
Models and Patterns for Smart Environments

Peter Forbrig
University of Rostock, Department of Computer Science

Albert-Einstein-Str. 22

D-18051 Rostock, Germany

+49 381 498 7620

peter.forbrig@uni-rostock.de

Maik Wurdel, Michael Zaki
University of Rostock, Department of Computer Science

Albert-Einstein-Str. 22

D-18051 Rostock, Germany

+49 381 498 7431

michael.zaki@uni-rostock.de

ABSTRACT

In a given smart meeting room, several users are supposed

to cooperate together while employing static and dynamic

heterogeneous devices. The goal of such environments is

to deliver proper assistance to the users while performing

their tasks. Thus, task models are an appropriate starting

point for those environments. Those models give the

developers the opportunity to focus on the users and their

tasks. Tasks are not independent from available tool,

locations and acting persons. Therefore, other models

have to be developed and linked to the task model in

order to truly illustrate how the tasks are executed in those

environments. The paper discusses the application of the

language CTML that was designed for this purpose.

Furthermore, the usage of patterns for supporting the

development of models for smart environments will be

discussed.

Keywords

Smart environment, HCI, task model, context, goal

pattern, task pattern

INTRODUCTION

The idea of ubiquitous computing goes back to Marc

Weiser. According to Weiser’s vision [11], devices are

weaving themselves into everyday life, allowing people to

fully concentrate on performing their tasks, while hiding

their existence and complexity. A smart environment (SE)

tries to analyze user behavior and tries to provide

appropriate assistance. Within the context of a meeting

scenario the presenter should concentrate on the talk,

while the SE is responsible for offering convenient

assistance by adjusting the projector, loading the

necessary files and capturing audiovisual data for meeting

documentation if needed. In the best case no direct

interaction is necessary. Implicit interaction like going to

the presentation area is enough to present the slides of the

speaker. Experiences show that [5] that the quality of

support can be increased if some information is given to

the system. Most important are the tasks the users want to

perform within the environment.

Task models are an appropriate starting point for

interactive processes development. The application of

task models for smart environments is discussed in [4]

We will shortly introduce the concept of task models and

an own collaborative task-modeling language will be

presented. Afterwards we introduce our ideas of using

patterns.

MODELLING COOPERATION WITH TASK TREES
Currently CTT [7] is one of the most referred notations

for task models. Tasks are arranged hierarchically, where

more complex tasks are decomposed into simpler sub-

tasks. CTT distinguishes between several task types,

which are represented by the icon representing the task

node. There are abstract tasks, which are further

decomposable into combinations of the other task types

including interaction, application and user tasks (see Fig.

1 for an overview of the available task types). The task

type denotes the responsibility of execution (human,

machine, interaction, cooperation with human).

Figure 1 Task model for giving a presentation

Sibling tasks are connected by binary temporal operators.

However, unary operators exist that are related to one task

only. A complete listing and explanation of the CTT

operators can be found in [7]. Operators have precedence

orders. These orders are important for interpreting

different operators in the same level. The priority of the

interleaving (|=|) operator is higher than the enabling

operator (>>). The iteration is an example of a unary

operator. An example of a CTT model within the context

of a smart environment for giving a presentation is shown

in Figure 1. It provides the task of giving a presentation.

The abstract root task “Give Presentation” is decomposed

into four child tasks. The left tasks on the second level of

abstraction are connected with the enabling operator (>>)

in order to specify that one task has to be performed

before the other one can start (e.g., the interactive task

“Configure Equipment” can only be performed after

having executed the human task “Enter Room”). “Leave

Room” can be performed at any time due to the

deactivation operator ([>) resulting in a prematurely

abortion of the currently running task. Furthermore, the

task “Configure Equipment” is decomposed into the

subtasks “Start Projector”, “Start Laptop” and “Connect

Laptop & Projector”. The third task can only be executed

after the first two tasks were performed.

Because of lack of space the model does not specify the

details of the presentation. Models can be of course as

detailed as necessary.

COLLABORATVE TASK MODELING LANGUAGE

In conjunction with modeling efforts in a smart

environment the collaborative task modeling language

(CTML) was developed. Despite that the idea was

originated in the context of smart environments, it seems

to be applicable in a broader range (e.g. Stakeholder-

driven process management can be supported in this

way). We will shortly discuss the fundamental

assumptions and the most significant features of the

language.

The design of CTML is based on four fundamental

assumptions:

I. Role-based Modeling. In limited and well-defined

domains the behavior of an actor can be approximated

through her role.

II. Hierarchical Decomposition and Temporal

Ordering. The behavior of each role can be adequately

expressed by an associated collaborative task

expression.

III. Causal Modeling. The execution of tasks may

depend on the current state of the environment (defined

as the accumulation of the states of all available

objects) and in turn may lead to a state modification.

IV. Individual and Team Modeling. The execution of

individual user tasks may contribute to a higher level

team task

Based on these assumptions a collaborative task model is

specified in a two-folded manner:

1. Cooperation Model.

Specifies the structural and behavior properties

of the model.

2. Configuration(s).

Holds runtime information (like initial state,

assignment) and simulation / animation

configurations.

A cooperation model is presented in Figure 2. Model

entities are represented by elements in the inner circle

(post fixed with “-1”). Diagrams outside of the inner

circle provide more detailed specifications of the

corresponding entities (post fixed with “-2”). A

specification of a model consists of specifications of roles

(e.g., A-1), devices (e.g., B-1), a location (C-1), a domain

(D-1) and a team (E-1).

 Figure 2 Schematic Cooperation Model for a Meeting

In our following discussion we will focus on roles and

their models only. Roles categorize users that have the

same capability, responsibility, experience and limitations

according to the domain. Thus roles can be considered as

abstractions of users sharing the same characteristics. In

software engineering roles are often called actors. The

potential actions a user is able to perform are determined

by his role(s). In CTML a role is associated with a task

model (A-2) that is visually represented by a task tree in a

CTT-like notation.

CTML allows the dynamic change of roles during

runtime, which is not very common in other modeling

approaches.

Let us assume that Sheldon acts as Chairman and Leonard

acts as Presenter in our smart meeting room. Additionally,

there is Penny. She fulfills the roles Presenter and

Listener as depicted in Fig. 3.

Figure 3 Specific Meeting Configuration

The configuration assigns persons to roles. Additionally,

it can be specified that Penny first acts as a presenter and

later fulfills the role of a listener. This can be expressed

by “Presenter >> Listener” for Penny. A configuration is

sometimes also considered as a scenario for which the

cooperation model is used.

Sometimes temporal relations are not expressive enough

to specify the real constrains between different tasks. This

was the reason for introducing textual specifications into

CTML (like OCL [8] for UML). Such specifications

allow constrains that involve devices, locations and all

other model elements. They are used to specify

preconditions and effects of tasks using an OCL-like

syntax. For the role ‘Chairman’ and the role ‘Presenter’

the preconditions and effects shown in Table 2 make

sense.

Table 1 Examples for preconditions and effects

Role Task Precondition

1 Presenter Start

presentation

Chairman.oneInstance.AnnounceTalk

2 Chairman Announce

discussion

Presenter.allInstances.EndPresentation

Role Task Effect

1 Presenter End resentation self.presented = true

2 Chairman Announce

discussion

Notebook.allInstances.switchOff

A presenter is only allowed to start his presentation after

the chairman has announced it (precondition 1).

Precondition 2 states that a chairman can only announce a

discussion if all presenters have finished their

presentations. It might be a little bit difficult to create

such kind of specifications but they have the advantage of

being readable to some extent. For the expressiveness of

such specifications quantifiers are very important. They

allow specifying the number of actors or devices (one or

all).

After a Presenter ended his talk the corresponding

attribute is set to true (effect 1). After the Chairman has

opened the general discussion all notebooks in the room

are switched off (effect 2).

It is possible to specify activities taking place in a smart

environment in a precise way. However, it is sometimes a

burden to develop such a specification. The modeling

process is complex and time consuming. A promising

idea would be to overcome this problem by using existing

specifications to build new ones.

Patterns have proved [5] to be a good tool to represent

knowledge in software design. They spread through

computer science domain despite the fact that they were

first discussed in architecture [1]. Additionally, many

approaches take benefit of the usage of patterns in the

HCI area [21]. Breedvelt-Schouten et al. [3] introduced

task patterns that inspired our work. Sinnig [9] provided

generic task patterns to be able to adapt a pattern to the

context of use.

In a given smart environment numerous actors try to

achieve a common goal that can be characterized as team

goal. For the meeting room example, the ultimate goal is

the efficient exchange of information among the actors in

the room. Every task executed by an actor in its role is in

a way a contribution to the team goal. It is a step towards

this goal. Additionally, the task helps to reach the own

individual goal (e.g. to make a good presentation).

A first step to develop patterns in the context of smart

meeting rooms was to identify possible team goals (a

certain state that the team wants to reach). First results

were presented in [25] by providing six abstract team

goals. These goals were (I) conference session performed,

(II) lecture given, (III) work defended, (IV) topic

discussed, (V) debate managed and (VI) video watched.

In the meantime some further patterns were identified.

Figure 4 presents one of those patterns in a simplified

way. It is a team pattern for discussing phenomena of the

climate that was identified by observing meetings in a

research institute.

Usually during meetings at this institute there is first a

general presentation. Later on participants split into two

subgroups and discuss some pictures and data. in two

subgroups and at the end the combined results from both

groups are presented to the whole plenum.

Unlike the former task patterns approaches it is our goal

to integrate the so-called “forcing context” into the pattern

specification. The forcing context describes the set of

environmental preconditions that have to be fulfilled in

order to execute the tasks within the pattern and the set of

post-conditions expressing the influence of the execution

of those tasks on the state of the environment.

smart environments. Moreover, the main trend nowadays

is the design of universally accessible applications.

The pattern description consists of an ID, name, problem,

situation, solution, diagram, adaptation variables and

referenced patterns. In this paper we will concentrate on

the illustrations (in the diagram section of the pattern) that

are provided within the pattern example of Figure 5.

The diagram section of the pattern consists of three parts,

the task hierarchy, the environmental dependencies and

the visualization of the execution constrains.

Currently we are extending the CTML editor which

provides an Eclipse-based IDE to build task models by

our task pattern application tool. We truly believe that

having this pattern library fostered by the tool, the

developer will be offered a real assistance while modeling

a given scenario in the context of smart environments.

CONCLUSIONS
In this paper we argued for a model-based approach for

smart environments. We presented some details of our

specification language CTML that allows specifying the

tasks of different actors and the cooperation of a team. It

is argued to split the specification into a cooperation

model and a configuration model. The cooperation model

specifies general knowledge of activities of a specific

domain. This knowledge is long lasting. The

configuration model has to be specified according to the

current instance of a session. Who are the participants that

take part and which roles do they play?

discuss
climate

phenomena

present

phenomena

Split into

two groups

discuss

in group 1

argue

present

data

*

discuss

summarize

discuss

in group 1

argue

present

data

*

discuss

summarize

present

results

present 1 Present 2

>> >>

>> >>

[> [>

>>III

I=I

Figure 4 Fraction of a Team Pattern Example

Afterwards, we argued that the need to build the task

models, the other environmental and domain models as

well as the specification of the relations and constraints

between all of the included models dramatically increase

the complexity of the modeling process of those

environment. Therefore, we suggested the usage of

appropriate patterns which aim to provide convenient

support to the developer while modeling her scenario.

The animation of our models can support the Bayesian

algorithms of a smart environment that try to infer next

possible actions of the users based on the sensor data. On

the other hand these algorithms can inform the animation

of the models that certain preconditions of task are

fulfilled.

REFERENCES
1. Alexander, C., Silverstien, M.: A Pattern Language.

In: Christopher Alexander, Sara Ishikawa, Murray

Silverstein, Max Jacobson, Ingrid F. King und Shlomo

Angel (Eds.), Towns, Buildings, Construction, Oxford

University Press, New York 1977, ISBN 0195019199

2. Blumendorf, M.: Multimodal Interaction in Smart

Environments A Model-based Runtime System for

Ubiquitous User Interfaces. Dissertation, Technische

Universität Berlin, 2009.

3. Breedvelt-Schouten, I.M., Paterno, F., Severijns, C.:

“Reusable Structures in Task Models”, 1997, In

Proceedings of DSV-IS: 225-239.

4. Blumendorf, M., Lehmann,G.,Albayrak, S.: Bridging

Models and Systems at Runtime To Build Adaptive

User Interfaces. Proceedings of the 2nd ACM SIGCHI

symposium on Engineering interactive computing

systems. ISBN: 978-1-4503-0083-4 : 9-18.

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.,

Design Patterns. Elements of Reusable Object-

Oriented Software. Addison Wesley, 1995

6. Giersich, M., Forbrig, P., Fuchs, G., Kirste, T.,

Reichart, D., and Schumann, H.: Towards an

Integrated Approach for Task Modeling and Human

Behavior Recognition, Proc. HCII 2007, p. 1109-1118,

ISBN: 978-3-540-73105-4.

7. Mori, G., F. Paternò and C. Santoro: CTTE: Support

for Developing and Analyzing Task Models for

Interactive System Design, IEEE Trans. Software Eng.

28(8), 2002, p. 797-813.

8. OCL: http://www.omg.org/technology/

documents/modeling_spec_catalog.htm#OCL.

9. Sinnig, D.: The Complexity of Patterns and Model-

based Development, Computer Science. Montreal,

Concordia University. (Thesis 2004).

10. Tidewell, J.: Interaction Design Patterns: Twelve

Theses, PLoP’98, Monticello, Illinois, In. Proc.

Conference on Pattern Languages of Programming,

1998.

11. Weiser, M.: The Computer for the 21st Century.

Scientific American, 265, pp.94-104, 1991.

12. Wurdel, M., Sinnig, D., Forbrig, P.: CTML: Domain

and Task Modeling for Collaborative Environments.

Journal of Universal Computer Science 14, 2008, p.

3188-3201.

13. Zaki, M., Forbrig, P.: User-oriented Accessibility

Patterns for Smart Environments. Springer Volume

6761/2011, 319-327, DOI: 10.1007/978-3-642-21602-

2_35.

14. Zaki, M., Forbrig, P.: Towards a Pattern Language for

Modeling Interactive Applications in Smart Meeting

Rooms.

