
Modiquitous 2012

Proceedings of the 2nd Inte rnational Work shop on Model-
based Interactive Ubiquitous Systems

S E S

Proceedings of Modiquitous Workshop
Copyright for the whole publication, Technische Universität Dresden, 2012
Copyright of the single articles remains with the authors.
Publication Online-CEUR Proceedings (CEUR-WS.org)
CEUR-WS Vol-947
Publication Year 2012

V.i.s.d.P:
Jun.-Prof. Dr. Thomas Schlegel
Junior Professorship for Software Engineering of Ubiquitous Systems
Institute for Multimedia and Software Technology
Technische Universität Dresden
01062 Dresden
Germany

CONTENTS

1 WORKSHOP ORGANIZERS 4

1.1 Thomas Schlegel . 4

1.2 Romina Kühn . 5

1.3 Stefan Pietschmann . 6

2 PROGRAMME COMMITTEE 7

3 INTRODUCTION 8

4 THEME, GOALS, AND RELEVANCE 9

5 PROGRAM 11

6 ACCEPTED PAPERS 13

6.1 Models and Patterns for Smart Environments 14

6.2 A Situated Model and Architecture for Distributed Activity-Based Com-

puting . 18

6.3 Model-based support for energy-efficent poduction in SME 23

6.4 Towards a flexible control center for cyber-physical systems 27

6.5 A Semantic Dashboard Description Language for a Process-oriented Dash-

board Design Methodology . 31

6.6 Test Modeling for Context-aware Ubiquitous Applications with Feature

Petri Nets . 37

1 WORKSHOP ORGANIZERS

1.1 Thomas Schlegel

Technische Universitat Dresden

01062 Dresden
Germany

thomas.schlegel@tu-dresden.de

Thomas Schlegel is Junior Professor for Software Engineering of Ubiquitous Systems at
the Institute of Software and Multimedia Technology of the Technical University of Dres-
den. Before he joined the University of Stuttgart as team leader for Interactive Systems, he
worked as senior researcher and research project leader at Fraunhofer IAO from 2002, whe-
re he served as research cluster leader in the European Network of Excellence I*PROMS
and led various national and international research projects. He received his PhD in en-
gineering from the University of Stuttgart. He is author and co-author of 60 scientific
publications and serves as reviewer and committee member for diverse international con-
ferences.

Modiquitous 2012 Proceedings 4

1 WORKSHOP ORGANIZERS

1.2 Romina Kühn

Technische Universitat Dresden

01062 Dresden
Germany

romina.kuehn@tu-dresden.de

Romina Kühn is a research associate at the Junior Professorship for Software Engineering
of Ubiquitous Systems at the Technical University of Dresden. Her research interests
include interaction concepts, interface design and development, and usability aspects.
Public ubiquitous systems and especially systems in public transportation are her main
application field.

Modiquitous 2012 Proceedings 5

1 WORKSHOP ORGANIZERS

1.3 Stefan Pietschmann

Technische Universitat Dresden

01062 Dresden
Germany

stefan.pietschmann@tu-dresden.de

Stefan Pietschmann is research associate and Ph.D. student at the Institute of Software
and Multimedia Technology of the Technical University of Dresden. He has been actively
involved in several research projects in the field of collaborative and context-aware web ap-
plications. In the project CRUISe he specifically addresses the model-driven development
of adaptive interactive applications based on the idea of a universal service composition.

Modiquitous 2012 Proceedings 6

2 PROGRAMME COMMITTEE

• Uwe Aßmann, Technical University of Dresden, Germany

• Jan van den Bergh, Hasselt University, Belgium

• Birgit Bomsdorf, Hochschule Fulda, Germany

• Raimund Dachselt, Otto von Guericke University of Magdeburg, Germany

• Florian Daniel, University of Trento, Italy

• Alfonso Garcia-Frey, University of Grenoble, France

• Geert-Jan Houben, Technical University of Delft, Netherlands

• Heinrich Hussmann, Ludwig-Maximilian University Munich, Germany

• Sevan Kavaldjian, Vienna University of Technology, Austria Programme Committee

• Gerrit Meixner, DFKI,Germany

• Philippe Palanque, University of Toulouse, France

• Fabiò Paterno, CNR-ISTI, Italy

• Michael Raschke, University of Stuttgart, Germany

• Dirk Roscher, Technical University Berlin, Germany

• Enrico Rukzio, University Duisburg-Essen, Germany

• Stefan Sauer, University of Paderborn, Germany

• Thomas Springer, Technical University of Dresden, Germany

• Gerhard Weber, Technical University of Dresden, Germany

• Anette Weisbecker Fraunhofer IAO, Stuttgart, Germany

• Jürgen Ziegler, University Duisburg-Essen, Germany

Modiquitous 2012 Proceedings 7

3 INTRODUCTION

Ubiquitous systems today are introducing a new quality of interaction both into our li-
ves and into software engineering. Systems become increasingly dynamic making frequent
changes to system structures, distribution, and behavior necessary. Also, adaptation to
new user needs and contexts as well as new modalities and communication channels make
these systems differ strongly from what has been standard in the last decades.

Models and model-based interaction at runtime and design-time form a promising ap-
proach for coping with the dynamics and uncertainties inherent to interactive ubiquitous
systems (IUS). Hence, this workshop discussed how model-based approaches can be used
to cope with these challenges. Therefore, it covers the range from design-time to runtime
models and from interaction to software engineering, addressing issues of interaction with
and engineering of interactive ubiquitous systems.

The MODIQUITOUS workshop was intended to discuss challenges and possible solutions
of the EICS community to design and runtime aspects of interactive ubiquitous systems
with a focus on model-based approaches. It aims to bring together researchers and prac-
titioners focused on different problems of IUS.

Modiquitous 2012 Proceedings 8

4 THEME, GOALS, AND RELEVANCE

Model-based interactive ubiquitous systems form a new promising yet challenging domain
within the scope of the Engineering of Interactive Computing Systems (EICS) conference.
This workshop is intended to discuss these challenges and possible solutions of the EICS
community to design and runtime aspects of interactive ubiquitous systems with a focus
on model-based approaches. The related problem space becomes clear when looking at
typical future scenarios: users will not only carry their data but also their applications
and profiles with them. This may mean switching from planning a project on a desktop
system to a collaborative setting in a meeting and further to a mobile or public display set-
ting where a mobile device is used for creating sketches for the first steps in the project.
Consequently, applications will evolve from device-oriented to emergent cyber-physical
and ubiquitous software in a broad sense, forming interactive and socio-technical systems.
This opens manifold possibilities, but also a number of research problems regarding both
the development process and the execution environment for those kinds of applications.

The MODIQUITOUS workshop is intended to provide a basis for discussion the adequate
solution space. Therefore, it aims to bring together researchers and practitioners focused
on different challenges of IUS, including:

• Model-driven architecture (MDA) in the context of IUS

• Advantages and potential problems of using MDA in the IUS domain

• Domain and Meta models for IUS, specifically for IUS-related aspects like interac-
tion, different modalities, dynamic distribution, context?awareness, etc.

• Domain-specific models for IUS

• Model-driven generation of (intelligent) IUS

• Model-to-model and model-to-code transformations for IUS development

• Model-driven development and execution architectures, i.e., runtime systems for IUS

• Tools and frameworks for supporting the model-driven development of IUS

• Concepts for context-awareness and self-adaptation of IUS at the model and runtime
level

• Software and Usability Engineering aspects in the context of model-based IUS

• Innovative ideas and novel application solutions for new interactive ubiquitous set-
tings, e.g., from the fields of mobile computing, pervasive computing and social
software

• Studies on interaction concepts on IUS

Modiquitous 2012 Proceedings 9

4 THEME, GOALS, AND RELEVANCE

• Requirements, insights and experiences from existing mobile and pervasive settings

All these topics are of high relevance to a big part of the EICS community as their use
is not restricted to ubiquitous systems and will show new ways for many kinds of new
systems like mobile device settings, pervasive computing and social software.

Modiquitous 2012 Proceedings 10

5 PROGRAM

2nd Workshop on Model-Based Interactive Ubiquitous Systems
Copenhagen, Denmark - June 25, 9:00-17:00

8:30 Arrival and Registration

9:30 Welcome and Introductions
Introductory statements by the organizers and brief introduction by each
participant

9:15 Discussion and Topic Definition
Discussion and definition of hot research topics

10:30 Coffee Break

11:00 Paper Presentations

• Peter Forbrig and Michael Zaki
Models and Patterns for Smart Environments

• Steven Houben, Morten Esbensen and Jakob Bardram
A Situated Model and Architecture for Distributed Activity-Based
Computing

• Uwe Laufs, Christopher Ruff and Jan Zibuschka
Model-based support for energy efficient production in SME

12:30 Lunch

14:00 Paper Presentations

• Martin Franke, Diana Brozio and Thomas Schlegel
Towards a flexible control center for cyber-physical systems

• Maximilian Kintz
A Semantic Dashboard Description Language for a Process-oriented
Dashboard Design Methodology

Modiquitous 2012 Proceedings 11

5 PROGRAM

• Georg Püschel, Ronny Seiger and Thomas Schlegel
Test Modeling for Context-aware Ubiquitous Applications with Feature
Petri Nets

15:30 Coffee Break

16:00 Group Work
Discussion of the selected topic, e.g., identification of research roadmap
items

16:30 Discussion
Plenum discussion and topic integration

17:00 End

Modiquitous 2012 Proceedings 12

6 ACCEPTED PAPERS

The following papers were accepted:

• Models and Patterns for Smart Environments

• A Situated Model and Architecture for Distributed Activity-Based Computing

• Model-based support for energy-efficent poduction in SME

• Towards a flexible control center for cyber-physical systems

• A Semantic Dashboard Description Language for a Process-oriented Dashboard De-
sign Methodology

• Test Modeling for Context-aware Ubiquitous Applications with Feature Petri Nets

Modiquitous 2012 Proceedings 13

P. Forbrig, M. Wurdel, M. Zaki: Models and Patterns for Smart Environments.
Proc. of 2nd International Workshop on Model-based Interactive Ubiquitous System 2012,
Pisa, Italy, June 13, 2011, http://ceur-ws.org/Vol-947 14

abortion of the currently running task. Furthermore, the

task “Configure Equipment” is decomposed into the

subtasks “Start Projector”, “Start Laptop” and “Connect

Laptop & Projector”. The third task can only be executed

after the first two tasks were performed.

Because of lack of space the model does not specify the

details of the presentation. Models can be of course as

detailed as necessary.

COLLABORATVE TASK MODELING LANGUAGE

In conjunction with modeling efforts in a smart

environment the collaborative task modeling language

(CTML) was developed. Despite that the idea was

originated in the context of smart environments, it seems

to be applicable in a broader range (e.g. Stakeholder-

driven process management can be supported in this

way). We will shortly discuss the fundamental

assumptions and the most significant features of the

language.

The design of CTML is based on four fundamental

assumptions:

I. Role-based Modeling. In limited and well-defined

domains the behavior of an actor can be approximated

through her role.

II. Hierarchical Decomposition and Temporal

Ordering. The behavior of each role can be adequately

expressed by an associated collaborative task

expression.

III. Causal Modeling. The execution of tasks may

depend on the current state of the environment (defined

as the accumulation of the states of all available

objects) and in turn may lead to a state modification.

IV. Individual and Team Modeling. The execution of

individual user tasks may contribute to a higher level

team task

Based on these assumptions a collaborative task model is

specified in a two-folded manner:

1. Cooperation Model.

Specifies the structural and behavior properties

of the model.

2. Configuration(s).

Holds runtime information (like initial state,

assignment) and simulation / animation

configurations.

A cooperation model is presented in Figure 2. Model

entities are represented by elements in the inner circle

(post fixed with “-1”). Diagrams outside of the inner

circle provide more detailed specifications of the

corresponding entities (post fixed with “-2”). A

specification of a model consists of specifications of roles

(e.g., A-1), devices (e.g., B-1), a location (C-1), a domain

(D-1) and a team (E-1).

 Figure 2 Schematic Cooperation Model for a Meeting

In our following discussion we will focus on roles and

their models only. Roles categorize users that have the

same capability, responsibility, experience and limitations

according to the domain. Thus roles can be considered as

abstractions of users sharing the same characteristics. In

software engineering roles are often called actors. The

potential actions a user is able to perform are determined

by his role(s). In CTML a role is associated with a task

model (A-2) that is visually represented by a task tree in a

CTT-like notation.

CTML allows the dynamic change of roles during

runtime, which is not very common in other modeling

approaches.

Let us assume that Sheldon acts as Chairman and Leonard

acts as Presenter in our smart meeting room. Additionally,

there is Penny. She fulfills the roles Presenter and

Listener as depicted in Fig. 3.

Figure 3 Specific Meeting Configuration

The configuration assigns persons to roles. Additionally,

it can be specified that Penny first acts as a presenter and

later fulfills the role of a listener. This can be expressed

by “Presenter >> Listener” for Penny. A configuration is

sometimes also considered as a scenario for which the

cooperation model is used.

Sometimes temporal relations are not expressive enough

to specify the real constrains between different tasks. This

was the reason for introducing textual specifications into

6.1 Models and Patterns for Smart Environments

Modiquitous 2012 Proceedings 15

CTML (like OCL [8] for UML). Such specifications

allow constrains that involve devices, locations and all

other model elements. They are used to specify

preconditions and effects of tasks using an OCL-like

syntax. For the role ‘Chairman’ and the role ‘Presenter’

the preconditions and effects shown in Table 2 make

sense.

Table 1 Examples for preconditions and effects

Role Task Precondition

1 Presenter Start

presentation

Chairman.oneInstance.AnnounceTalk

2 Chairman Announce

discussion

Presenter.allInstances.EndPresentation

Role Task Effect

1 Presenter End resentation self.presented = true

2 Chairman Announce

discussion

Notebook.allInstances.switchOff

A presenter is only allowed to start his presentation after

the chairman has announced it (precondition 1).

Precondition 2 states that a chairman can only announce a

discussion if all presenters have finished their

presentations. It might be a little bit difficult to create

such kind of specifications but they have the advantage of

being readable to some extent. For the expressiveness of

such specifications quantifiers are very important. They

allow specifying the number of actors or devices (one or

all).

After a Presenter ended his talk the corresponding

attribute is set to true (effect 1). After the Chairman has

opened the general discussion all notebooks in the room

are switched off (effect 2).

It is possible to specify activities taking place in a smart

environment in a precise way. However, it is sometimes a

burden to develop such a specification. The modeling

process is complex and time consuming. A promising

idea would be to overcome this problem by using existing

specifications to build new ones.

Patterns have proved [5] to be a good tool to represent

knowledge in software design. They spread through

computer science domain despite the fact that they were

first discussed in architecture [1]. Additionally, many

approaches take benefit of the usage of patterns in the

HCI area [21]. Breedvelt-Schouten et al. [3] introduced

task patterns that inspired our work. Sinnig [9] provided

generic task patterns to be able to adapt a pattern to the

context of use.

In a given smart environment numerous actors try to

achieve a common goal that can be characterized as team

goal. For the meeting room example, the ultimate goal is

the efficient exchange of information among the actors in

the room. Every task executed by an actor in its role is in

a way a contribution to the team goal. It is a step towards

this goal. Additionally, the task helps to reach the own

individual goal (e.g. to make a good presentation).

A first step to develop patterns in the context of smart

meeting rooms was to identify possible team goals (a

certain state that the team wants to reach). First results

were presented in [25] by providing six abstract team

goals. These goals were (I) conference session performed,

(II) lecture given, (III) work defended, (IV) topic

discussed, (V) debate managed and (VI) video watched.

In the meantime some further patterns were identified.

Figure 4 presents one of those patterns in a simplified

way. It is a team pattern for discussing phenomena of the

climate that was identified by observing meetings in a

research institute.

Usually during meetings at this institute there is first a

general presentation. Later on participants split into two

subgroups and discuss some pictures and data. in two

subgroups and at the end the combined results from both

groups are presented to the whole plenum.

Unlike the former task patterns approaches it is our goal

to integrate the so-called “forcing context” into the pattern

specification. The forcing context describes the set of

environmental preconditions that have to be fulfilled in

order to execute the tasks within the pattern and the set of

post-conditions expressing the influence of the execution

of those tasks on the state of the environment.

smart environments. Moreover, the main trend nowadays

is the design of universally accessible applications.

The pattern description consists of an ID, name, problem,

situation, solution, diagram, adaptation variables and

referenced patterns. In this paper we will concentrate on

the illustrations (in the diagram section of the pattern) that

are provided within the pattern example of Figure 5.

The diagram section of the pattern consists of three parts,

the task hierarchy, the environmental dependencies and

the visualization of the execution constrains.

Currently we are extending the CTML editor which

provides an Eclipse-based IDE to build task models by

our task pattern application tool. We truly believe that

having this pattern library fostered by the tool, the

developer will be offered a real assistance while modeling

a given scenario in the context of smart environments.

CONCLUSIONS
In this paper we argued for a model-based approach for

smart environments. We presented some details of our

specification language CTML that allows specifying the

tasks of different actors and the cooperation of a team. It

is argued to split the specification into a cooperation

model and a configuration model. The cooperation model

specifies general knowledge of activities of a specific

domain. This knowledge is long lasting. The

configuration model has to be specified according to the

current instance of a session. Who are the participants that

take part and which roles do they play?

6.1 Models and Patterns for Smart Environments

Modiquitous 2012 Proceedings 16

discuss
climate

phenomena

present

phenomena

Split into

two groups

discuss

in group 1

argue

present

data

*

discuss

summarize

discuss

in group 1

argue

present

data

*

discuss

summarize

present

results

present 1 Present 2

>> >>

>> >>

[> [>

>>III

I=I

Figure 4 Fraction of a Team Pattern Example

Afterwards, we argued that the need to build the task

models, the other environmental and domain models as

well as the specification of the relations and constraints

between all of the included models dramatically increase

the complexity of the modeling process of those

environment. Therefore, we suggested the usage of

appropriate patterns which aim to provide convenient

support to the developer while modeling her scenario.

The animation of our models can support the Bayesian

algorithms of a smart environment that try to infer next

possible actions of the users based on the sensor data. On

the other hand these algorithms can inform the animation

of the models that certain preconditions of task are

fulfilled.

REFERENCES
1. Alexander, C., Silverstien, M.: A Pattern Language.

In: Christopher Alexander, Sara Ishikawa, Murray

Silverstein, Max Jacobson, Ingrid F. King und Shlomo

Angel (Eds.), Towns, Buildings, Construction, Oxford

University Press, New York 1977, ISBN 0195019199

2. Blumendorf, M.: Multimodal Interaction in Smart

Environments A Model-based Runtime System for

Ubiquitous User Interfaces. Dissertation, Technische

Universität Berlin, 2009.

3. Breedvelt-Schouten, I.M., Paterno, F., Severijns, C.:

“Reusable Structures in Task Models”, 1997, In

Proceedings of DSV-IS: 225-239.

4. Blumendorf, M., Lehmann,G.,Albayrak, S.: Bridging

Models and Systems at Runtime To Build Adaptive

User Interfaces. Proceedings of the 2nd ACM SIGCHI

symposium on Engineering interactive computing

systems. ISBN: 978-1-4503-0083-4 : 9-18.

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.,

Design Patterns. Elements of Reusable Object-

Oriented Software. Addison Wesley, 1995

6. Giersich, M., Forbrig, P., Fuchs, G., Kirste, T.,

Reichart, D., and Schumann, H.: Towards an

Integrated Approach for Task Modeling and Human

Behavior Recognition, Proc. HCII 2007, p. 1109-1118,

ISBN: 978-3-540-73105-4.

7. Mori, G., F. Paternò and C. Santoro: CTTE: Support

for Developing and Analyzing Task Models for

Interactive System Design, IEEE Trans. Software Eng.

28(8), 2002, p. 797-813.

8. OCL: http://www.omg.org/technology/

documents/modeling_spec_catalog.htm#OCL.

9. Sinnig, D.: The Complexity of Patterns and Model-

based Development, Computer Science. Montreal,

Concordia University. (Thesis 2004).

10. Tidewell, J.: Interaction Design Patterns: Twelve

Theses, PLoP’98, Monticello, Illinois, In. Proc.

Conference on Pattern Languages of Programming,

1998.

11. Weiser, M.: The Computer for the 21st Century.

Scientific American, 265, pp.94-104, 1991.

12. Wurdel, M., Sinnig, D., Forbrig, P.: CTML: Domain

and Task Modeling for Collaborative Environments.

Journal of Universal Computer Science 14, 2008, p.

3188-3201.

13. Zaki, M., Forbrig, P.: User-oriented Accessibility

Patterns for Smart Environments. Springer Volume

6761/2011, 319-327, DOI: 10.1007/978-3-642-21602-

2_35.

14. Zaki, M., Forbrig, P.: Towards a Pattern Language for

Modeling Interactive Applications in Smart Meeting

Rooms.

6.1 Models and Patterns for Smart Environments

Modiquitous 2012 Proceedings 17

S. Houben, M. Esbensen, J. E. Bardram: A Situated Model and Architecture for Distributed Activity-Based Computing.
Proc. of 2nd International Workshop on Model-based Interactive Ubiquitous System 2012,
Copenhagen, Denmark, June 25, 2012, http://ceur-ws.org/Vol-947 18

Figure 1. The situated activity model (SAM) is computational represen-
tation of activity that describes both global and situated context infor-
mation.

Activity is not a fixed structure but a dynamic hierarchical in-
teraction between the activity itself driven by motivation, con-
scious goal-directed actions and unconscious operations that
are performed when certain conditions are met. Additionally,
Engeström [8] categorized four fundamental processes that
are an interwoven into this hierarchy. These processes are:
(i) production, (ii) consumption, (iii) exchange and (iv) dis-
tribution. In summary, activities are why we do something;
actions are what we do it; and operations are how we do [11].

As activity theory moves into its third generation, it has be-
come clear that the unit of analysis is expanding from an in-
dividual analysis to a global analysis that comprises not only
the individual, community, and artefacts but also the intercon-
nectivity between activity systems. The focus is on networks
of interacting activity systems, the dialogues between these
systems and the multiple perspectives of these networks of
activity [8]. Activity is not an isolated unit of analysis but an
integral part of the psychological synthesis of life.

SITUATED ACTIVITY MODEL
The main purpose of Activity-Based Computing (ABC) sys-
tems is to lower the amount of configuration work needed to
complete a task. We define configuration work as the amount
of work needed to locate, open and arrange all necessary
resources required to complete the objective of an activity.
In traditional computing, the user is responsible for the (re-
) configuration and maintenance of the workspace to fit the
needs of the ongoing activities. ABC systems however can
support this configuration of activities on three different lev-
els:

1. Interlinking: The first level of configuration is the linking
and logical association of activities with actions, resources,
actors and community. At this level the resources and re-
quirements of the activity are defined.

2. Situating: The second level situates the deployed activity
in the local context through the setting. Several aspects of
an activity, defined by the setting of the deployment, are

highly coupled with the local context, and this configura-
tion level accounts for this. The situating level describes
how the activity can be used in a given context or situation.

3. Visualizing: The third level applies a visualization to the
activity. As activities can be consumed on very different
devices, different visualization techniques are available. This
final level defines how the context of activity is presented.

The situated activity model (SAM) (Figure 1) draws from the
basic concepts of AT to provide a computational activity rep-
resentation that extends the existing activity-based computing
[1] model with situated context. It thus merges both the de-
scriptions of the interlinking and situating configuration level
into one unified model that can be used to describe and vi-
sualize system-mediated activities on different platforms or
systems. The model makes a distinction between global and
situated information.

Global Activity Information
The global activity information is in many ways similar to
the original activity-based computing model [1]. It is com-
posed of several interlinked subcomponents that define the
content of the activity. Each activity is subdivided into a set
of actions, which are subtasks that are part of the activity.
Actions structure how actors interact with the different re-
sources, such as files and folder, and services, such as web
services. Additionally, actions can be modelled as workflows,
which are structured or unstructured sequences of actions that
are imposed or defined by the participants.

Participants are human agents that are digitally represented
in the system as part of the activity. Participants can be both
actors and collaborators. Actors interact with the system,
motivated to complete the objective for which the system was
designed. They act on the system by using tools that are rel-
evant and related to the activity. Although actors are part of
the activity, they own, shape, define, consume, and share ac-
tivities by interacting with the system. Collaborators are sec-
ondary actors that are not directly involved in the situation of
the interaction of the activity, but contribute to its relevance.
They represent external stakeholders that influence and define
the object of the activity. Both the capabilities of actors and
collaborators are defined through roles. Roles define what
actions are accessible and executable by a participant.

Since every activity is an evolving structure, it is embedded
into its own history. Each event that occurs within the activity
is logged and stored into the activity itself for persistence and
reflection. History can be used to track changes in parts the
activity, create an awareness on different aspects of the activ-
ity or simply to visualize the evolution of the activity. Each
activity is uniquely defined by an identity which consists of
meta data such as a name, image or description and a unique
reference number (e.g. GUID1). An activity can be connected
to other activities thereby creating a hierarchical relationship
or references between activities.

1Globally Unique Identifier

6.2 A Situated Model and Architecture for Distributed Activity-Based Computing

Modiquitous 2012 Proceedings 19

Figure 2. The subprocesses in a SAM lifecycle.

Situated Activity Information
Because a deployment of an activity description is always sit-
uated and thereby defined by context (environment and social
setting in which the activity is used), it is also described by
additional context dependent subcomponents. Note that an
activity can have multiple contexts depending on different de-
ployments. Tools represent both physical and digital artifacts
that allow actors to interact with digital resources accessible
through the system. A tool can thus be an application that is
shown on a screen or a sensor network that is gathering infor-
mation about the actor. Besides tools, actors also use physi-
cal artifacts that are transformed into tools by augmentation
of the system. Tools are the local interface to the actions and
digital resources of the activity and thus determine how the
activity is consumed.

The setting in which the activity is engaged, is the environ-
ment, system or situation in which the activity occurs. It is
represented to the user through a view of the setting, provid-
ing actors with a level of intelligibility. The view is a men-
tal affordance and interactive tool that describes and demon-
strates the capabilities of the system in the setting to the actor.
A wall-mounted display or glyph [10] for example, can be a
view to represent the capabilities of the setting for the current
activity in a pervasive environment while an activity dock or
taskbar can be used as a view for desktop systems. The view
thus describes how the activity is situated and how it can be
consumed. Rules define the policy and access to workflows
or actions and are used by the local system to determine how
the activity is handled.

Each deployed activity has a lifecycle that determines how
the context of the activity is handled by the situated system.
The lifecycle consists of the four processes identified by En-
geström [7]. The processes are: (i) production (create, delete
and modify), (ii) consumption (initialize, suspend and resume),
(iii) exchange (share and roam) and (iv) distribution (external-
ize) (Figure 2).

BUILDING SITUATED ACTIVITY SYSTEMS
By allowing for the deployment of different activity systems
that can be interconnected, activities are not confined within
one system but can be consumed in all interconnected sys-
tems through adaptation of the context. To make the network
of interconnected activity systems concrete on a system level,
we propose a lightweight but standardized toolkit that can be
used to design, prototype and develop interconnected situated
activity systems (SAS). The purpose of the toolkit is to pro-
vide a lightweight but scalable framework for the develop-
ment of activity-centric systems. Conceptually, the architec-

Figure 3. The architecture of the Activity Cloud Toolkit.

ture of the toolkit is composed of two major components: (i)
the activity cloud and the (ii) the situated activity system (Fig-
ure 3).

Activity Cloud
The main purpose of the activity cloud is to provide a cen-
tral activity management system that connects different situ-
ated activity systems (SAS) to a cloud-based global activity
service. The global activity service is composed of different
cloud services that are accessible through the global activity
manager. Local activity systems can access the cloud man-
ager through a REST-based publish subscribe mechanism.
The activity store is used to store SAM descriptions of differ-
ent SAS. These descriptions are accessible by all connected
situated activity systems based on the rules defined in the ac-
tivity access service. These rules grant local activity systems
with authorization to access, modify or manage stored activ-
ities. The activity access service also defines how activities
and their resources are synchronized with the local activity
service. Based on the specification of the local SAS, the
cloud synchronization methods can be adjusted. The activ-
ity cloud also provides a mechanism to store resources that
are shared or exchanged between different SAS’s as it allows
for the storage of data through a Binary Large Object (Blob)
storage. The access to these shared files is managed by the
activity manager and should be defined in the local SAS’s

Situated Activity System
A situated activity system (SAS) is an SAM-based interaction
design system that is composed of two main parts: a local dis-
tributed activity service and activity clients. Although both
components are architecturally separated, they can be physi-
cally used on one device. The local activity service provides
support for local activity roaming, sharing and access over all
devices that are part of the situated activity system.

The distributed activity manager has a local activity store and
access mechanism that has two purposes. First, it is used to
manage the activities that are used and shared by different lo-
cal activity clients. All activity clients are thus connected to

6.2 A Situated Model and Architecture for Distributed Activity-Based Computing

Modiquitous 2012 Proceedings 20

a central repository that handles synchronization, distribution
and location tracking of the clients. Second, the local activity
service is connected to the global activity service for persis-
tence and real time updates from outside the activity system.
Additionally, the local service also provides support for real-
time communication between different clients. All devices
that are part of the activity system are connected to the lo-
cal activity manager through an activity client. This client
itself is composed of: (i) activity integration services for spe-
cific platforms or devices that merge the activity representa-
tion into the existing experience, (ii) an activity or task-based
user interface (ABC/UI) design and (iii) a tangible or wear-
able computing layer that connects physical objects with the
activity client based on the SAM.

The three components, Global Activity Service, Local Activ-
ity Service, and Activity Client correspond in their roles to the
three configurations levels as described earlier. The Global
Activity Service provides global accessible storage and ac-
cess to SAM descriptions of different SAS. The Local Ac-
tivity Service is able to situate activity models in the context
of the deployment - e.g. through location tracking informa-
tion - as defined in the second configuration level. Finally,
the Activity Client provides a UI to visualize the activity as
described in the third configuration level.

ONGOING AND FUTURE WORK
We are currently in the process of developing the basic toolkit
and underlying activity cloud infrastructure. The goal is to
test the toolkit (both the model and architecture) by building
ABC support for two very different domains: nomadic work
in a hospital and global software development collaboration.
We choose these settings as previous and current research in
the work practices of these domains, allows us to gain great
insight in to how work is structured and conducted. Further-
more, we will be able to test our systems in real use settings
for end-user validation.

Global Software Development
Global Software Development (GSD) is a development method
where the production of software is carried out in multiple
locations. The geographical displacement of software teams
in GSD however introduces physical, temporal, and cultural
challenges. One of the main methods to overcome these chal-
lenges is to make extensive use of groupware technologies
that allows for collaboration across distances. We have iden-
tified a number of different aspects of GSD for which we see
an applicability for SAM:

• With the physical distance between teams, all resources
should be shared on the network. We can allow this us-
ing the cloud activity manager.

• There are clear situated activity systems in GSD, namely
those identified with the different physical locations. These
different systems however are highly interlinked and share
an outcome. We can model the systems through different
local activity systems, all connected to the activity cloud.

• An activity-centric approach to GSD allows for the link-
ing of different design artifacts, e.g. source code, design
documents or project plans, in to activities

• All physical items, such as PC’s tablets, digital Scrum boards
etc. can be connected to the local activity manager allow-
ing all time access to relevant information.

Workflow in Hospital Units
Based on observations in the hospital, we describe the work-
flow of clinicians in a patient ward as nomadic. Nomadic
workflow – as compared to mobile work – essentially means
that clinicians, instead of being able to carry a laptop or other
devices and sit at desks in different location, roam through
different departments of the hospital while doing their work.
Hence, their work is heavily influenced by collaborations with
other clinicians, they regularly use public and shared devices
and their general work pattern is characterized by planning
and re-planning. Additionally, next to digital artefacts, clin-
icians also use a large set of medical tools and objects that
play an important role in the care of patient.

• Because the entire workflow in a hospital is focused to-
wards patients and their care, it maps on the activity-centric
approach of the SAM. All patient information as well as the
tools to provide the care can be united into one meaningful
structure.

• The nomadic workflow implies that patient information should
be ubiquitous, interconnected with stakeholders and avail-
able on different locations at different times. The activity
cloud can be used to provide this global availability of in-
formation. Additionally, it can also be used to provide new
activity-centric functionality such as remote patient access
or monitoring.

• On a local level, the general patient information can be de-
ployed as a situated activity system. These systems can be
an entire department but also a single room that is hosting
multiple patients. Because of the link to the global activity
cloud, these systems can interact with each other, thereby
simplifying collaboration and providing a level of aware-
ness on the patient beyond the local department.

• Physical objects that are related to the patient, such as blood
samples, paper documents or medication, can be connected
to the activity of the patient.

CONCLUSION
In this paper, we propose a new model and architecture to pro-
totype and develop activity-centric systems. The situated ac-
tivity model (SAM) unites the description of activity and sit-
uated contexts into one computational representation and can
be used to model system-mediated activity. We discussed the
theoretical ground of the model, the conceptual architecture
of the toolkit and their potential application in different do-
mains. Future work includes supporting multiple platforms,
refining the toolkit and deploying situated activity systems in
different domains to validate the approach.

ACKNOWLEDGEMENTS
This work was supported by the EU Marie Curie Network
iCareNet under grant number 264738.

6.2 A Situated Model and Architecture for Distributed Activity-Based Computing

Modiquitous 2012 Proceedings 21

REFERENCES
1. J. Bardram, J. Bunde-Pedersen, and M. Soegaard.

Support for activity-based computing in a personal
computing operating system. In Proc. of CHI ’06, pages
211–220. ACM.

2. J. E. Bardram, J. Bunde-Pedersen, A. Doryab, and
S. Sørensen. Clinical surfaces - activity-based
computing for distributed multi-display environments in
hospitals. In Proc. of INTERACT ’09, pages 704–717.
Springer-Verlag.

3. S. Bødker. When second wave hci meets third wave
challenges. In Proc. of NordiCHI ’06, pages 1–8. ACM.

4. S. Bødker. Applying Activity Theory to Video Analysis:
How to Make Sense of Video Data in Human-Computer
Interaction, chapter 7, pages 148–174. MIT Press, 1996.

5. S. Consolvo, D. W. McDonald, T. Toscos, M. Y. Chen,
and J. e. a. Froehlich. Activity sensing in the wild: a
field trial of ubifit garden. In Proc. of CHI ’08, pages
1797–1806. ACM.

6. A. N. Dragunov, T. G. Dietterich, K. Johnsrude,
M. McLaughlin, L. Li, and J. L. Herlocker. Tasktracer: a
desktop environment to support multi-tasking
knowledge workers. In Proc. of IUI ’05, pages 75–82.
ACM.

7. Y. Engestrøm. Learning by expanding: an
activity-theoretical approach to developmental research.
Orienta-Konsultit Oy., 1987.

8. Y. Engeström. Expansive Learning at Work: toward an
activity theoretical reconceptualization. Journal of
Education and Work, 14:133–156, 2001.

9. V. Kaptelinin, B. A. Nardi, and C. Macaulay. Methods &
tools: The activity checklist: a tool for representing the
“space” of context. interactions, 6(4):27–39, 1999.

10. F. Kawsar, J. Vermeulen, K. Smith, K. Luyten, and
G. Kortuem. Exploring the design space for situated
glyphs to support dynamic work environments. In Proc
of Pervasive’11, pages 70–78. Springer-Verlag.

11. J. Lave. Cognition in Practice. Cambridge University
Press, 1988.

12. Y. Li and J. A. Landay. Activity-based prototyping of
ubicomp applications for long-lived, everyday human
activities. In Proc of CHI ’08, pages 1303–1312. ACM.

13. T. P. Moran. Unified activity management: Explicitly
representing activity in work-support systems. workshop
paper at ecscw. In Proc. of ECSCW 2005.

14. M. J. Muller, W. Geyer, B. Brownholtz, E. Wilcox, and
D. R. Millen. One-hundred days in an activity-centric
collaboration environment based on shared objects. In
Proc. of CHI ’04, pages 375–382. ACM.

15. D. A. Norman. The invisible computer : why good
products can fail, the personal computer is so complex,
and information appliances are the solution. 1. mit press
paperback ed edition, 1999.

16. S. Voida and E. D. Mynatt. “it feels better than filing”:
Everyday work experiences in an activity-based
computing system. In Proc. of CHI ’09, pages 259–268.
ACM Press.

6.2 A Situated Model and Architecture for Distributed Activity-Based Computing

Modiquitous 2012 Proceedings 22

U. Laufs, C. Ruff, J. Zibuschka: MODEL-BASED SUPPORT FOR ENERGY-EFFICENT PODUCTION IN SME.
Proc. of 2nd International Workshop on Model-based Interactive Ubiquitous System 2012,
Copenhagen, Denmark, June 25, 2012, http://ceur-ws.org/Vol-947 23

is managed using ontologies. We provide two separated
frontends, a web based for configuration and initialization
of the system and a mobile frontend for end users. While
the web based UI can directly access data, the mobile UI
indirectly accesses the stored data via web services.

Figure 1: Architecture Overview

BACKEND
Relying on a service-oriented architecture, system’s core
functionality is realized as a set of key services on the
server side. These services are responsible for basic
functionalities such as energy meter abstraction, energy
consumption monitoring and Analysis, forecasting
functionality based on a SARIMA model [6] and Data
Management.

Data Management Service
Within the system, different kinds of information have to
be collected and managed. Therefore, a data management
service is introduced. The service if responsible for
providing read/write access to the data and meta-data of the
system. Against the background of proprietary
implementations and heterogeneous data structures as well
as semantic differences in the data provided by energy
meters and ERP systems, there is a need for an integrative
way to represent this data. We use ontologies to describe
the information from various platform-internal and external
sources. This approach has already proven to be
purposeful, especially in heterogeneous environments [7]
[8]. For model realization, we decided to use the web
ontology language (OWL) [9]. Based on the Apache Jena
Framework [10], ontology individuals can be stored in files
and be processed in memory as well as in relational
databases. The ontology access and management module is
intensively used for storing and retrieving information of
the domain description ontologies as well as the user
interface customization ontology. The ontology analysis
module provides analysis and implements basic analysis
functionality for ontology meta-structures such as analysis
of ontology concept hierarchies, cardinalities, restrictions
and data types. The module also integrates a reasoner [11]
which offers a large amount of analysis functionality.

Domain Models
Domain specific Data and meta-data are structured by the
following OWL models:

Production systems model: To describe a production
system as a whole, a meta-model is provided. It holds a
classification of the component types contained in a
production system. In addition to types (e.g. motors or
lasers), additional properties related to the whole
component class (e.g. typical energy consumption ranges,
existing component states like on, off, stand-by and valid
transitions between states) or relations to other component
classes (e.g. interchangeable parts) are included in the
model. Based on this information, we are able to infer
components of a specific production system that deviate
from the typical state in their class.
Production system component model: Furthermore,
information about the configuration of the real production
system has to be managed. One part of this information is
provided by external systems like energy meters or external
planning systems. Another part has to be provided during
the configuration of the system. The production system
component model relies on the high level model described
above, which means that a comparison between
components that are included in a specific production
system and alternative components can be realized.
Manufacturing schedule model: In order to perform
scheduling optimizations, we introduce a unified internal
scheduling model. The model provides a generic model
that contains the relevant scheduling information for the
analysis service. In general, any scheduling data that
contains the required data (e.g. coming from an ERP
system) can be transformed to the internal representation
by implementing a translating connector based on a generic
interface provided with the platform.
Stakeholder model: Based on the stakeholders of the
system, we use a role model which describes which
information and which notifications are relevant for which
users.

FRONTEND
Regarding the given dynamic environment, user interfaces
for basic system interaction have to be adaptable to
frequent changes induced by the domain requirements.
Therefore, user interfaces for basic system interaction such
as the initialisation and configuration of the given
production environment in production are created
dynamically from the existing domain models and
additional configurations for user interface creation.
The system offers a wide range of user interface
components, which can be combined to complex web
based user interfaces. There are several elements which
allow structuring of the user interface (UI) components.
Perspectives: Perspectives are a well known concept,
which allow customization of full screen content and also
switching between various views.
Containers, Frames and Framesets: Perspectives can be
subdivided using Frames and framesets. Within frames, UI
elements can be grouped and organized in containers.

6.3 MODEL-BASED SUPPORT FOR ENERGY-EFFICENT PODUCTION IN SME

Modiquitous 2012 Proceedings 24

Elements: Elements include all non-structuring standalone
user interface components such as widgets (buttons, text
fields etc).

Figure 2: Model Based UI Creation
A User Interface configuration module realizes the
functionality required for providing configurable user
interfaces based on the domain ontologies. For new or
changed domain ontologies, default user interface
configurations are created. Missing configurations are
created “on the fly” and can be refined afterwards. User
interface configurations are realized and stored in user
interface ontologies.
The figure below shows a default user interface generated
from a non-customized domain ontology. The default user
interface ontology provides an instantly working
scaffolding mechanism and allows browsing and
modification operations on the whole domain ontology.

Figure 3: User interface based on default configuration
The generation of default user interface configuration can
be adjusted using rules, which are formulated in a UI
ontology. Rules can be based on domain ontology content
or meta-information, e.g. it can be stated as a rule that
specific widgets that visualize textual properties of domain
ontologies shall be used based on any of the following
criteria:

• Class of the domain ontology concept
• XML datatype of the property
• Defined restrictions defined in the domain

ontology
• Defined cardinalities

• Specific URIs of specific domain ontology
elements

Specific changes to all parts of the generated user interface
configurations can be applied in detail. The figure below
shows a configured web based user interface. In the
illustrated case, an individual a specific concept is
displayed for editing and browsing of related items. The
generated configuration is modified regarding the
navigation on the left. In addition, a flash based viewer is
added which shows the dependencies between the
individual and related information.

Figure 4: Customized Web User Interface

Mobile Android User Interface
The main objectives of the mobile frontend are to show the
current status of energy efficiency of the assembly systems,
to notify the stakeholders on identification of any potential
to increase energy efficiency and give recommendation on
how to achieve savings. To ensure a quick response time to
the measures proposed by the assistant system at all times
and independent of the current user location, a mobile
solution is preferable. This allows the system to be utilized
directly in the production environment where the proposed
measures can be implemented directly. This also enables
the responsible staff to immediately report back the
changes made to the production system to the system’s
back-end, resulting in more up to date, accurate and
reliable data. A prototype application for the mobile
assistant has been implemented and is being refined using
continuous integration and frequent testing using model
scenarios.
For the realization of the mobile front-end, the software
Framework MT4j is used [12]. MT4j is a java-based open
source framework aimed at the creation of visually rich
user interfaces which can be interacted with using novel
input methods and devices, having a special focus on multi-
touch support. First developed for the desktop, it has since
been ported to the Android platform, expanding its use
onto the various mobile devices relying on that operating
system.
The stakeholders of the system have been divided into
three different roles: planner and machine operator. The
application provides different functionality and options for

6.3 MODEL-BASED SUPPORT FOR ENERGY-EFFICENT PODUCTION IN SME

Modiquitous 2012 Proceedings 25

the different stakeholders and their respective roles. Roles
define the entry point of the application regarding the
visibility of production facilities stored in the back-end.
Deciders have the ability to navigate through all production
sites, assembly machines and their components in detail
while the machine operators will typically only see the
assembly machines and its components at their location.
The roles of the decider or planer are offered an additional
configuration menu where cost effectiveness of proposed
measures can be calculated depending on certain,
configurable variables such as aspired amortization dates or
electricity costs. The machine operator is offered an up-to-
date list of orders for production. Notifications are tailored
to the corresponding user role and can only be read if
permitted.
The different stakeholders have to be notified about the
potential for energy savings in an appropriate manner. For
this purpose the frontend regularly queries the backend
whether new notifications are available and then transfers
them to the front-end. Notifications include information
about the measures to be taken in order to capitalize on the
saving potential. Notifications conform to the role concept
in such a way that every notification can only be read by a
specific role or group of roles. The notifications can
generally be divided into two different types: Strategic
recommendations are mostly aimed at the role of deciders
and planners and contain strategic information, e.g. the
availability of alternative assembly components consuming
less energy, reducing costs in the long term. Operative
recommendations aim at the role of machine operators,
these notifications are usually more time critical than
strategic recommendations containing information about
assembly machines that can be shut down temporarily
resulting in immediate energy efficiency gains, for
example.

CONCLUSION
We described an IT System that aims to support SME in
order to realize energy savings in production and to thereby
increase SME competitiveness by reducing energy costs.
The system is designed to provide decision support both in
the planning and execution phases of production. This
functionality relies on the combination of data provided by
sensors, production orders and additional metadata
describing the properties of the production systems.
A service-oriented architecture is used to allow portability
of the system across different manufacturing environments.
On the server side, a bundle of key services provides
generic functionality like data management, sensor data
fusion and state data analysis. Based on models and
semantic web technologies, user interfaces create user
interfaces for system initialisation and configuration are
created dynamically to allow for model changes and
extensions with minor efforts.

For end users, mobile clients are provided.

ACKNOWLEDGMENTS
We thank our colleagues from the AssiEff project for their
fruitful collaboration, specifically Sebastian Schlund,
Stefan Gerlach and Wolfgang Schweizer. This work was
financed by Baden-Württemberg Stiftung under Grant
AssiEff, „Assistenzsysteme für die auftragsbezogene,
energieeffiziente Produktion“.

REFERENCES
1. Jovane F., Koren Y., and Boër C. R., 2003, “Present

and Future of Flexible Automation: Towards New
Paradigms,” CIRP Annals - Manufacturing Technology,
52(2), pp. 543-560.

2. Grimes P., and Kentor J., 2003, “Exporting the
Greenhouse: Foreign Capital Penetration and CO2
Emissions 1980–1996,” journal of world-systems
research, 9(2), p. 261–275.

3. Schleich J., 2009, “Barriers to energy efficiency: A
comparison across the German commercial and services
sector,” Ecological Economics, 68(7), pp. 2150-2159.

4. Albino V., and Kühtz S., 2004, “Enterprise input-
output model for local sustainable development--the
case of a tiles manufacturer in Italy,” Resources,
Conservation and Recycling, 41(3), pp. 165-176.

5. Lockett N. J., and Brown D. H., 2005, “An SME
Perspective of Vertical Application Service Providers,”
International Journal of Enterprise Information
Systems, 1(2), p. 37–55.

6. Olsson M., and Soder L., 2008, “Modeling Real-Time
Balancing Power Market Prices Using Combined
SARIMA and Markov Processes,” Power Systems,
IEEE Transactions on, 23(2), pp. 443-450.

7. Bullinger H.-J., 2006, Fokus Innovation, Carl Hanser
Verlag, München.

8. Bügel U., and Laufs U., 2009, “Einsatz innovativer
Informations- und Kommunikationstechnologien,”
Fokus Technologie. Chancen erkennen, Leistungen
entwickeln, Hanser, München.

9. McGuinness D., and van Harmelen F., “OWL Web
Ontology Language Overview.”

10. Apache Jena Website, http://incubator.apache.org/jena,
visited: April 23th, 2012

11. Clark & Parsia, Pellet Reasoner Homepage,
http://clarkparsia.com/pellet, visited: April 23th, 2012

12. MT4j Website, http://www.mt4j.org, visited: April
23th, 2012

6.3 MODEL-BASED SUPPORT FOR ENERGY-EFFICENT PODUCTION IN SME

Modiquitous 2012 Proceedings 26

M. Franke, D. Brozio, T. Schlegel: Towards a flexible control center for cyber-physical systems.
Proc. of 2nd International Workshop on Model-based Interactive Ubiquitous System 2012,
Copenhagen, Denmark, June 25, 2012, http://ceur-ws.org/Vol-947 27

fourth section we outline two scenarios according to our con-
cept. Finally, the fifth section concludes our paper and gives
insight to our future work.

THE VICCI PROJECT
The principal purpose of VICCI [11] is the dynamic assist-
ing of the user in cyber-physical systems. This assistant leads
to help visualizing and controlling of cyber-physical systems,
from Individual Smart Spaces (ISS) towards Smart Commu-
nities (SC) [9], in an intuitive, efficient manner.

As motivation of the project deemed the rapid development
and ubiquity of technological components, like embedded
computers or high-level sensors. The control and the com-
bining of this high technology components is a complex and
difficult process. Also an efficient reuse of existing infras-
tructure in this smart spaces has to implemented.

The control center can be understood as an adaptive, ubiqui-
tous dashboard, that can be viewed from all devices, that are
connected to it. The user shall be able to interact with the
control center leveraged by different devices and interaction
concepts. For this a multi-device interaction is necessary, e.g.
the user interact with the same actuator on its PC and mobile
device. This ability is acquired by encapsulate functionality
in so called Apps. Because of the user-centred approach of
the VICCI project, only Apps with an user interface are ex-
amined, however they are can run in background without the
need to close.

We prefer to use semantic technologies like ontologies and
reasoning over these, for automated and knowledge-oriented
combining of Apps with their used sensors and actuators. The
next section show our architecture concept for the ubiquitous
visual frontend and the underlying backend.

ARCHITECTURE CONCEPT
Poovendran [8] describes a major difference between CPS
and a regular control system or an embedded system in the
use of communications, which adds reconfigurability and
scalability as well as complexity and potential instability.
CPS still has significantly more intelligence in sensors and
actuators as well as substantially stricter performance con-
straints.

The following chapters introduces the potential frontend- and
backend-architectures in VICCI.

Ubiquitous Visual Frontend
Comprehensive cyber-physical systems allow the interaction
of devices and objects about use-borders away. For our work
an adaptive operating surface for the CPS controlling center
is to be developed importantly.

Hervas et. al [2] describes the necessary of user interface
adaptation to offer personalized information to the user. The
kind of user, display and associated visualization require-
ments may change while handling with the control center for
cyber-physical systems. By representing context information,
the environment will be able to react to situation changes and
determinate the services to be displayed.

Figure 1. Adaptive visual control for multi-devices

Figure 1 shows an abstract of a potential visual robot-control
in a smart home scenario. It provides adaptive visualiza-
tion on connected devices, including smartphones, tablets and
PCs.

The topical trend towards the stronger interlinking aims at
mobile devices, like tablets or smartphones. Because of the
reduced screen size, in comparison to the customary PC, the
visualizations and interactions draughts must be adapted to
the hardware specifications of such devices. So the informa-
tion content varies. In addition to the implementation of an
adaptive, multi-device solution, it’s necessary to support an
adaptive, multi-modal control of the CPS by applications. So
the interaction with the system can also vary. At the PC the
user can handle with the mouse, on a tablet by finger touch or
via voice with smartphones.

The integration of different interaction concepts combined
with several devices supported the ubiquitous appendage. In
this case, we need on the one hand semantic descriptions for
the physical resources, like screen size, computation power
or technical interaction capabilities for the execution devices.
And on the other hand, applications that describe their func-
tional abilities to react and adapt itself on this contextual in-
formation. It is than possible to interact with one App on sev-
eral devices with different interaction methods deduced from
the application and the device description.

This context adaptation shows increasingly a key requirement
for mobile and ubiquitous systems for our purpose and will be
considered in further work. For a flexible data flow in such
a system, we introduce our backend architecture for seamless
integration in following section.

Seamless Integration Backend
As mentioned before, the user interaction with the cyber-
physical system (CPS) is done by the user over Apps. This
section shows the infrastructure of our CPS, see Figure 2. The
individual CPS elements, applications as well as sensors and
actuators, discover the Semantic Middleware to register and
communicate seamlessly with the system. Based on the con-
cept of semantic model descriptions on each layer, it leads us
to a highly flexible and distributed system.

Application Layer
Apps are executed on the Application Layer, which can dis-
tributed over multiple devices like smartphones, tablets or
home servers. This layer is contemplate in first order as an
abstract layer, so the interoperability is given over multiple

6.4 Towards a flexible control center for cyber-physical systems

Modiquitous 2012 Proceedings 28

Application Layer

Semantic Middleware

Sensor-Actuator Layer

Figure 2. VICCI Backend - Main Structure

heterogeneous devices with different operating systems. The
only requirement for every application is to instantiate the
App model and provide an interface for data transmission in
both directions with the Semantic Middleware. An idea for
this connection is presented in the section Conclusion. The
App model describe in addition to the user interaction proper-
ties the information about input and output data. This means
on the one hand the processing and visualization of sensor
data in the bottom-up direction and on the other hand the
transmission of control instructions to actuators in the top-
down direction, that is demonstrated in the section Scenarios.
The service part of the App model is adopted from the IOPE
approach from OWL-S [6]. But the input and output param-
eters are described and parametrized in a semantic way, like
“get all temperature data in the bathroom”, “get all rooms,
that are cooler than 18◦C” or “open all windows in the living
room”, which are forwarded to the Semantic Middleware. As
mentioned, this description holds an functional part, like “get
. . . temperature in . . . ” and a parametrized part “all, living
room”, which can be changed during runtime. With this ap-
proach the whole system stays highly flexible, because there
is no need to adapt the App functionality or change parame-
ters if more sensors and actuators are added to the CPS. The
pre- and postcondition of the service, respectively the func-
tion of the application, are used for error checking.

Semantic Middleware
The Semantic Middleware (SeMiWa) has the task to acquire,
store, interpret, aggregate and route all data flow in the CPS.
The acquiration is done over a network interface, which stores
all information and knowledge about the individual CPS ele-
ments (model instances) in a registrar and opens interfaces for
transmitting data to the SeMiWa. The interpretation unit de-
composes the semantic annotated IOPE descriptions and an-
notates in further progress plain data according to device and
aggregation models. Another function of the interpretation
unit is the knowledge tracking of errors and their solutions
adapted from the reaction of the user, if pre- or postcondi-
tion fails. The routing unit opens interfaces to Apps and sen-
sors/actuators, and handles the notification of events, based
on the IOPE descriptions and the registrar information.

Sensor-Actuator Layer
The Sensor-Actuator Layer is, similar to the Application
Layer, designed as an abstract layer, which can also be spread
over multiple devices like microcontrollers, robots or home
servers. On this layer, low-level sensors and actuators have
to implement the so called Semantic Driver, a process that
provides a network interface from the hardware devices to
the SeMiWa and annotates the plain data against the given

sensor/actuator model. If no or an incomplete model for the
device is present, SeMiWa tries to annotate it with the right
model instance and set the Semantic Driver during runtime.

SCENARIOS
The following section describes two scenarios, which show
the data flow through our system. The common situation of
both scenarios is the engaged state, in which all components
of the cyber-physical system are registered at the Semantic
Middleware (SeMiWa) and exchanged their model instances
with it.

S
e

n
so

r
L

a
y

e
r

SD1 SD2 SD3

S
e

M
iW

a
A

p
p

 L
a

y
e

r

Tablet1 Smartphone1

S2 S3 S4S1

Acquisition
Interpretation /

Aggregation
Routing

App1 App2 App3 App4

Figure 3. Data flow from sensors

The first scenario Figure 3 shows the data flow bottom-up
from the sensor to the user interface via the SeMiWa. The
Sensor-Actuator Layer is simplified for this example as pure
Sensor Layer. The Sensor Driver SD2 acquires the plain sen-
sor data from S3, and transmit it to the middleware. In due
to the registration of SD2 within SeMiWa, this data can be
interpret based on the exchanged model. SeMiWa routes this
semantic sensor data to all subscribed Apps, which are in-
terested in this event (App1 on Tablet1 & App3 on Smart-
phone1). These Apps processes the data and visualize it to
the user.

The second scenario Figure 4 shows the data flow top-down
from one App to one actuator. The numbers in the figure sym-
bolize the order of the ongoing steps. App1 sends a seman-
tically annotated and parametrized control instruction “open
all windows in the living room”, to SeMiWa. After the inter-
pretation of this message, a constraint error is detected based
on the precondition “don’t open windows in living room, if
the heatings in living room are opened”. The user is notified
about this error in App1 and decide to use App2 to trim off
the heatings (SD2). The system tracks this decision based on
the error, the involved Apps in the right order and the instruc-
tions which solved the error. After dissolving of the error,
the user uses App1 again to “open all windows in the living

6.4 Towards a flexible control center for cyber-physical systems

Modiquitous 2012 Proceedings 29

A
ct

u
a

to
r

L
a

y
e

r

SD1 SD2 SD3

S
e

M
iW

a

A
p

p

L
a

y
e

r
A2 A3 A4A1

Acquisition
Interpretation /

Aggregation
Routing

App1 App2 App3 App4

1 / 5 2

4

3

6

Figure 4. Control flow to actuators

room”. This message can now be forwarded to SD3 with-
out any problems. The system can now assist the user with
recommendations, based on previously made decisions if the
same error chain reoccurs.

CONCLUSION
We introduced our vision about an interactive control center
for cyber-physical systems. This means on the one hand a
highly adaptive user interface, which can be spread by Apps
on multiple devices based on the underlying model descrip-
tions.

On the other hand, we presented our backend architecture
concept. This Semantic Middleware (SeMiWa) helps us to
develop a highly flexible and robust system, based on seman-
tic model descriptions on each layer. The input and output de-
scriptions of Apps and the Semantic Drivers stay flexible ac-
cording to the composed statements, like “close all windows
in all rooms”. So it is unnecessary, if windows are removed
or added to the cyber-physical system. The pre- and postcon-
dition descriptions help us to detect errors and provides a way
for knowledge-tracking of the user-made solutions.

As future work, we are focus on the challenging problem
to create applicable semantic models for our issues and pro-
vide applicable user interfaces on the participating devices.
Dashboards can be a good candidate to centralize this large
amounts from distributed information, in spite of restricted
representation possibilities. Further more an adaptive interac-
tion concept for multi-user- and multi-device-dashboards has
to developed for enabling the interoperability and heterogene-
ity of all participating devices. For the early prototypes, we
are going to use technologies like OSGi1 and Soprano2 for
the development of SeMiWa to get an efficient, and proba-
bly realtime, runtime system with lifecycle management. For

1http://www.osgi.org/
2http://soprano.sourceforge.net/

the App prototypes, we use an Android3 Smartphone with an
UPnP connector for in-house communication and XMPP for
WAN communication outside the same subnet. This leads
to a flexible, distributed system and interoperability on each
layer with all devices [10, 3].

ACKNOWLEDGEMENTS
This work is funded under reference ESF-100098171 by
means of the European Social Fund (ESF) and the German
Free State of Saxony.

REFERENCES
1. Fides-Valero, ., Freddi, M., Furfari, F., and Tazari, M.-R. The persona

framework for supporting context-awareness in open distributed
systems. In Ambient Intelligence, E. Aarts, J. Crowley, B. de Ruyter,
H. Gerhuser, A. Pflaum, J. Schmidt, and R. Wichert, Eds., vol. 5355 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg, 2008,
91–108. 10.1007/978-3-540-89617-37.

2. Hervas, R., R., and Bravo, J. Towards the ubiquitous visualization:
Adaptive user-interfaces based on the semantic web. Interacting with
Computers 23 (2011), 40–56.

3. Horng, M.-f., and Chen, Y.-t. A new approach based on XMPP and
OSGi technology to home automation on Web. 2010 International
Conference on Computer Information Systems and Industrial
Management Applications (CISIM) (Oct. 2010), 487–490.

4. Issarny, V., Caporuscio, M., and Georgantas, N. A Perspective on the
Future of Middleware-based Software Engineering. In Workshop on the
Future of Software Engineering : FOSE 2007 (Minneapolis, United
States, 2007), 244–258.

5. Jaroucheh, Z., Liu, X., and Smith, S. A perspective on
middleware-oriented context-aware pervasive systems. In 2009 33rd
Annual IEEE International Computer Software and Applications
Conference, vol. 2. IEEE Computer Society Press, 2009, 249–254.

6. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D.,
McGuinness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M.,
Srinivasan, N., and Sycara, K. Bringing semantics to web services: The
owl-s approach. In Semantic Web Services and Web Process
Composition, J. Cardoso and A. Sheth, Eds., vol. 3387 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2005, 26–42.

7. Muro, M., Amoretti, M., Zanichelli, F., and Conte, G. Towards a
Flexible Middleware for Context-aware Pervasive and Wearable
Systems. In Engineering (2010).

8. Poovendran, R. Cyber-physical systems: Close encounters between two
parallel worlds. Proceedings of the IEEE 98, 8 (aug. 2010), 1363
–1366.

9. Suo, Y., and Shi, Y. Towards initiative smart space model. In Pervasive
Computing and Applications, 2008. ICPCA 2008. Third International
Conference on, vol. 2 (oct. 2008), 747 –752.

10. Suo, Y., and Shi, Y. SSCP: An OSGi-based communication portal for
Smart Space. 2009 Joint Conferences on Pervasive Computing JCPC,
2008 (2009), 309–314.

11. VICCI Research Group. Visual and interactive cyber-physical systems
control and integration, 2012.
http://vicci.inf.tu-dresden.de/.

12. Weiser, M. The computer for the 21st century. Scientific American 265,
3 (January 1991), 66–75.

3http://www.android.com/

6.4 Towards a flexible control center for cyber-physical systems

Modiquitous 2012 Proceedings 30

M. Kintz: A Semantic Dashboard Description Language for a Process-oriented Dashboard Design Methodology.
Proc. of 2nd International Workshop on Model-based Interactive Ubiquitous System 2012,
Copenhagen, Denmark, June 25, 2012, http://ceur-ws.org/Vol-947 31

already exist, such as ChartsML [22] used in a Firefox [25]
browser extension or in the chart design tool suite
FusionCharts [24]. Other graphical user interface
description languages such as Adobe Flex [19] are related.
Flex focuses on interactions and allows using XML to
design charts but is limited as data sources are concerned.
Scalable Vector Graphics (SVG) [20] is mighty but too
generic for the use case described in this paper. All these
languages tend to be very generic and thus too complex to
be easily managed by non-specialists users, and do not offer
a sufficient level of semantic to be fully appropriate for our
process monitoring and controlling use-case.

PROCESS-ORIENTED SYSTEM MONITORING AND
CONTROLLING
The process-oriented dashboard design methodology
presented in this article extends a full business process-
model-driven monitoring methodology and infrastructure
currently in development but already largely implemented
and described in [3] and [4] and summarized on Figure 1.

Business Process

ProGoalML

Monitoring
Infrastructure

VisML dashboard
description files

Dashboard

Goals and KPIs

Modelling

Generation

Generation

Rendering

Figure 1: Overview of the process monitoring
methodology

Overview of the a.pro Process Monitoring Methodology
The first step of the method involves the users of a system
to be monitored defining goals and KPIs, and modeling the
business process they want to observe using the BPMN [6]
notation. In the process model, possible control points for
further process controlling are also indicated. This
information, including which goals and KPIs are of interest
to which users (i.e. a role concept) is described and stored
in an XML file in the specifically created format

ProGoalML. As this modeling and description operation
can be complex, it is performed by an expert, using user
input.
Based on this XML file, a whole monitoring infrastructure
is then automatically set-up, and code stubs to be integrated
in the running process engine in order to send data to a real-
time monitoring service using a CEP engine (using the
methodology described in [8]) and to a data warehouse for
archiving are generated, to be integrated by the responsible
IT department in the system.
When this infrastructure has been set up, the dashboard
generation phase can begin.

A business-process-model-driven dashboard design
methodology
Taking as input the ProGoalML file containing information
on the process model, roles and KPIs, as well as access to
the CEP engine for real-time information, to the data
warehouse for historical information and to control stubs
web services if controlling of the process is wanted and
allowed by the process model, the VisML generation is
started.
The first VisML file generation process includes the
following steps:

1. Matching goals to data types (as is already done in
the process monitoring methodology for the
creation of the CEP engine and data warehouse);

2. Matching data types to visualizations (cf. Figure
2), answering typical questions and following
processes in a way similar to that defined in [21]
and using best practices for the choice and styling
of charts described in information visualization
literature, for example in [1]. To allow for a
flexible and easy update of the matching
algorithm, the matching configuration is stored in
an XML file containing pairs of ProGoalML goals
descriptors and of VisML charts descriptors;

3. Matching visualizations to the correct data source
(CEP engine Web service interface for real time
data, data warehouse for historical data) and
defining appropriate options for drill-down and
other interactions;

4. Defining proper alerting and controlling
commands, using goals defined in the ProGoalML
file and information from the process model;

5. Generating a basic dashboard layout for each role,
by enabling only the relevant visualizations for a
specific role, and sorting them according to both
priorities defined in the roles and views model
accompanying the ProGoalML and to semantic
criteria (i.e. placing visualizations related to the
same process steps next to each other).

As usual with model-driven graphical interface generation
[5] (dashboards being here a specific type of user interface),

6.5 A Semantic Dashboard Description Language for a Process-oriented Dashboard Design
Methodology

Modiquitous 2012 Proceedings 32

Dashboard Engine

VisML
Generator

AnalyzeControlReport

VisML files
VisML filesVisML files

(role specific)

ProGoalML file

Describe
Customize

Monitor
Analyze Control

Monitor

C

Monitoring and Control- ing Infrastructure

CEP-Engine Data Warehouse Control Stubs

Figure 3: The components of the dashboard design methodology

the mapping described in steps 1 to 3 is of particular
importance.
Once one or more (depending on the number of roles and
views specified) VisML files have been generated, these
can be loaded in a compatible dashboarding engine. There,
the users can use and modify them (by hiding visualization,
switching places or changing sizes, disabling some alerts,
etc.) as necessary, and thus recreate customized VisML
files, should they not be entirely satisfied with the
automatically generated ones.

Data type Visualization
Composition, categories Bar chart
Comparison over time,
distribution Line chart

Single value Number, possibly sparkline
Difference actual value vs.
objective Bullet graph

Figure 2: Mapping data type to visualization

Although the customization is possible at any time, a
normal use case would consist on a limited number of
iterations for the modifications of the VisML files, after
which monitoring and controlling tasks would simply be
performed as in traditional BI and monitoring solutions.
The components of the process-model-driven dashboard
design methodology and their interactions are presented on
Figure 3.

A SEMANTIC DASHBOARD DESCRIPTION LANGUAGE
The dashboards created with the new dashboard design
method have specificities such as semantic information and
controlling possibilities which make it necessary to describe
them with a new language, different than the ones currently
used by dashboard solutions vendors. We call this new
language VisML for visualization markup language, as it
could theoretically be used to describe any kind of
visualization, not only dashboards.
Design goals for the VisML language were to be highly
semantic (focusing on describing the meaning of elements
and leaving technical aspects such as layout or styling to the
dashboard rendering engine, thus making it possible to
adapt the same VisML dashboard to a desktop, tablet or
smartphone layout, for example), easily human readable,
and overall as simple as possible (i.e. limited to the
information that is absolutely necessary to render the
dashboard).
The overall structure of a dashboard file described in the
new semantic dashboard description language is presented
in the next paragraphs, an example is shown on Figure 4.

Overview
A dashboard file should contain the information needed by
a software tool to render a graphic view of the dashboard as
specified by the user, and allow for required interactions
such as drill-down or controlling. To achieve this, it
appeared necessary to include generic information on the
dashboard, an exhaustive list of all visualizations that
compose the dashboard, some specific conditions for
monitoring use cases such as alerting information, and
references to the data to be displayed.

6.5 A Semantic Dashboard Description Language for a Process-oriented Dashboard Design
Methodology

Modiquitous 2012 Proceedings 33

We use XML [10] to create documents that are easily
human and machine readable.
The structure of a dashboard file is therefore specified as an
XML file containing a top element visml, itself containing
exactly four sub-elements:

1. The element meta, containing generic information
such as title, author, etc.

2. The element dashboard, containing a collection of
visualization elements, each describing a specific
visual part of the dashboard.

3. The element alerting, containing a series of alert
elements, specifying conditions to be monitored
and actions to be triggered when a condition is
reached.

4. The element data, containing a series of data
sources and sets.

In the following paragraphs, we describe the role and
structure of each of these four sub-elements.

The Element META
The element meta (for metadata) contains generic
information describing the dashboard. The element is
composed of two sub-elements: description and semantic.
The sub-element description is composed of a mandatory
element title, indicating a title given to the dashboard (used
to be display as a window title, for storage, etc.), zero or
more author elements, used to store the names of the
dashboard authors, and two optional datetime and comment
elements, used to store a modification date and time of the
dashboard structure (for versioning) and additional
comments.
The element semantic is described in a specific section.

The Elements DASHBOARD and VISUALIZATION
The main element of a dashboard description document is
the element dashboard. It represents the part of the
dashboard that must be visually rendered by the supporting
tool and presented to the user.
A dashboard consists in a collection of visualization
elements. Each visualization represents a graphical display
of information, theoretically in any possible form. However,
the dashboard description language focuses on the
description of business dashboards and therefore privileges
those displays that are typical in such dashboards, such as
line graphs, bar graphs, tables and numbers with sparklines
[2], or bullet graphs [6].
A visualization is defined by its attributes category and
type. The possible category values are chart, graph, map,
diagram, table, text and other. This list is a slightly adapted
version of the classification of information graphics
introduced in (Harris, 1999). Text has been added because
simple textual messages or numbers are often useful on
dashboards; other ensures the completeness of the
specification.

Other characteristics of a visualization are a dataset (see
related section), a title and optional description, an element
interaction that contains a list of possible interaction
capabilities such as zoom, pan or drill-down, style and
semantic information.
<?xml version="1.0" encoding="UTF-8"?>

<visml version="" xmlns="...">

<meta>
 <title>Title of the dashoard</title>
 <author>Author name</author>
...
</meta>

<dashboard>
<visualization dataset="set1" id="vis1" category="chart"
type="line">
 <title>Line chart title</title>
 <interaction type="click">
 <scope>...</scope>
 </interaction>
 </visualization>
...
</dashboard>

<alerting>
<alert id="1" dataset="set1"
<condition><![CDATA[saving > 10]]></condition>
<mailNotification frequency="EVERY 30minutes">
<email>mail@example.org</email>
<message>This is the e-mail alert message.</message>
</mailNotification>
</alert>
...
</alerting>

<data>

<datasources>
<database id="source1">…</database>
...
</datasources>

<datasets>
<dataset datasource="source1" id="set1" format="..."
type="...">
<semantic><relation id="..." type="..."/></semantic>
<query><![CDATA[SELECT X AS NAME, COUNT(COST) AS VALUE
FROM costs WHERE COST <= 499;]]></query>
</dataset>
...
</datasets>
...
</data>

</visml>

Figure 4: Excerpt from an example VisML dashboard
description file

The Element ALERTING
It is possible to define alerting conditions and messages in a
VisML file. When a certain dataset meets a condition, the
specified corresponding alert message can pop-up in the
dashboard window or can be sent by e-mail to a list of
recipients. Other actions can of course be imagined
(sending an SMS or even impacting a system), as long as
they can properly be supported by the monitoring and
controlling engines.
An alert element typically consists of a condition referring
to a dataset and one or more notifications, each with their
own frequency and messages.

The Element SEMANTIC
A specify of the VisML dashboard description language it
its ability to not only describe the appearance of

6.5 A Semantic Dashboard Description Language for a Process-oriented Dashboard Design
Methodology

Modiquitous 2012 Proceedings 34

Figure 5: An example VisML dashboard

visualizations but also their meaning and links to actual
business processes or process steps, which can easily be
done since the dashboard design method is business process
model-driven.
For each dashboard in the element description and for each
individual data set, relations to process steps identified by
their ID as specified in the business-model part of the
ProGoalML file can be specified. The semantic simply
consists of one or more relation elements, each having three
attributes: id for the process-step being referenced, priority
for differentiating relations when several are attributed to
the same visualization, and type.
This semantic information is then used by the dashboard
rendering engine to help sort and place the visualizations in
meaningful ways, and to better manage links to the actual
process steps for use-cases such as controlling of the
business process.

The Elements DATA, DATASOURCE and DATASET
The element data contains two main sub-elements:
datasources and datasets.
The element datasources contains a list of sources of
dashboard data. A data source is a reference (for example,
the connection parameters) to a specific database, a Web
service delivering data, or possibly a document containing
data in a format supported by the dashboarding engine (this
use-case is not supported in the current implementation).
The element datasets contains a series of sets of dashboard
data, derived from the data sources specified before. A
dataset is a specific reference to a data source table, a query
on a database or a list of values to be retrieved from a Web
service. A dataset can also be defined as a meta-dataset, i.e.

as the resulting combination of other dataset elements
already defined in the VisML file. The dataset also contains
lists of labels to be mapped to value categories and later
displayed as labels on the visualization, for example on the
axis of graphs. Each dataset may contain several relations to
process models or steps defined with the element semantic.

Linking VisML with common BI solutions
As the VisML dashboard description files are simple XML
documents, they can be processed, for example with XSLT
style sheets, to be transferred into dashboard files
compatible with other already existing BI solutions.
Necessary conditions to that end are that the vendor-
specific dashboard documents do not require more
information than is available in the VisML file, that the
vendor-specific language is documented and the proper
interpreter is implemented.

EXAMPLE IMPLEMENTATION FOR INSURANCE
CLAIMS MANAGEMENT
Large parts of the a.pro process monitoring methodology
and of the dashboard design methods described in this
paper have already been implemented. The VisML
semantic dashboard description language is currently in
productive use in a lightweight dashboard for the
monitoring of an insurance claims management tool, easily
allowing users to simply edit and adapt their dashboards
from a Web browser-based full Javascript interface. An
example VisML dashboard is presented on Figure 5.
Feedback gathered from the use of the lightweight VisML
dashboards show that the simplicity of the language is an
important aspect, as it allows users to immediately adapt the
dashboard to their needs if the generated version wasn’t
satisfying. Although interactions are supported by the

6.5 A Semantic Dashboard Description Language for a Process-oriented Dashboard Design
Methodology

Modiquitous 2012 Proceedings 35

language specification, they do not for all use-cases need to
be supported by the rendering engine, as users of
dashboards for monitoring purposes do not necessarily
always need to perform advanced exploratory data analysis
tasks.
The full automatic generation of the dashboards and the use
of control points to actively impact the business process
being monitored still needs to be implemented and tested.

CONCLUSION
To help overcome known challenges of business process
monitoring, such as the difficulty to built appropriate
dashboards from complex data sources to best monitor
given goals, a new semantic dashboard description
language used in a process-oriented dashboard design
methodology was introduced. This methodology is part of a
larger business-process monitoring and controlling
methodology. Large parts of these solutions have already
been implemented and successfully used in production.
The process monitoring solution we presented offers
several characteristics of ubiquitous computing as defined
in [26]: it allows for the easy and seamless interaction and
monitoring of complex and multiple IT systems, it helps the
users forget about technical details and focus on business
processes and goals, and as the VisML dashboard
description language we introduced emphasizes semantics
over styling, it can be used to render adapted views of the
dashboards on many different systems, such as single or
multi-screen desktops, tablets or even smartphones.
Future work focuses on the improved fully automated
generation of dashboards and on the possibilities of active
business process controlling using the monitoring
dashboards as configuration panels.

REFERENCES
1. S. Few. Effectively Communicating Numbers: Selecting

the Best Means and Manner of Display, 2005.
http://www.rit.edu/cla/cpsi/SRResources/Effectively%2
0Communicating%20Numbers.pdf

2. E. R. Tufte. Beautiful Evidence. Graphics Press, 2006.
3. F. Koetter and M. Kochanowski. Goal-Oriented Model-

Driven Business Process Monitoring using ProGoalML.
In Proceedings of the 15th International Conference on
Business Information Systems (BIS 2012) (in press),
2012.

4. F. Koetter, A. Weisbecker and T. Renner. Business
Process Optimization in Cross-Company Service
Networks – Architecture and Maturity Model. In
Proceedings of the 2012 Annual SRII Global
Conference, 2012.

5. T. Schlegel.; M. Raschke.; M. Knittig.; A. Dridiger.; S.
Wokusch. and C. Taras. Evaluation of Current User
Interface Generator Frameworks for Graphical
Interactive Systems. In Proceedings of the IADIS
International Conference Interfaces and Human
Computer Interaction 2010, 2010.

6. S. Few. Bullet Graph Design Specification, 2010.
http://www.perceptualedge.com/articles/misc/Bullet_Gr
aph_Design_Spec.pdf

7. P. Chowdhary, T. Palpanas, F. Pinel, S.-K. Chen, and F.
Y. Wu. Model driven dashboards for business
performance reporting. In Proceedings of the 10th IEEE
International Enterprise Distributed Object Computing
Conference (EDOC’06), 2006.

8. T. Schlegel; S. Dusch and K. Vidackovic. Interaction-
and Event-Based Management of Processes in Service-
Oriented Infrastructures. In Proceedings of the 6th

9. J. Hagerty, R. L. Sallam, and J. Richardson. Magic
quadrant for business intelligence platforms. 2012.

I*PROMS virtual conference, 2010.

10. W3C. Extensible Markup Language (XML) 1.0 (Fifth
Edition), 2008.

11. W.W. Eckerson. Performance Dashboards: Measuring,
Monitoring, and Managing Your Business. John Wiley
& Sons, Inc., 2011.

12. S. Few. Information Dashboard Design. O’Reily Media,
Inc., 2006.

13. OMG. Business Process Model and Notation (BPMN)
Version 2.0, 2009.

14. IBM Business Analytics. http://www-
142.ibm.com/software/products/us/en/category/SWQ00

15. SAP Businessobjects Business Intelligence Solutions.
http://www.sap.com/solutions/sapbusinessobjects/large/
business-intelligence/index.epx

16. Tableau Software. http://www.tableausoftware.com/
17. TIBCO Spotfire. http://spotfire.tibco.com/
18. P. Hanrahan. Vizql: A language for query, analysis and

visualization. In Proceedings of the 2006 ACM
SIGMOD international conference on Management of
data, 2006.

19. Adobe Flex. http://www.adobe.com/products/flex.html
20. W3C. SVG Working Group.

http://www.w3.org/Graphics/SVG/
21.X.J. Li; T. Schlegel; M. Rotard and T. Ertl. A Model-

Based Graphical User-Interface for Process Control
Systems in Manufacturing. In Proceedings of the
Intelligent Production Machines and Systems - 2nd
I*PROMS Virtual International Conference, 2006.

22.T. Saito. ChartML. 2008.
http://www.onsaito.com/csdv/chartMLindex.xhtml

23.C. Stolte; D. Tang. and P. Hanrahan. Polaris: A System
for Query, Analysis, and Visualization of
Multidimensional Relational Databases. In IEEE
Transactions on Visualization and Computer Graphics 8,
2002.

24.FusionCharts. Charts XML Reference.
http://docs.fusioncharts.com/free/

25.Mozilla Firefox.
http://www.mozilla.org/en-US/firefox/new/

26.M. Weiser. Hot Topics: Ubiquitous Computing. In IEEE
Computer, October 1999.

6.5 A Semantic Dashboard Description Language for a Process-oriented Dashboard Design
Methodology

Modiquitous 2012 Proceedings 36

G. Püschel, R. Seiger, T. Schlegel: Test Modeling for Context-aware Ubiquitous Applications with Feature Petri Nets.
Proc. of 2nd International Workshop on Model-based Interactive Ubiquitous System 2012,
Copenhagen, Denmark, June 25, 2012, http://ceur-ws.org/Vol-947 37

enter phrase

show translation

?translate
?back

?terminate

Figure 2. State machine for the TransApp example.

MODELING APPROACH
In this section, we present our modeling strategy. To illustrate
our approach, we introduce a brief example from the mobile
application domain in the beginning. Fig. 2 shows the state
machine for our prototype application called “TransApp”, a
minimalist translation agent. It consists of two states, the first
one enabling the user to enter a sentence and letting the service
backend translate it. Second, the user can either terminate the
application or return back to translating another phrase. The
target language is thereby determined automatically using the
system’s Localization feature and translation is done by
the Translation feature via local or Internet dictionary
look-up. In the following, we systematically build and com-
bine models to define all information necessary for the test
case generation.

Configuration Space Feature Models
As discussed initially, one of the most important tasks in test
modeling of context-aware systems is to manage variability. In
SPL research, this problem has been approached by using fea-
ture models, which can also be extended to dependent feature
models with the help of relational semantics (more detailed
in [7]). Fig. 3 shows the usage of two dependent feature
models for TransApp. The feature models are presented as
feature trees. The upper tree defines the variability of the SUT
itself. Apart from the common core feature, which contains
entities shared among all instances, two abstract features must
be selected in all valid products. Localization is used
to provide an automatic selection of the target language for
translation and may either be implemented by using a GPS
sensor or by using cellular network data. These specializations
are mutually exclusive, i. e., only one of them will be used
for localization (marked by an arc between the specialization
relationships). For Translation, two mutually exclusive
options exist as well. Either the system is connected to the
Internet and, therefore, an online database is used for looking
up the translation, or a local dictionary is consulted.

The lower feature model in Fig. 3 defines the variability space
of the underlying system, i. e., of the test environment. The
platform consists of a GPS and of a cell phone feature. Internet
connection is optional (marked by an empty circle ©). By
defining features as non-optional (standard relationship line
with no markings), we do not state that they are mandatory,
but that we exclude them from our test configuration set.

Both feature trees are composed by required constraints
(marked by arrows↗). For instance, GPS Localization
requires a GPS feature in the underlying system environment.
Later on, these relations enable the generator to derive config-
uration steps leading to a specific test setting.

TransApp

Localization Translation

Net
Localization

GPS
Localization

Internet
Translation

Local Dictionary
Translation

Core

Platform

GPS Cell Phone 3G

Figure 3. Dependent feature models for TransApp.

Based on the information from the feature models, a set of
valid configurations can be generated, e. g.,

{GPS Local., GPS,Local Dict. T ranslation}
. We can use each configuration as a starting point for a
behavioral model defining which features are bound to the
system’s initial state.

Feature Petri Nets and Test Modeling
Modeling behavior in variable systems can be done by us-
ing specific models that define a common behavior space for
all selections of features possible. However, many of these
metamodels, e. g., modality enriched activity diagrams, have
no semantics for feature control. Hence, Muschevici et al.
proposed in [5] a Petri net-based model, in which both fea-
ture dependent behavior (Feature Petri Nets, FPN) and feature
controlling behavior at runtime (Dynamic Feature Petri Nets,
DFPN) can be expressed. While the exact details can be taken
from their publications, we give an informal but intuitive defi-
nition here and show an exemplary illustration of a DFPN for
our test model application in Fig. 4.

First of all, DFPNs are based on basic Petri nets. Places (vi-
sualized as circles) are partial states which can be connected
with transitions (black bars) by directed arcs. Arcs’ starting
and ending points have pairwise disjunct types so that they
never connect two places or two transitions. A marking can be
created by putting tokens (black dots) into places. A transition
is activated when all places, which have an outgoing connec-
tion with this transition, are marked with tokens. The state
of a Petri net can be changed by removing these “incoming”
tokens and putting new tokens in all places directly connected
by the outgoing arcs from the activated transition. A trace is a
sequence of states. As multiple places can be marked in the
same state, Petri nets can be used to model distributed and
parallel processes.

DFPNs adapt the Petri net notion and extend it by marking
transitions with application conditions and update expressions.
In Fig. 4, transitions are annotated with these elements in the
following way:

application condition
update expression

. An application condition restricts the activation (firing) of
transitions to the set of bound (activated) features. At system
start, a predefined feature selection is used for initialization.
The syntax of a condition follows the grammar

“ϕ ::= a | ϕ ∧ ϕ | ¬ϕ, with a ∈ F ” [5]

6.6 Test Modeling for Context-aware Ubiquitous Applications with Feature Petri Nets

Modiquitous 2012 Proceedings 38

Internet Translation
GPS Localization

action(enter(PHRASE));
action(translate)

L

true
verify(translation(GPS,

Internet),FAIL)

true
verify(translation(Net,

Dictionary),FAIL)

Dictionary Translation
 GPS Localization

action(enter(PHRASE));
action(translate)

true
noop

true
action(back)

Figure 4. Dynamic Feature Petri Net of our test model.

true
Net Localization off;
GPS Localization on;

action(updateCtx('enable gps'))

true
noop

true
Dictionary Tranlation on;
Internet Translation off;

action(updateCtx('disable internet'))

Figure 5. Extract of the context feature model.

where F is the active feature set. We redefined this for reasons
of convenience to

ϕ ::= a | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ¬ϕ | true
. In Fig. 4, for instance at the beginning, the decision de-
pends on the activation state of the GPS feature, which was
determined in advance.

Furthermore, update expressions control the (de-)activation of
a feature a (on/off). Muschevici et al. defined their grammar
as:

“u ::= noop | a on | a off | u;u” [5]

. We added two statements, namely action and verify, to
this notation and extended it to

u′ ::= u | action(x) | verify(x,v) | u′;u′

where x is a term and v is a verdict ∈ {PASS, FAIL}. This
allows test modelers to define black box interface interactions
with the help of arbitrary message patterns (e. g., send-receive,
receive-send), whereas an action(x) operation indicates to
send data to the SUT and verify(x,v) operations receive
and immediately verify data from it.

For our example case (cf. Fig. 4), we use update expres-
sions to navigate through the application and to validate that
a translation was executed correctly. The verified terms may
be interpreted as equivalence classes for the test data. By us-
ing DFPNs in combination with our extensions, we are able
to model feature activation dependent test cases and feature
controlling steps.

Defining Feature Dynamics
As presented in Fig. 4, we did not use on and off operations
directly on features in the test model. However, context is
the actual driver for changing feature states with respect to
the targeted application and system types. We connect both
operations with context rules, having the form

ϕ(on|off)⇒ (action(x)|verify(x,v))

and use those to generate and insert a parallel context control-
ling branch into our test models, as depicted in Fig. 5.

For example, the context rule

GPS Localization on⇒ action(′enable GPS′)

would produce the upper left transition. An action performed
as a consequence of a feature activation or deactivation must
lead to this indirectly controllable operation. For instance, if
we perform this test manually, such an operation would contain
an instruction for the tester to place the device in a location
within GPS satellite range. A more automatic interpretation
would be to execute an update over an ontologically modeled
context (e. g., by using SPARQL queries).

Using the feature models defined initially, we can derive that
it is necessary to deactivate Net Localization, because
both features exclude each other mutually. The context branch
contains exactly one central place, so that in every simulation
step only one of its transitions may be activated. Through this
parallelism and the feature activation states, the test model and
the context branch are able to interact with each other.

Generation of Test Cases
To generate test cases, we have to perform a reachability
analysis for the Petri net, i. e., a complete simulation of the
combined DFPN consisting of the test model and the context
branch to derive all possible traces, each of which correspond-
ing to a specific test case. Additionally, we need to filter direct
feature control operations (on/off), keeping only actions
and verifications with runtime relevance. As the latter ones do
not influence the (D)FPN execution semantics, we claim that
all provable properties of the Petri net also hold true for our
extensions.

TOOL SUPPORT
The implementation of our approach is in ongoing develop-
ment. The Mobile Application Test Environment (MATE1)
prototype is depicted in 6. The editor is based on Eclipse
and provides a toolset for DFPN-based test models (1), the
creation of context rules (2), and of feature models (3). With
the help of these models, specific test cases and classes of test
cases can be derived to achieve a large coverage of the feature
and test space. MATE is also capable of test suite generation
and execution. Additionally, an interface is provided to use
technology and platform specific test drivers.

RELATED WORK
Our research is related to and influenced by a broad range
of research fields. Ichiro Satoh [9] proposed an emulator-
based approach for network migration simulation in mobile
1http://www.quality-mate.org/

6.6 Test Modeling for Context-aware Ubiquitous Applications with Feature Petri Nets

Modiquitous 2012 Proceedings 39

Figure 6. MATE – Mobile Application Test Environment.

computing, which is one aspect of context, while we actually
focus on several ones. A more recent work [11] integrated
context changes into manually constructed test cases.

Fernandes et al. integrated feature and context modeling in
[2] and used specific notations (UbiFEX and Odyssey-FEX).
In [12], White and Schmidt proposed using feature models
for mobile application design, too. They base their claim on
the need for variability management. Similarly, Ridene and
Babier manage variability of mobile systems explicitly in test
models. For this purpose, they designed a domain specific
modeling language [6].

Considering behavioral models for dynamically variable sys-
tems, Muscevici et al. compared their DFPN approach to sev-
eral other Petri net extensions, e. g., self-modifying [8] or re-
configurable [4] Petri nets and stated that they can be mapped
to each other.

CONCLUSION AND FUTURE WORK
By applying our approach, it is feasible to link variability in
mobile and ubiquitous systems with behavioral test models to
generate test suites for different configurations and to change
context settings at runtime. To achieve this, we used feature
models to define variability of different systems under test and
test environment dimensions. With the help of context rules,
test engineers can map runtime-dynamic features to test steps
necessary to activate or deactivate (bind/unbind) features.

The test model itself is based on Dynamic Feature Petri Nets
(DFPN) enriched with a generated parallel branch derived
from the information given in the context rules. We claim that
this approach provides an expressive means to efficiently cre-
ate test models for dynamically variable systems, for instance
in the ubiquitous and context-aware domain. Compared with
related research, we achieve a large and measurable cover-
age of the configuration space including a variety of context
properties, high levels of reusability and automation through
modeling, and an extended formalization of test scenarios.

With regard to future work, we intend to evaluate MATE in
an industrial case study. In that process, we will measure
the effort of creating test models and also its benefit for test
projects in comparison to the conventional manual process.
Future research problems include coverage constraints that ad-
dress variability, the introduction of traceability mechanisms,

and the design of expressive graphical and textual modeling
languages to support test experts.

Acknowledgments
This research has received funding within the projects
#100084131 and #100098171 by the European Social
Fund (ESF) and the German Federal State of Saxony as well
as T-Systems Multimedia Solutions GmbH.

REFERENCES
1. Dalmau, M., Roose, P., and Laplace, S. Context aware

adaptable applications - a global approach. CoRR
abs/0909.2090 (2009).

2. Fernandes, P., Werner, C., and Murta, L. Feature
modeling for context-aware software product lines. In
Proceedings of the 20th International Conference on
Software Engineering & Knowledge Engineering (San
Francisco, CA, USA, 2008) (2008).

3. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and
Peterson, A. S. Feature-oriented domain analysis
(FODA). Tech. rep., Software Engineering Institute,
Carnegie Mellon University, 1990.

4. Llorens, M., and Oliver, J. Structural and dynamic
changes in concurrent systems: reconfigurable Petri nets.
Computers, IEEE Transactions on 53, 9 (2004),
1147–1158.

5. Muschevici, R., Clarke, D., and Proenca, J. Feature petri
nets. In Proceedings of the 14th International Software
Product Line Conference (SPLC 2010) (2010).

6. Ridene, Y., and Barbier, F. A model-driven approach for
automating mobile applications testing. In Proceedings of
the 5th European Conference on Software Architecture,
ACM Press (2011), 9.

7. Rosenmüller, M., Siegmund, N., Thüm, T., and Saake, G.
Multi-dimensional variability modeling. In Proceedings
of the Workshop on Variability Modelling of
Software-intensive Systems (VaMoS) (2011).

8. Rüdiger, V. Self-modifying nets: A natural extension of
Petri nets. In Automata, Languages and Programming,
vol. 62 of Lecture Notes in Computer Science, Springer
(1978), 464–476.

9. Satoh, I. A Testing Framework for Mobile Computing
Software. IEEE Transactions on Software Engineering
29, 12 (2003), 1112–1121.

10. Utting, M. Practical model-based testing: a tools
approach. Morgan Kaufmann, 2007.

11. Wang, H., and Chan, W. K. Weaving context sensitivity
into test suite construction. In Proceedings of the 2009
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, IEEE Computer Society
Press (2009), 610–614.

12. White, J., and Schmidt, D. C. Model-driven product-line
architectures for mobile devices. Journal On The Theory
Of Ordered Sets And Its Applications (2008), 9296–9301.

6.6 Test Modeling for Context-aware Ubiquitous Applications with Feature Petri Nets

Modiquitous 2012 Proceedings 40

Modiquitous 2012

Proceedings of the 2nd Inte rnational Work shop on Model-
based Interactive Ubiquitous Systems

S E S

