms require data to be represented by features, such as
the words that occur in a text document. We used the information extraction
capabilities of the Medtex system2 for obtaining a set of meaningful features
from the free-text of the death certificates.

The feature sets investigated in this paper are:

stem: a token stem, i.e. the stemmed version of a word contained in a certificates
stemBigram: the bi-gram formed by two token stems, i.e. a pair of adjacent

stemmed words as found in a certificates
concept: SNOMED CT concepts as found in the free-text of the certificates

using the Medtex system
conceptFull: the tokens of the fully specified name of the extracted SNOMED CT

concepts

2 Medtex comprises both information extraction capabilities (extracting both low level
information such as word tokens and stems, punctuation, etc., and higher level se-
mantic information such as UMLS and SNOMED CT concepts [1]) and classification
capabilities integrated via its rule-based engine.
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concFullMorph: the tokens of the fully specified name of extracted SNOMED CT
concepts that are morphologic abnormalities or disorders

concBigram: the bigram formed by two adjacent SNOMED CT concept ids

concFullBigram: the bigram formed by two adjacent tokens in the fully specified
name of concepts extracted from SNOMED CT

While features like stem and stemBigram are commonly used for classifying
free-text documents, features based on SNOMED CT concepts and its properties
such as tokens from the fully specified name have not been exploited by previ-
ous works that attempted to classify free-text death certificates. SNOMED CT
provides a standard clinical terminology used to map various descriptions of a
clinical concept to a single standard clinical concept. In this work, the SNOMED
CT ontology was used as an underlying mechanism to classify free-text using se-
mantically matching SNOMED CT concepts.

In addition, we also considered pair-wise combinations of features that pro-
vided promising results on preliminary experiments. In this paper we shall re-
port the results obtained by all features used singularly, and of the combinations
concept + stem, concept + stemBigram, concFullMorph + stemBigram, and con-
cBigram + stemBigram, which has shown promise in preliminary investigations.

Next, we consider the example death certificates given in Figure 1 and Fig-
ure 2 to describe how a feature set is constructed. To build the feature represen-
tations, we examine each death certificate and for each occurring instance of a
feature in the certificate we assign a value of 1, while the absence of a feature is
marked by a zero entry value. Note that these values are subsequently modified
according to the feature weighting functions, as we shall describe in Section 2.2.
After all certificates have been processed in this manner, we add a final feature
cancerNotifiable, whose value is obtained from ground truth judgements supplied
with the data. Table 1 shows an extract of the feature data constructed for the
two example death certificates. The task of the machine learning classifiers is to
predict the value of the cancerNotifiable feature, given the learning data supplied.

Features
stem stemBigram concept conceptFull ...
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Figure 1 1 0 0 1 1 1 1 0 0 1 1 1 0 1 1 1 1 0 ... 1
Figure 2 1 1 1 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 ... 0

Table 1. Feature data built from two example death certificates.
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Note that no further processing is applied to the text, for example, for remov-
ing punctuation, identifying section or list labels, or for removing or correcting
typographical errors present in the free-text. While adequate text pre-processing
may enhance the quality of the text itself and thus of the extracted features,
we left this for future work and instead we focused on investigating weighting
schemas for the selected features and binary classifiers.

2.2 Feature Weighting

A number of weighting schemes for capturing the local importance of a feature
in a report were tested.

Binary coefficients were used to encode the presence or absence of a feature.
We refer to this schema as binary.

The weighting schema composed by the feature frequency f(F) of feature F
was used to capture the number of times a specific feature appeared within a
document. We shall refer to this weighting schema as frequency.

Variations of the frequency weighting schema were also experimented with. In
this weighting schema, features frequencies were directly translated into weights,
i.e. weights are linearly derived from frequencies. Variations consider non-linear
functions of the frequency of a feature.

A first variation was to scale the appearance of feature F in a free-text
death certificate by the function 1 + log(f(F)) if f(F) ≥ 1, and 0 if the feature
was absent. This function would capture the fact that little importance is given
to subsequent appearances of a feature F in a document: the logarithm of a
number greater than one plateaus rapidly. In the following, we shall refer to this
weighting schema as LogF, i.e. logarithm of the frequency.

A second variation was to assign increasing weights to features that appear
with high frequencies within the death certificate. To this aim, the appearance of
feature F was weighted according to the function ef(F), while a zero value was
assigned to absent features. It is suggested that, given the short length of the
considered death certificates, the unexpected multiple occurrence of a feature
would provide strong evidence that that feature is important for the document.
Using the exponential function to weight occurrences of a feature would assign
dominating scores to features that occur frequently in a document. We shall refer
to this weighting function as expF.

Note that only local weighting functions were used to assign scores to fea-
tures,that is, weights were computed only by taking into account the frequencies
of appearance of a feature in a text, thus ignoring the distribution of that feature
on a global level, i.e. across the dataset. The incorporation of global occurrence
statistics within the weighting schemas is left to future work.

2.3 Automatic Classification Methodology

A number of common classifiers were evaluated. These comprised statistical mod-
els (Naive Bayes), support vector machines (SPegasos), decision trees (C4.5), and
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boosting algorithms (AdaBoost). We considered the implementations of these
algorithms provided in the Weka toolkit [7].

The multinomial Naive Bayes classifier determines the class of a death cer-
tificate according to the features that occur in the text and their weights. The
SPegasos classifier uses a stochastic gradient descent algorithm and a hinge loss
function to produce the separation hyperplane used by the linear support vector
machine. In the C4.5 classifier, information gain is used for choosing at each
level of the decision tree the most effective feature able to split the data into
the two binary classes considered here (i.e. death certificates related to cancers
and those not related to cancer). Adaboost minimises of a convex loss function
built from the prediction of a base weak classifier. A simple binary decision tree
classifier that constructs one-level trees was used as base classifier for Adaboost.

Parameters of all classifiers were set to the default values described in Witten
et al. [7].

3 Experimental Methodology

3.1 Data

A set of 5,000 free-text death certificates was acquired from Cancer Institute
NSW, the institutional entity responsible for maintaining the Central Cancer
Registry in New South Wales. Ethics approval was granted by the NSW Popu-
lation & Health Services Research Ethics Committee for this study including to
use the de-identified data. The free-text documents were short in length, con-
taining on average 13.08 words; the (unstemmed) vocabulary contained 3,751
unique words (including section headings and labels).

Cause of death classifications based on ICD-10 codes accompanied the re-
ports. This coding set was acquired from the Australian Bureau of Statistics,
who releases coded data yearly. ICD-10 codings were used to determine the
class each death certificates belonged to. A list of ICD-10 codes that are cancer
notifiable was provided by Cancer Institute NSW.

The 5,000 death certificates were extracted from Cancer Institute NSW
archives so that documents were uniformly split across the two classes, i.e. 2,500
certificates were coded with ICD-10 codes that are for notifiable cancers accord-
ing to the business rules of Cancer Institute NSW, while the remaining 2,500
were not cancer notifiable. The causes of death of the 2,500 death certificates
for notifiable cancers span a total of 367 unique ICD-10 codes.

3.2 Evaluation

A 10-fold cross validation methodology was used to train and test the classifica-
tion algorithms. In this methodology, the dataset was randomly divided into 10
stratified3 folds of equal dimensions. A model for each classifier was then learnt

3 Folds were automatically stratified with respect to the two target classes, not the
ICD-10 codes.
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on nine of these folds, leaving one fold out for testing. The process was repeated
by selecting a new fold for testing, while a new model was learnt from the re-
maining folds. Classification effectiveness was then averaged across the folds left
out for testing in each iteration.

F-Measure (F-m) was used as primary metric to evaluate the efficacy of the
implemented classifiers; accuracy, recall (sensitivity, Rec) and precision (posi-
tive predictive value, Prec) were also recorded, along with the number of true
positive (TP), false positve (FP), true negative (TN), and false negative (FN)
classifications.

4 Results and Discussion

The combination of 10 features, 4 weighting schemas, and 4 classifiers requires
the evaluation of a total of 160 classifier settings (referred to as runs in the
following) on the dataset consisting of 5,000 death certificates. While we eval-
uated all combinations of features, weighting schema and classifiers, given the
large number of combinations, it is not feasible to report the individual results
for each of the runs. Thus, we report only the settings of the 40 most effective
runs in terms on F-measure, our primary evaluation metric (Table 2), with the
F-measure of each classifier over all experimented settings graphically shown in
Figure 3. Later in the paper we shall consider a summary evaluation of the vari-
ability of results provided by features, weighting schemas, and classifiers. This
analysis will comprise of the results from all runs.

Naive Bayes Supp. Vec. Mach. C4.5 Adaboost
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Fig. 3. Boxplot summarising the F-measure performance of the investigated classifiers
over all considered settings.

The results reported in Table 2 suggest that the tested approaches are highly
effective in discriminating between those death certificates that contain a cancer
notifiable cause of death and those that do not.
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Classifier Feature Weight Prec Rec F-m TP FN FP TN

SPegasos concFullMorph + stemBigram frequency .9794 .9504 .9647 2376 124 50 2450

SPegasos concFullMorph + stemBigram logF .9786 .9500 .9641 2375 125 52 2448

SPegasos concept + stemBigram logF .9770 .9508 .9637 2377 123 56 2444

SPegasos concFullMorph + stemBigram binary .9770 .9504 .9635 2376 124 56 2444

SPegasos concept + stemBigram binary .9766 .9504 .9633 2376 124 57 2443

SPegasos concept + stemBigram frequency .9766 .9504 .9633 2376 124 57 2443

SPegasos stemBigram binary .9761 .9488 .9623 2372 128 58 2442

SPegasos concFullMorph + stemBigram expF .9773 .9476 .9622 2369 131 55 2445

SPegasos stemBigram logF .9753 .9476 .9612 2369 131 60 2440

SPegasos stemBigram expF .9785 .9444 .9611 2361 139 52 2448

SPegasos stemBigram frequency .9764 .9452 .9606 2363 137 57 2443

SPegasos concept + stemBigram expF .9741 .9460 .9598 2365 135 63 2437

C4.5 concept + stemBigram logF .9800 .9392 .9592 2348 152 48 2452

C4.5 concept + stemBigram expF .9800 .9392 .9592 2348 152 48 2452

C4.5 concept + stemBigram frequency .9800 .9392 .9592 2348 152 48 2452

C4.5 concept + stemBigram binary .9799 .9384 .9587 2346 154 48 2452

C4.5 concFullMorph + stemBigram logF .9856 .9324 .9583 2331 169 34 2466

C4.5 concFullMorph + stemBigram expF .9856 .9324 .9583 2331 169 34 2466

C4.5 concFullMorph + stemBigram frequency .9856 .9324 .9583 2331 169 34 2466

C4.5 stemBigram logF .9848 .9320 .9577 2330 170 36 2464

C4.5 stemBigram expF .9848 .9320 .9577 2330 170 36 2464

C4.5 stemBigram frequency .9848 .9320 .9577 2330 170 36 2464

C4.5 concFullMorph + stemBigram binary .9848 .9320 .9577 2330 170 36 2464

C4.5 stemBigram binary .9848 .9308 .9570 2327 173 36 2464

AdaBoost concept + stemBigram binary 1 .8816 .9371 2204 296 0 2500

AdaBoost concept + stemBigram logF 1 .8816 .9371 2204 296 0 2500

AdaBoost concept + stemBigram expF 1 .8816 .9371 2204 296 0 2500

AdaBoost concept + stemBigram frequency 1 .8816 .9371 2204 296 0 2500

AdaBoost concFullMorph + stemBigram binary 1 .8816 .9371 2204 296 0 2500

AdaBoost concFullMorph + stemBigram logF 1 .8816 .9371 2204 296 0 2500

AdaBoost concFullMorph + stemBigram expF 1 .8816 .9371 2204 296 0 2500

AdaBoost concFullMorph + stemBigram frequency 1 .8816 .9371 2204 296 0 2500

AdaBoost stemBigram binary 1 .8784 .9353 2196 304 0 2500

AdaBoost stemBigram logF 1 .8784 .9353 2196 304 0 2500

AdaBoost stemBigram expF 1 .8784 .9353 2196 304 0 2500

AdaBoost stemBigram frequency 1 .8784 .9353 2196 304 0 2500

SPegasos stem logF .9588 .9120 .9348 2280 220 98 2402

SPegasos stem frequency .9611 .9096 .9346 2274 226 92 2408

Naive Bayes stemBigram binary .9658 .9036 .9337 2259 241 80 2420

Naive Bayes concept + stemBigram binary .9606 .9076 .9334 2269 231 93 2407

Table 2. Top 40 results with respect to decrease F-measure (F-m).

Overall, the best classifier is the support vector machine implementation pro-
vided by SPegasos when used on concFullMorph + stemBigram features, i.e. the
fully specified names of concepts associated to morphological abnormalities and
disorders as encoded in SNOMED CT, weighted using raw frequencies. SPegasos
is found to be very effective also when other combinations of weighting schemas
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and features are considered. In addition, this support vector machine classifier
shows the smallest variance across all considered settings (Figure 3).

Among the best performing classifiers, AdaBoost used in conjunction with
stemmed bigrams features achieved perfect precision (Prec= 1), at the expense
of recall. Although these results are remarkable, high precision may be considered
less important than high recall in such task. In fact, in a Cancer Registry setting,
it is preferable to have high recall and be considering death certificate that are
incorrectly reported as containing cancer notifiable cause of death, than to have
missed cancer cases. This becomes particularly important if the missed cancer
cases refer to rare cancers. AdaBoost also exhibits the highest variance across
experiment settings among the considered classifiers (see Figure 3).

4.1 The Impact of Classifiers, Weighting Schemas, and Features

To better understand the role of specific features, weighting schema, and classi-
fiers on the effectiveness of the tested approaches, an analysis of the empirical
results where each of the three key characteristics were treated as the controlled
variable is performed.

We start by examining the impact of each classification model on the overall
effectiveness of the approaches. Table 3 reports maximum (Max(F-m)), mini-
mum (Min(F-m)), difference (∆), and variance of F-measure over all runs of
each classifier model. SPegasos is found to be the classifier achieving the high-
est maximum and minimum F-measure values, thus extending the observations
made on this classifier when examining the results of Table 2. Instead, while the
Naive Bayes classifier was not found to be amongst the most effective classifica-
tion models in our experiments, its robustness is second only to that of SPegasos,
with performance ranges between 0.9337 and 0.7428 in F-Measure. While models
such as C4.5 and Adaboost achieve higher values of F-measure than Naive Bayes,
their minimum performances are lower than that recorded for Naive Bayes.

Classifier Max(F-m) Min(F-m) ∆ Variance

SPegasos 0.9647 0.7767 0.1880 5.10 · 10−3

Naive Bayes 0.9337 0.7428 0.1909 5.10 · 10−3

C4.5 0.9592 0.7355 0.2237 7.35 · 10−3

AdaBoostM1 0.9371 0.6954 0.2417 7.88 · 10−3

Table 3. Classification effectiveness across the four classifiers ordered by increasing
max-min F-measure range (∆).

We continue by analysing the influence of weighting schemas on the classifi-
cation results of the approaches investigated in this work. Simple raw frequency
weighting, i.e. frequency, is found to be the most effective weighting schema. How-
ever, no weighting schema appears to be significantly better than another: while
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Weight Max(F-m) Min(F-m) ∆ Variance

binary 0.9635 0.6954 0.2681 6.81 · 10−3

frequency 0.9647 0.6954 0.2693 6.74 · 10−3

logF 0.9641 0.6954 0.2687 6.80 · 10−3

expF 0.9622 0.6954 0.2668 6.53 · 10−3

Table 4. Classification effectiveness across the four weighting schema ordered by in-
creasing max-min F-measure range (∆).

frequency achieves the best performance with a F-measure of 0.9647, the highest
F-measure of the worst performing schema is 0.9622 (expF), just 0.003% lower
than frequency. Furthermore, all weighting schema exhibit the same effectiveness
when considering the worst performing settings. Thus the range of performance
differences and their variance do not significantly differ across weighting schema.
This may be due to the fact that death certificates are in general short docu-
ments, where features occur uniformly.

Feature Max(F-m) Min(F-m) ∆ Variance

stemBigram 0.9623 0.9275 0.0348 2.02 · 10−4

concept + bigramStem 0.9637 0.9267 0.0370 2.16 · 10−4

concFullMorph + stemBigram 0.9647 0.9255 0.0392 2.33 · 10−4

concBigram + stemBigram 0.8443 0.7677 0.0766 8.01 · 10−4

concBigram 0.8443 0.7677 0.0766 8.01 · 10−4

concFullBigram 0.7768 0.6954 0.0814 8.93 · 10−4

conceptFull 0.809 0.7177 0.0913 1.17 · 10−3

concept + stemBigram 0.9302 0.838 0.0922 8.39 · 10−4

concept 0.8743 0.7792 0.0951 1.13 · 10−3

stem 0.9348 0.8131 0.1217 1.36 · 10−3

Table 5. Classification effectiveness across the ten features ordered by increasing max-
min F-measure range (∆).

Feature is the final variable of our analysis, and the one with the greatest im-
pact on classification results. The use of the concFullMorph + stemBigram feature
provide the highest F-measure (0.9647), while concFullBigram yields the lowest
maximal F-measure (0.7768): a significant difference of 19.48%. The smallest
variance was demonstrated by stemBigram (2.02 · 10−4), making it the most
robust feature in our experiment; in addition this feature yielded a maximal F-
measure of only 0.003% lower than the best value recorded in our experiments.
The minimal F-measure yield by the stemBigram feature was also greater than
the greatest F-measure values obtained when using half of the features investi-
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gated in our study. These results provide strong indication that, of the variables
analysed, the choice of feature provides the greatest contribution to the classifi-
cation effectiveness.

5 Conclusions
Timely processing of cancer notifications is critical for timely reporting of cancer
incidence and mortality. Death certificates are a rich source of data on cancer
mortality. Cancer registries acquire free-text death certificates on a regular (e.g.
fortnightly) basis. However, the cause of death information needs to be classified
to facilitate reporting of cancer mortality. Cause of death information classified
using ICD-10 codes is only available on an annual basis. In this paper we inves-
tigated the automatic classification of death certificates to individuate cancer
notifiable cause of deaths. The investigated approaches achieved overall strong
classification effectiveness, with a support vector machine classifier trained with
token bigram features and information from the SNOMED CT medical ontol-
ogy, and weighted by their frequency in the documents yielding an F-measure
of 0.9647. The choice of features, rather than that of classifiers or weighting
schema, was found to be the determining factor for high effectiveness.

Future efforts will be directed towards an in depth error analysis, in particular
examining the distance between the prediction produced by a classifier and the
decision threshold. We also plan to extend the investigation to predict the actual
ICD-10 codes associated to cause of death related to cancer, so as to further assist
clinical coders in processing cancer notifications.
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