
FishMark: A Linked Data Application
Benchmark

Samantha Bail1, Sandra Alkiviadous1, Bijan Parsia1, David Workman2, Mark
Van Harmelen2, Rafael S. Goncalves2, and Cristina Garilao3

1 The University of Manchester, Manchester M13 9PL, United Kingdom
2 HedTek, Manchester M4 1LZ, United Kingdom

3 GEOMAR Helmholtz-Zentrum fr Ozeanforschung, 24148 Kiel, Germany

Abstract. FishBase is an important species data collection produced
by the FishBase Information and Research Group Inc (FIN), a not-for-
profit NGO with the aim of collecting comprehensive information (from
the taxonomic to the ecological) about all the world’s finned fish species.
FishBase is exposed as a MySQL backed website (supporting a range
of canned, although complex queries) and serves over 33 million hits
per month. FishDelish is a transformation of FishBase into LinkedData
weighing in at 1.38 billion triples. We have ported a substantial number
of FishBase SQL queries to FishDelish SPARQL query which form the
basis of a new linked data application benchmark (using our derivative
of the Berlin SPARQL Benchmark harness). We use this benchmarking
framework to compare the performance of the native MySQL applica-
tion, the Virtuoso RDF triple store, and the Quest OBDA system on a
fishbase.org like application.

1 Introduction

The Linked Open Data (LOD) movement promises much, indeed, nothing less
than a new World Wide Web with comparable success to the Web as it is. The
amount of LOD is growing at an interesting pace and the underlying technologies
are constantly improving. Off the shelf, untuned RDF triple stores handle data
sets on normal hardware that would have been unthinkable 5 years ago. However,
there is scant evidence about the benefits and drawbacks of converting applica-
tions to use linked data. Given that the conversion from “native” data models
(such as XML or relational databases) typically involves a large blow up in size
and loss of tuned structures, e.g. indexes or (de)normalization, achieving compa-
rable performance post-triplification is a common concern. While there may be
other benefits to triplification, such as easier integration with other LOD, this
needs to be weighed against the costs imposed.

To help assess the costs of triplification, we have developed FishMark, an
application benchmark for linked data systems. FishMark consists of two com-
ponents: The Manchester University Multi-Benchmarking (MUM-benchmark)
framework, and a set of data, queries, and query frequences derived from Fish-
Base, a comprehensive database about the world’s finned fish species, and fish-

1



base.org, a popular web front end to FishBase.4 FishBase is a LAMP application
with a large number of SQL queries being invoked against a MySQL backend
to generate various web pages. We have triplified FishBase and ported its most
popular queries to SPARQL. FishMark thus allows a precise comparison between
the RDBMS infrastructure and various linked data competitors.

Further, we have created an OWL ontology and respective mappings for the
FishBase data, which allows us to measure the performance of an ontology-
based data access (OBDA) system [6,4] compared to the RDMBS and RDF
triple store versions. OBDA systems offer a different approach to the problem
of describing domain knowledge at an abstract level while granting efficient and
scalable access to large amounts of data. In the OBDA approach the data are
held in external data sources, such as a standard relational database, which are
connected to information in an OWL ontology using mappings. Ontologies used
for this purpose are in the OWL 2 QL profile5 which is based on the DL-Lite [1]
family of description logics.

In this paper, we present a first approach to comparing the query performance
of native RDBMS, RDF triple stores, and OBDA systems using a single set of—
real—data and queries. In particular, we compare an Extract Transform Load
(ETL) approach using D2R and the Virtuoso RDF store, and Quest, an OBDA
system which executes the SPARQL queries via mappings against the original
MySQL database.

2 Related Work

There have been a number of benchmarks for measuring the performance of
SPARQL query answering, and countless approaches to SQL benchmarking; we
therefore focus on a selection of the most prevalent RDF benchmarking frame-
works.

One of the most well-known performance benchmarks for RDF stores is the
Lehigh University Benchmark (LUBM) [5]. LUBM consists of a small, hand-
built ontology containing information about university departments, students,
etc., with a large number of instances for each class. The dataset is scaled by
increasing the number of universities, which creates a randomised number of
instances for the new university. This method generates entirely disjoint sets of
data, a problem which the University Ontology Benchmark (UOBM) [7] seeks
to rectify by generating interrelations between the instances across different
universities.

The LUBM Benchmark is used in [11] as a benchmark for SparqlEngineDB, a
SPARQL-to-SQL system which translates SPARQL queries to SQL queries and
executes them against a relational database. This translation approach is thought
to have an advantage over querying native RDF stores with SPARQL, as it does
not require to hold the entire data in memory (as is the case with SPARQL),
while also making use of the query optimisation techniques used in RDBMS.

4 In general, we will use “FishBase” to refer to both parts.
5 http://www.w3.org/TR/2008/WD-owl2-profiles-20081008/

2



The authors perform an evaluation of SparqlEngineDB against Virtuoso and
Jena-SDB with the data scaling up to 200,000 triples. They find that Virtuoso
exceeds the performance of both SparqlEngineDB and Jena-SDB.

The Berlin SPARQL Benchmark (BSBM) [2] uses a hand-built e-commerce
dataset and a fixed set of queries to measure the performance of RDF triple
stores. It provides a data generation tool which generates a data set of custom
size, as well as a test driver framework for performing query mixes for several
use cases, such as “explore”, “update and explore”, and “Business Intelligence”,
which emulate the “search and navigation pattern of a consumer looking for

a product” [2]. The authors present the results of applying BSBM to measure
the SPARQL query performance of several RDF triple stores, as well as the
SQL translations of the SPARQL queries using Virtuoso RDF View and D2R
Server.6 While Sesame performs best for the smallest instance of the dataset (1
million items), Virtuoso’s RDF View outperforms the triple stores on large-scale
datasets. Even though no direct comparisons between the RDB and RDF stores’
performance are made, it can be seen that the native SQL queries outperform
the SPARQL queries by an order of magnitude on the smallest dataset.

One of the RDF benchmarks that use real test data and queries is the DB-
pedia SPARQL Benchmark (DBPSB) [8]. DBPSB uses data from the DBpedia7

knowledge base and queries extracted from DBpedia’s query logs. While im-
plementing standard benchmarking techniques such as clearing the cache and
performing warm-up runs, DBPSB also provides a method for scaling the size of
the benchmarking dataset. In [8] the authors use DBPSB to test the performance
of four triple stores: Virtuoso,8 Sesame,9 BigOWLIM,10 and Jena-TDB.11 They
find that Virtuoso is the fastest of the four triple stores, handling large amounts
of data significantly better than the other systems.

A similar approach to BSBM is the Social Network Intelligence Benchmark
(SIB) [3], which uses a schema of a social network similar to Facebook, and
data dictionaries in order to generate artificial RDF data. The benchmark also
includes several query mixes, such as the “Interactive query mix” of 20 queries
that simulate typical user interaction in a social network. The SP 2Bench bench-
mark [10] is set in a scenario similar to DBLP, a large computer science bibliog-
raphy database which indexes over 200,000 citations. SP 2Bench includes a data
generator to generate “large DBLP-like models” in RDF, which is based on a
study of the features of DBLP and 12 hand-built SPARQL queries which vary
in their characteristics.

6 http://d2rq.org/d2r-server
7 http://dbpedia.org/
8 http://virtuoso.openlinksw.com/
9 http://www.openrdf.org/index.jsp

10 http://www.ontotext.com/owlim/editions
11 http://jena.apache.org/documentation/tdb/index.html

3



3 Materials and Methods

3.1 Data

There are currently two FishMark data sets: A MySQL database representing a
snapshot of FishBase from 2011, and an RDF graph that is the result of applying
a D2R conversion to that database.

The conversion of the complete FishBase dump via D2R consumed several
hours and resulted in an RDF graph with 1.38 billion triples (which was stored as
a 250GB file). Initial tests with various triple stores, however, were unsuccessful
when attempting to load the data. In order to deal with this issue, we generated
another MySQL dump of FishBase which only included the tables needed for the
given queries. This reduced the data resulting from the D2R conversion to ap-
proximately 20 million (20,186,776) triples. According to the Virtuoso statistics
generator, this data set contains 31,927 fish species.

The FishBase OWL ontology which was manually created using the Protégé 4
ontology editor contains 10 classes, 10 object properties, 84 data properties, and
206 logical axioms. The manually created OBDA model contains 20 mappings,
which map data from the RDB to the OWL ontology.

3.2 Queries and Query Mix

While, eventually, the FishMark query set should include at least all queries
which drive FishBase.org, currently we have a select set of 22 SQL queries with a
range of complexity and corresponding SPARQL translations. Short descriptions
of all 22 queries are listed in Table 2 alongside the number of joins for each
query; sample instances of a selected set of queries can be found in Appendix B.
The queries are of restricted complexity due to the limited number of SPARQL
features supported by the Quest OBDA system at the time of performing the
benchmark.

We obtained a server log from the fishbase.org server in Kiel, Germany, for
June 2012. The logs indicated that, on average, only a small number of distinct
queries were performed on FishBase, the most frequent being the generation of
a species page for a fish (2440 queries per day), followed by the search for a fish
species by common name (1034 queries per day). The total numbers in June
2012, as well as the average daily and hourly frequency of the most frequently
used queries (according to the FishBase server logs) are given in Table 3.

We use the following notation to describe aspects of the benchmarking frame-
work:

– Query type: A parameterised named query, e.g. “Query 1: CommonName”,
“Query 2: SpeciesPage”, etc.

– Query instance: An instance of a query type with randomly selected values
for the parameters.

– Query set: A set of query instances of all query types in the query mix.

We have defined three distinct benchmarks which are intended to test various
aspects of the systems:

4



ID Query name Description Joins

1 CommonName Find species for a given common name. 2
2 SpeciesPage Find information about a specific species. 5
3 Genus Find species matching a given genus. 1
4 Species Find species matching a given species. 1
5 FamilyInformation Find information about a family of species. 1
6 FamilyAllFish Find all fish for a given family. 1
7 FamilyNominalSpecies Find all nominal species for a given family. 1
8 FamilyListOfPictures Find all pictures for a given family. 2
9 CollaboratorPage Retrieve information about a collaborator. 0

10 PicturePage Retrieve information about a picture. 1
11 CAllFish Find all fish for a given country. 3
12 CSpeciesInformation Find information about a species of a country. 2
13 CFreshwater Find all freshwater species for a country. 3
14 CIntroduced Find all introduced species for a country. 3
15 CEndemic Find all endemic species for a country. 3
16 CReefAssociated Find all reef-associated species for a country. 3
17 CPelagic Find all pelagic species for a country. 3
18 CGameFish Find all game fish for a country. 2
19 CCommercial Find all commercial fish for a country. 4
20 CUsedAquaculture Find all species used for a. c. for a country. 3
21 CPotAquaculture Find species w/ potential use for a.c. for a country. 2
22 CAquariumTrade Find all species used for a. t. for a country. 3

Table 2. FishBase Queries with short descriptions and number of joins.

Benchmark 1: Individual Queries The first query mix for the benchmark consists
of a simple performance test for each individual query, i.e. the query mix is
used as a simple means to run each query exactly once. We generated multiple
query sets for this test, each with a new, randomly selected set of parameters.
Generating multiple query sets seemed necessary, as the data in FishBase are
fairly heterogeneous: For example, a common name search for “Shark” returns 24
different species, while the same search for “Borna Snakehead” returns exactly 1
result. Therefore, running the query mix with the same query set may skew the
results towards “good” or “bad” parameters for the queries. The Berlin SPARQL
Benchmark employs the same principle to generate different parameter values
for queries.

Benchmark 2: Randomised Weighted Query Mix A second variant of the query
mix is the randomised weighted query mix based on the FishBase server access
logs. The query mix contains the 5 most frequent query types, each of the queries
being instantiated n times, where n is the frequency of the query according to the
server access logs. The final query mix contains 175 query instances of 5 query
types. Note that the queries are instantiated with random parameter values,
therefore it is possible that some of the query instances are identical. This seems
realistic, as FishBase users might perform the same query several times in a row.

5



Query name Month Day Hour

Species Page 73213 2440.43 101.68
Common Name 31008 1033.60 43.07
Genus 13331 444.37 18.52
Country Species Information 4429 147.63 6.15
Collaborator Page 4138 137.93 5.75

Table 3. Frequency of the most common FishBase queries per month (total), day
(mean), and hour (mean), June 2012.

Benchmark 3: Typical User Scenario The log files also allow us to draw conclu-
sions as to how users commonly navigate on the fishbase.org site. As the species
page for a fish species is the central point of information, the log files show
a usage pattern which focuses heavily on accessing species pages from various
other points on the site, most frequently the common name search (which is a
prominent feature on the fishbase.org start page). From this usage pattern, we
can construct a query mix which emulates the route a typical user takes during
one visit to fishbase.org, similar to BSBM’s explore use case.

3.3 Datastores- and Access

Virtuoso Open Source 6.1.5 Virtuoso is a “multi-model data server” which sup-
ports data storage and management of relational data, XML data, and RDF
data, amongst others. Through several prior benchmarks, Virtuoso emerged as
one of the best performing RDF triple stores. We installed Virtuoso (Open Source
edition) following the instructions on the Virtuoso wiki12 for a default install.
As recommended by Virtuoso, the following parameters were modified in the
virtuoso.ini file to match our hardware setup:

– NumberOfBuffers: 1360000
– MaxDirtyBuffers: 1000000
– MaxCheckpointRemap: 60GB (= 1/4 of the DB size)

These were the only measures taken to tune the datastore. The FishBase RDF
triples were then loaded into the database from the n-triples file using the SQL
command DB.DBA.TTLP MT.

MySQL 5.5 Relational DBMS The current live version of FishBase uses a MySQL
RDBMS as data store. As described above, we generated a smaller snapshot of
the FishBase database dump which contained all the information required by the
queries in the query mix. The data was loaded into an “out-of-the-box” install
of the MySQL 5.5 RDBMS running on our test machine.

12 http://www.openlinksw.com/dataspace/dav/wiki/Main

6



Quest 1.7 OBDA System (using a MySQL database) The Quest OBDA system
[9] defines “virtual ABoxes” over data which is stored in a relational DBMS.
It provides access to the data via SPARQL queries which the system rewrites
into SQL, thereby delegating the query execution entirely to the RDBMS. Quest
currently supports several RDBMS, including PostgreSQL, MySQL, DB2 and
Oracle. For our benchmark, we used the existing MySQL database with the
manually created OWL ontology and mappings described above.

3.4 Benchmarking Framework

We developed a multi-query language benchmarking framework which is a deriva-
tive of the Berlin SPARQL Benchmark (BSBM) code, extending its functional-
ity by a query generation module and additional connectors for SQL queries
and OBDA access. The Manchester University Multi-Benchmarking (MUM-
benchmark) framework is released as an open source project under the Apache
License 2.0.13

The query generator accepts an XML file containing parameterised queries
(in SPARQL or SQL) and the respective queries to select a random parameter
value from the data store for each parameter. This allows us to generate queries
based on data from existing data stores, rather than relying on artificially gen-
erated data and queries. Examples of such a parameterised query can be found
in Appendix A.

The BSBM TestDriver has been extended to measure the performance of
relational databases queries via SQL queries and OBDA. The benchmark Test-
Driver measures the query performance of a query mix, which is created manually
by specifying a series of queries in a plain text file. The benchmarking process
includes a warm-up phase of several runs (default: 50 runs) of the query mix,
which is followed by multiple runs (default: 500 runs) whose performance is
measured. The results of the benchmark are then output as an XML result file,
including aggregated metrics for the query mix, as well as individual metrics for
each query in the query mix.

3.5 What We Measure

Due to time constraints, we focused on obtaining results for Benchmark 1 de-
scribed in section 3.2, which measures the performance of each individual query.
We generated 20 distinct query sets in order to ensure that the query perfor-
mance was not affected by the choice of parameters. Each of the query mixes
in the benchmark was run 50 times as a warm-up phase, followed by 100 timed
runs;14 this results in a total of 2,000 measured runs per query.

13 http://code.google.com/p/mum-benchmark/
14 Note that the default number of timed runs in the BSBM framework is 500; due to

the large number of query sets and the relatively stable times after the warm-up, we
reduced the number of timed runs to 100.

7



In preliminary tests we found that the Quest system performed reasonably
well on the query mix, with one significant drawback: The query rewriting con-
sumed a large amount of time for some of the queries, in particular for query 2
(SpeciesPage). This is due to the large number of SQL queries being generated
in the SPARQL-to-SQL rewriting process, which then have to be pruned in a
time-consuming process. In the case of query 2, the rewriting algorithm gener-
ated 7,200 queries, of which 7,198 were pruned, whereas most other queries in
the mix generated not more than 120 queries. The time required to rewrite query
2 was nearly 10 seconds on average, which caused extreme delays in the bench-
mark. Due to a simple caching mechanism, however, the system did not have to
perform any rewriting after the first execution of the query, which lead to a sig-
nificant improvement in the query execution time. We therefore performed the
rewriting and caching in the warm-up phase of the benchmark, only measuring
the execution time of the SQL query generated by Quest. While this may seem
to paint an unrealistic picture of the total execution time of the queries, it does
provide us with a measure of the quality of the SPARQL-to-SQL rewriting.

The results are returned using an extended version of the BSBM result XML
file, which includes metrics for the query mix (fastest, slowest, and average query
mix run time, query mixes per hour), and metrics for the individual queries:
Average / min / max query execution time, queries per second, average / min /
max number of results per query execution, and number of query timeouts.

3.6 Hardware

The data stores were installed on an “out-of-the-box” Mac Mini with a 2.7 GHz
Intel Core i7 dual-core processor, 16 GB (1333 MHz DDR3) memory, and a
750 GB HDD, running Mac OS X 10.7.4 (Lion). The benchmark queries were
performed remotely, using an identical machine.

4 Results

The results of the individual query benchmark are shown in Table 4, the unit
being queries per second (qps).15 The SQL query results are given only as a
baseline to compare the other datastores against. As stated previously, the re-
sults for Quest do not exclude the query re-writing times, but only compare the
performance of the SQL queries the OBDA system generates from the SPARQL
queries. The SPARQL queries against Virtuoso perform consistently worse than
against Quest, with Quest outperforming Virtuoso by roughly an order of mag-
nitude on most queries.

Across all 22 queries, there are large differences in performance for each data
store: For 7 of the 22 queries, Virtuoso’s performance lies in the single-digit range,
a further 10 only range between 12 and 68, and only 5 queries (CommonName,

15 Please note that query 9 was wrongly generated for Quest, therefore we did not
obtain any meaningful results for this query.

8



FamilyAllfish, FamilyNominalSpecies, Genus, Species) perform better than 100
qps, with the best query execution time for query 4 (Species). The performance
even drops to only 1 query per second on average for query 2 (SpeciesPage).

ID Query name Virtuoso Quest MySQL

1 CommonName 132 850 1262
2 SpeciesPage 1 552 840
3 Genus 167 753 1025
4 Species 192 870 1249
5 FamilyInformation 17 572 840
6 FamilyAllfish 141 704 1113
7 FamilyNominalSpecies 161 773 1060
8 FamilyListOfPictures 50 578 742
9 CollaboratorPage 27 824

10 PicturePage 68 711 1166
11 CAllFish 24 316 629
12 CSpeciesInformation 7 598 1009
13 CFreshwater 6 201 212
14 CIntroduced 9 303 479
15 CEndemic 13 656 985
16 CReefAssociated 4 266 378
17 CPelagic 7 337 532
18 CGameFish 9 580 845
19 CCommercial 12 556 748
20 CUsedForAquaculture 12 779 1229
21 CPotentialAquaculture 34 694 957
22 CAquariumTrade 66 815 1251

Table 4. Query results of the 22 queries in qps (queries per second)

The behaviour of Quest seems more stable compared to Virtuoso: 16 of the
22 queries perform at between 550 and 870 qps, with only query 13 (Country
Freshwater, i.e. retrieve all freshwater species of a given country, an instantiation
of which is shown in Appendix B) and 16 (Country Reef Associated) causing a
significant drop in performance across all three systems. This is surprising, as
the Country queries (query 11 to 22) are all similar, but rank among the best
and worst performing queries for the Quest system. The search for a Species
(query 4) as well as the Common Name query (query 1) are executed at the
highest speed, with 870 and 850 qps, respectively.

In summary, it can be said that the SQL queries generated by Quest perform
surprisingly well compared to the Virtuoso RDF store. As Virtuoso has consis-
tently performed well in existing benchmarks (see Section 2), we have reason to
assume that the comparatively weak performance is not restricted to Virtuoso,
but rather a general issue of triple stores. While the results of the native SQL
queries against the MySQL database are only given as a baseline, it is clear to

9



see that the results of the queries against Quest come fairly close to those of the
native SQL queries.

5 Conclusions and Future Work

In this paper, we have presented a multi-purpose benchmarking framework,
which allows benchmark users to generate randomised queries from existing data.
We have used this framework to generate a benchmark using data from FishBase,
a large collection of information about the world’s fish. The FishMark has been
employed to measure the performance of several data stores. While the work
on this benchmark is in its early stages, we have found that the combination of
real data, query mixes inferred from server logs, automated query instantiation
and query benchmarking over several different systems (RDF triple store, SQL
RDBMS, OBDA using an RDBMS), makes for a promising approach to per-
formance measurement. The OBDA system we tested outperformed the RDF
store by approximately an order of magnitude, while being surprisingly close in
performance to FishBase’s native relational database.

For future work, there are a number of possible ways to extend and improve
the MUM-benchmarking framework. The current version only generates inde-
pendent parameter values for the queries in a query mix rather than a sequence

of queries in which each parameter value depends on the parameter values in
previous queries. Sequencing would generate a more natural set of queries for a
query mix.

We are planning to develop strategies for scaling the FishBase data based
on a single fish species. This will allow us to test the performance of various
data engines using self-contained subsets of the FishBase data. Another next
step is the generation of more realistic query mixes based on the information
extracted from the FishBase server logs. Additionally, we are aiming to make
another attempt at using the complete FishBase data set (1.38 billion triples)
for the benchmark.

The main purpose of the benchmarking results in this report is to demon-
strate the FishMark benchmark; therefore we only tested a very restricted num-
ber of systems on a single query mix. We aim to perform more extensive tests
with FishMark using a larger set of RDF stores, SPARQL-to-SQL rewriters, and
OBDA systems. Finally, we did not attempt to measure the query performance
under the load of multiple clients, which is a natural next step in the development
of the FishMark benchmark.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family
and relations. J. of Artificial Intelligence Research 36, 1–69 (2009)

2. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semantic Web Inf.
Syst. 5(2), 1–24 (2009)

10



3. Boncz, P., Pham, M.D., Erling, O., Mikhailov, I., Rankka,
Y.: Social network intelligence benchmark (SIB) - version 0.8.
http://www.w3.org/wiki/Social Network Intelligence BenchMark (2011)

4. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-
Muro, M., Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-
based data access. Semantic Web J. 2(1), 43–53 (2011)

5. Guo, Y., Pan, J.Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base
systems. J. of Web Semantics 3(2-3), 158–182 (2005)

6. Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The com-
bined approach to ontology-based data access. In: Proc. of IJCAI-11. pp. 2656–2661
(2011)

7. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y., Liu, S.: Towards a complete OWL
ontology benchmark. In: Proc. of ESWC-06. pp. 125–139 (2006)

8. Morsey, M., Lehmann, J., Auer, S., Ngomo, A.C.N.: DBpedia SPARQL benchmark
- performance assessment with real queries on real data. In: Proc. of ISWC-11. pp.
454–469 (2011)

9. Rodriguez-Muro, M., Calvanese, D.: Quest, an OWL 2 QL reasoner for ontology-
based data access. In: Proc. of OWLED-12 (2012)

10. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL perfor-
mance benchmark. In: Proc. of ICDE-09. pp. 222–233 (2009)

11. Weiske, C., Auer, S.: Implementing SPARQL support for relational databases and
possible enhancements. In: Proc. of CSSW-07. pp. 69–80 (2007)

11



Appendix A: Sample Query Template

Query Template for Query 2: SpeciesPage (SPARQL)

<bmquery name="SpeciesPage">
<query>

<![CDATA[
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX fish: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?common ?code ?refno
?author ?demerspelag ?anacat
?family ?order ?class ?entered
?pic ?picid ?description ?refauthor ?refyear
?collaborator ?comments
WHERE {
?x fish:species_Genus "%genus%" .
?x fish:species_SpecCode ?code.
?x fish:species_Species "%species%" .
?x fish:species_Comments ?comments .
OPTIONAL {?x fish:species_Author ?author}.
OPTIONAL {?x fish:species_FBname ?common}.
OPTIONAL {?x fish:species_SpeciesRefNo ?refno}.
OPTIONAL {?ref fish:refrens_RefNo ?refno}.
OPTIONAL {?ref fish:refrens_Author ?refauthor}.
OPTIONAL {?ref fish:refrens_Year ?refyear}.
OPTIONAL {?x fish:species_Comments ?biology.}
OPTIONAL {
?x fish:species_FamCode ?famcode.
?famcode fish:families_Family ?family.
?famcode fish:families_Order ?order.
?famcode fish:families_Class ?class.
}
OPTIONAL {?morph fish:morphdat_Speccode ?x.
?morph fish:morphdat_AddChars ?description.}
OPTIONAL {?x fish:species_DemersPelag ?demerspelag.}
OPTIONAL {?x fish:species_AnaCat ?anacat.}
OPTIONAL {?x fish:species_PicPreferredName ?pic.
?pic_node fish:picturesmain_SpecCode ?x.
?pic_node fish:picturesmain_PicName ?pic.
?pic_node fish:picturesmain_autoctr ?picid.
?pic_node fish:picturesmain_Entered ?entered.
?pic_node fish:picturesmain_AuthName ?collaborator.
}
}

]]>
</query>
<parameterquery>

<paramname>genus</paramname>
<paramname>species</paramname>

<paramvalues>
<query>

<![CDATA[
PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?genus ?species
WHERE {
?code fd:species_Genus ?genus .
?code fd:species_Species ?species .
}

]]>
</query>

</paramvalues>
</parameterquery>

</bmquery>

12



Appendix B: Sample Benchmark Queries

Instance of Query 1: Common Name (SPARQL)

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?type ?species ?genus ?country ?language
WHERE {
?nameID fd:comnames_ComName "Banded wormfish" .
?nameID fd:comnames_NameType ?type .
?nameID fd:comnames_SpecCode ?code .
?nameID fd:comnames_C_Code ?ccode .
?code fd:species_Species ?species .
?code fd:species_Genus ?genus .
?ccode fd:countref_PAESE ?country .
}

Instance of Query 2: SpeciesPage (SPARQL)

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX fish: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?common ?code ?refno
?author ?demerspelag ?anacat
?family ?order ?class ?entered
?pic ?picid ?description ?refauthor ?refyear
?collaborator ?comments
WHERE {
?x fish:species_Genus "Sebastes" .
?x fish:species_SpecCode ?code.
?x fish:species_Species "nigrocinctus" .
?x fish:species_Comments ?comments .
OPTIONAL {?x fish:species_Author ?author}.
OPTIONAL {?x fish:species_FBname ?common}.
OPTIONAL {?x fish:species_SpeciesRefNo ?refno}.
OPTIONAL {?ref fish:refrens_RefNo ?refno}.
OPTIONAL {?ref fish:refrens_Author ?refauthor}.
OPTIONAL {?ref fish:refrens_Year ?refyear}.
OPTIONAL {?x fish:species_Comments ?biology.}
OPTIONAL {
?x fish:species_FamCode ?famcode.
?famcode fish:families_Family ?family.
?famcode fish:families_Order ?order.
?famcode fish:families_Class ?class.
}
OPTIONAL {?morph fish:morphdat_Speccode ?x.
?morph fish:morphdat_AddChars ?description.}
OPTIONAL {?x fish:species_DemersPelag ?demerspelag.}
OPTIONAL {?x fish:species_AnaCat ?anacat.}
OPTIONAL {?x fish:species_PicPreferredName ?pic.
?pic_node fish:picturesmain_SpecCode ?x.
?pic_node fish:picturesmain_PicName ?pic.
?pic_node fish:picturesmain_autoctr ?picid.
?pic_node fish:picturesmain_Entered ?entered.
?pic_node fish:picturesmain_AuthName ?collaborator.
}
}

Instance of Query 3: Genus

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?species ?author ?family ?ename
WHERE {
?code fd:species_Species ?species .
?code fd:species_Genus "Parachondrostoma" .
OPTIONAL {?code fd:species_FBname ?ename .}
?code fd:species_Author ?author .
?code fd:species_FamCode ?fcode .
?fcode fd:families_Family ?family .
}

Instance of Query 4: Species

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?genus ?author ?family ?ename
WHERE {
?code fd:species_Species "ocellatum" .
?code fd:species_Genus ?genus .
OPTIONAL {?code fd:species_FBname ?ename .}
?code fd:species_Author ?author .
?code fd:species_FamCode ?fcode .
?fcode fd:families_Family ?family .
}

13



Instance of Query 5: Family Information

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?order ?class ?noOfGenera ?noOfSpecies ?marine ?brackish ?freshwater ?fossil
?aquarium ?remark ?division ?activityLevel ?author ?year ?repguild ?SpeciesCount
WHERE {
?familiesID fd:families_Family "Ipnopidae" .
?familiesID fd:families_Order ?order .
?familiesID fd:families_Class ?class .
?familiesID fd:families_SpeciesCount ?SpeciesCount .
?familiesID fd:families_Genera ?noOfGenera .
?familiesID fd:families_Species ?noOfSpecies .
OPTIONAL {?familiesID fd:fossilReference ?fossil }.
?familiesID fd:families_Marine ?marine .
?familiesID fd:families_Brackish ?brackish .
?familiesID fd:families_Freshwater ?freshwater .
?familiesID fd:families_Aquarium ?aquarium .
?familiesID fd:families_Remark ?remark .
?familiesID fd:families_Remark ?remark .
?familiesID fd:families_Division ?division .
?familiesID fd:families_Activity ?activityLevel .
?familiesID fd:families_ReprGuild ?repguild .
?familiesID fd:families_FamiliesRefNo ?code .
?x fd:refrens_RefNo ?code .
?x fd:refrens_Author ?author .
?x fd:refrens_Year ?year .
}

Instance of Query 6: Family All Fish

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?species ?genus ?author ?englishName
WHERE { ?SpeciesID fd:species_Author ?author ;
fd:species_Species ?species;
fd:species_Genus ?genus ;
fd:species_FamCode ?code .
?code fd:families_Family "Stromateidae" .
OPTIONAL {?SpeciesID fd:species_FBname ?englishName } .
}

Instance of Query 7: Family Nominal Species

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?species ?author ?genus ?ref
WHERE { ?SpeciesID fd:species_Author ?author ;
fd:species_Species ?species;
fd:species_Genus ?genus ;
fd:species_FamCode ?code .
OPTIONAL {?SpeciesID fd:species_ImportanceRef ?ref }.
?code fd:families_Family "Gobiesocidae" .
}

Instance of Query 8: Family List of Pictures

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?genus ?species ?englishname ?picture ?photographer ?location
WHERE {?picID fd:picturesmain_SpecCode ?code ;
fd:picturesmain_PicName ?picture ;
fd:picturesmain_AuthName ?photographer .
OPTIONAL { ?picID fd:picturesmain_Locality ?location }.
OPTIONAL { ?code fd:species_FBname ?englishname } .
?code fd:species_Species ?specie;
fd:species_Genus ?genus ;
fd:species_FamCode ?fcode .
?fcode fd:families_Family "Moronidae" .
}

Instance of Query 9: Collaborator Page

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?prename ?surname ?email ?photo ?webpage ?fax ?institute ?street ?city ?country ?comments ?keywords ?year
WHERE {
?x fd:collaborators_Personnel "1952" .
OPTIONAL {?x fd:collaborators_Prename ?prename }.
OPTIONAL {?x fd:collaborators_Surname ?surname }.
OPTIONAL {?x fd:collaborators_E-mail ?email }.
OPTIONAL {?x fd:collaborators_StaffPhoto ?photo }.
OPTIONAL {?x fd:collaborators_WebPage ?webpage }.
OPTIONAL {?x fd:collaborators_FAX ?fax }.
OPTIONAL {?x fd:collaborators_Institute ?institute }.

14



OPTIONAL {?x fd:collaborators_Street ?street }.
OPTIONAL {?x fd:collaborators_City ?city }.
OPTIONAL {?x fd:collaborators_Country ?country }.
OPTIONAL {?x fd:collaborators_Comments ?comments }.
OPTIONAL {?x fd:collaborators_Keywords ?keywords }.
OPTIONAL {?x fd:collaborators_Year ?year }.
}

Instance of Query 10: Picture Page

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?genus ?species ?photographer ?size ?location ?stage ?reference ?remark
WHERE {
?pcode fd:picturesmain_PicName "Danav_u0.jpg" .
?pcode fd:picturesmain_AuthName ?photographer .
OPTIONAL {?pcode fd:picturesmain_Size ?size }.
OPTIONAL {?pcode fd:picturesmain_Locality ?location }.
?pcode fd:picturesmain_LifeStage ?stage .
OPTIONAL {?pcode fd:picturesmain_Reference ?reference }.
OPTIONAL {?pcode fd:picturesmain_Remark ?remark }.
?pcode fd:picturesmain_SpecCode ?scode .
?scode fd:species_Genus ?genus .
?scode fd:species_Species ?species .
}

Instance of Query 10: Family All Fish

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?species ?genus ?author ?englishName
WHERE { ?SpeciesID fd:species_Author ?author ;
fd:species_Species ?species;
fd:species_Genus ?genus ;
fd:species_FamCode ?code .
?code fd:families_Family "Stromateidae" .
OPTIONAL {?SpeciesID fd:species_FBname ?englishName } .
}

Instance of Query 13: Country Freshwater

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?order ?family ?genus ?species ?occurrence ?fbname ?name
WHERE {
?nameID fd:comnames_ComName ?name .
?nameID fd:comnames_C_Code ?ccode .
?nameID fd:comnames_SpecCode ?x.
?x fd:species_Genus ?genus .
?x fd:species_Species ?species .
OPTIONAL {?x fd:species_FBname ?fbname }.
?x fd:species_FamCode ?f .
?f fd:families_Family ?family .
?f fd:families_Order ?order .
?c fd:country_SpecCode ?x.
?c fd:country_Status ?occurrence .
?c fd:country_Freshwater 1 .
?c fd:country_C_Code ?cf .
?cf fd:countref_PAESE "Ghana".
}

Instance of Query 16: Country Reef Associated

PREFIX fd: <http://fishdelish.cs.man.ac.uk/rdf/vocab/resource/>
SELECT ?order ?family ?genus ?species ?occurrence ?fbname ?name ?dangerous
WHERE {
?nameID fd:comnames_ComName ?name .
?nameID fd:comnames_C_Code ?ccode .
?nameID fd:comnames_SpecCode ?x.
?x fd:species_Genus ?genus .
?x fd:species_Species ?species .
?x fd:species_Dangerous ?dangerous .
?x fd:species_DemersPelag "reef-associated" .
OPTIONAL {?x fd:species_FBname ?fbname }.
?x fd:species_FamCode ?f .
?f fd:families_Family ?family .
?f fd:families_Order ?order .
?c fd:country_SpecCode ?x.
?c fd:country_Status ?occurrence .
?c fd:country_C_Code ?cf .
?cf fd:countref_PAESE "Trinidad Tob" .
}

15




