Test Modeling for Context-aware Ubiquitous Applications
with Feature Petri Nets

Georg Piischel Ronny Seiger Thomas Schlegel
Technische Universitit Technische Universitit Technische Universitit
Dresden Dresden Dresden
Georg.Pueschell @mailbox.tu- Ronny.Seiger@tu-dresden.de Thomas.Schlegel @tu-
dresden.de dresden.de

ABSTRACT

Applications for ubiquitous systems have to be designed to
run in contextual environments and on a multitude of software
and hardware platforms. To assure their quality in an adequate
subset of these static as well as dynamic configurations, vari-
ability modeling and model-based testing can be used. In this
paper, we present an approach applying Model-based Testing
(MBT) and Dynamic Feature Petri Nets (DFPN) to define a
test model from which an extensive test suite can be derived.
We argue that our method is capable of efficiently modeling
context-aware application behavior for test purposes.

Author Keywords
Model-based Testing, Petri Nets, Ubiquitous Systems,
Context, Features, Mobile Applications

ACM Classification Keywords
D.2.5 Software Engineering: Testing and Debugging

INTRODUCTION

Mobile and ubiquitous applications are designed and devel-
oped to be executed on a multitude of heterogeneous target
platforms, i.e., supporting a large number of software and
hardware configurations. In addition, they have to adapt to
changes within their environment based on the current con-
text model describing “external data, that may influence the
application”[1], e.g., location or connectivity information. To
support platform independence, software and programming
interfaces abstract from platform specific properties. How-
ever, the resulting behavior of a system may still differ due
to minor implementation differences. Hence, we have to test
this specific software within an adequate set of predefined
configurations.

The second issue —changing contexts— occurs at runtime.
The system under test (SUT), depends, e. g., on geospatial data
(GPS), adapts to connectivity problems, or changes its graphi-
cal interface according to the device’s current orientation. In
order to test this behavior, we have to keep in mind that these
dynamic adaptations can occur at almost arbitrary points in
time.

To deal with those problems, we designed a workflow for gen-
erating test cases, which is depicted in Fig. 1. First, we make
use of feature models [3], which are a widely-used concept
to define commonality and variation in systems, especially
in Software Product Lines (SPLs). The static variability of

product
generator

products/
test configurations

0
e
[

SuUT
feature-aware
behavioral model

Figure 1. Workflow of test case generation.

configurations based on software and hardware platform dif-
ferences can be defined by using feature models spanning a
test configuration space. From this space, configurations can
either be selected specifically for testing or they can be verified
against the feature models’ constraints.

Second, we apply model-based testing (MBT), which is a
means for “the automation of black box tests” [10]. In MBT,
models are used to specify the communication between a test
environment and the SUT —considered to be a black box—
via its interfaces and to generate valid test cases. The main
advantages of MBT include a reduction of redundancy, a mea-
surable coverage, and a traceability among artefacts. Thus,
we create a test model based on Dynamic Feature Petri Nets
(DFPN) to define the SUT’s behavior under all possible con-
figurations, and to derive a subset of this model from context
rules. These context rules associate feature activations or de-
activations with actions that have to be executed in order to
enable the (de-)activation in the black box SUT. Combining
the test model, context rules, and feature models, a genera-
tor derives one test suite for each of the application’s static
configurations.

Overview

The rest of this document is structured as follows: first, we
design the features models of an exemplary SUT as well as
its Petri net-based behavioral test models. Subsequently, it is
shown how parts of our test model are derived from context
rules and how test cases are generated. Afterwards, we briefly
present an editing tool which implements our approach. In the
end, we discuss related work, conclude our own contributions,
and outline future research activities.

show translation
terminate
?back

Figure 2. State machine for the TransApp example.

MODELING APPROACH

In this section, we present our modeling strategy. To illustrate
our approach, we introduce a brief example from the mobile
application domain in the beginning. Fig. 2 shows the state
machine for our prototype application called “TransApp”, a
minimalist translation agent. It consists of two states, the first
one enabling the user to enter a sentence and letting the service
backend translate it. Second, the user can either terminate the
application or return back to translating another phrase. The
target language is thereby determined automatically using the
system’s Localization feature and translation is done by
the Translation feature via local or Internet dictionary
look-up. In the following, we systematically build and com-
bine models to define all information necessary for the test
case generation.

Configuration Space Feature Models

As discussed initially, one of the most important tasks in test
modeling of context-aware systems is to manage variability. In
SPL research, this problem has been approached by using fea-
ture models, which can also be extended to dependent feature
models with the help of relational semantics (more detailed
in [7]). Fig. 3 shows the usage of two dependent feature
models for TransApp. The feature models are presented as
feature trees. The upper tree defines the variability of the SUT
itself. Apart from the common core feature, which contains
entities shared among all instances, two abstract features must
be selected in all valid products. Localization is used
to provide an automatic selection of the target language for
translation and may either be implemented by using a GPS
sensor or by using cellular network data. These specializations
are mutually exclusive, i.e., only one of them will be used
for localization (marked by an arc between the specialization
relationships). For Translation, two mutually exclusive
options exist as well. Either the system is connected to the
Internet and, therefore, an online database is used for looking
up the translation, or a local dictionary is consulted.

The lower feature model in Fig. 3 defines the variability space
of the underlying system, i.e., of the test environment. The
platform consists of a GPS and of a cell phone feature. Internet
connection is optional (marked by an empty circle (). By
defining features as non-optional (standard relationship line
with no markings), we do not state that they are mandatory,
but that we exclude them from our test configuration set.

Both feature trees are composed by required constraints
(marked by arrows). For instance, GPS Localization
requires a GP S feature in the underlying system environment.
Later on, these relations enable the generator to derive config-
uration steps leading to a specific test setting.

TransApp

Core

Localization Translation

GPS Net Internet Local Dictionary
Localization Localization Translation Translation

,,,,,,,,,,,,,,,,,,,,,,, X_‘_,,,,,,,,,,,,,,,,
GPS éell Phone 3G

Platform

Figure 3. Dependent feature models for TransApp.

Based on the information from the feature models, a set of
valid configurations can be generated, e. g.,

{GPS Local.,GPS, Local Dict. Translation}

We can use each configuration as a starting point for a
behavioral model defining which features are bound to the
system’s initial state.

Feature Petri Nets and Test Modeling

Modeling behavior in variable systems can be done by us-
ing specific models that define a common behavior space for
all selections of features possible. However, many of these
metamodels, e. g., modality enriched activity diagrams, have
no semantics for feature control. Hence, Muschevici et al.
proposed in [5] a Petri net-based model, in which both fea-
ture dependent behavior (Feature Petri Nets, FPN) and feature
controlling behavior at runtime (Dynamic Feature Petri Nets,
DFPN) can be expressed. While the exact details can be taken
from their publications, we give an informal but intuitive defi-
nition here and show an exemplary illustration of a DFPN for
our test model application in Fig. 4.

First of all, DFPNs are based on basic Petri nets. Places (vi-
sualized as circles) are partial states which can be connected
with transitions (black bars) by directed arcs. Arcs’ starting
and ending points have pairwise disjunct types so that they
never connect two places or two transitions. A marking can be
created by putting tokens (black dots) into places. A transition
is activated when all places, which have an outgoing connec-
tion with this transition, are marked with tokens. The state
of a Petri net can be changed by removing these “incoming”
tokens and putting new tokens in all places directly connected
by the outgoing arcs from the activated transition. A frace is a
sequence of states. As multiple places can be marked in the
same state, Petri nets can be used to model distributed and
parallel processes.

DFPNs adapt the Petri net notion and extend it by marking
transitions with application conditions and update expressions.
In Fig. 4, transitions are annotated with these elements in the
following way:
application condition
update expression

. An application condition restricts the activation (firing) of
transitions to the set of bound (activated) features. At system
start, a predefined feature selection is used for initialization.
The syntax of a condition follows the grammar

113

pu=al|pAe| e, witha € F” [5]

Internet Translation

A GPS Localization true

verify(translation(GPS,
Internet),FAIL)

action(enter(PHRASE));
action(translate)

)
/

true true
action(back) noop

Dictionary Translation
A GPS Localization

action(enter(PHRASE));
action(translate)

true
verify(translation(Net,
Dictionary),FAIL)

Figure 4. Dynamic Feature Petri Net of our test model.

true true
Net Localization off; Dictionary Tranlation on;
GPS Localization on; Internet Translation off;
action(updateCtx('enable gps')) action(updateCtx("disable internet'))

true
noop

Figure 5. Extract of the context feature model.

where I’ is the active feature set. We redefined this for reasons
of convenience to

pu=al(eNe)|(pVe)|e|true

. In Fig. 4, for instance at the beginning, the decision de-
pends on the activation state of the GPS feature, which was
determined in advance.

Furthermore, update expressions control the (de-)activation of
afeature a (on/of £). Muschevici et al. defined their grammar
as:

“u :=noop |aon|aoff |u;u”’[5]
. We added two statements, namely action and verify, to
this notation and extended it to

v n=w|action(x) |verify(x,v) |u;u

where z is a term and v is a verdict € { PASS, FAIL}. This
allows test modelers to define black box interface interactions
with the help of arbitrary message patterns (e. g., send-receive,
receive-send), whereas an act ion (x) operation indicates to
send data to the SUT and verify (x, v) operations receive
and immediately verify data from it.

For our example case (cf. Fig. 4), we use update expres-
sions to navigate through the application and to validate that
a translation was executed correctly. The verified terms may
be interpreted as equivalence classes for the test data. By us-
ing DFPNs in combination with our extensions, we are able
to model feature activation dependent test cases and feature
controlling steps.

Defining Feature Dynamics

As presented in Fig. 4, we did not use on and of £ operations
directly on features in the test model. However, context is
the actual driver for changing feature states with respect to
the targeted application and system types. We connect both
operations with context rules, having the form

p(on|off) = (action (x)|verify (x,v))

and use those to generate and insert a parallel context control-
ling branch into our test models, as depicted in Fig. 5.

For example, the context rule
GPS Localization on = action('enable GPS")

would produce the upper left transition. An action performed
as a consequence of a feature activation or deactivation must
lead to this indirectly controllable operation. For instance, if
we perform this test manually, such an operation would contain
an instruction for the tester to place the device in a location
within GPS satellite range. A more automatic interpretation
would be to execute an update over an ontologically modeled
context (e. g., by using SPARQL queries).

Using the feature models defined initially, we can derive that
it is necessary to deactivate Net Localization, because
both features exclude each other mutually. The context branch
contains exactly one central place, so that in every simulation
step only one of its transitions may be activated. Through this
parallelism and the feature activation states, the test model and
the context branch are able to interact with each other.

Generation of Test Cases

To generate test cases, we have to perform a reachability
analysis for the Petri net, i.e., a complete simulation of the
combined DFPN consisting of the test model and the context
branch to derive all possible traces, each of which correspond-
ing to a specific test case. Additionally, we need to filter direct
feature control operations (on/off), keeping only actions
and verifications with runtime relevance. As the latter ones do
not influence the (D)FPN execution semantics, we claim that
all provable properties of the Petri net also hold true for our
extensions.

TOOL SUPPORT

The implementation of our approach is in ongoing develop-
ment. The Mobile Application Test Environment (MATE")
prototype is depicted in 6. The editor is based on Eclipse
and provides a toolset for DFPN-based test models (1), the
creation of context rules (2), and of feature models (3). With
the help of these models, specific test cases and classes of test
cases can be derived to achieve a large coverage of the feature
and test space. MATE is also capable of test suite generation
and execution. Additionally, an interface is provided to use
technology and platform specific test drivers.

RELATED WORK

Our research is related to and influenced by a broad range
of research fields. Ichiro Satoh [9] proposed an emulator-
based approach for network migration simulation in mobile

1http: //www.quality-mate.org/

http://www.quality-mate.org/

& Model Based Testing - Test/testmodel.gg - MATE
File Edit Novigete Scarch Project Window Help

oz = - 5
& @ L ® B |irs- H vt ey P

:5]

@ =]
ﬁ,
P

1 GUI Graph Editor &2

* | 5% Palette
[Select
Form/Widget
Non-Widget Node
Transition
Edge

Figure 6. MATE — Mobile Application Test Environment.

computing, which is one aspect of context, while we actually
focus on several ones. A more recent work [11] integrated
context changes into manually constructed test cases.

Fernandes et al. integrated feature and context modeling in
[2] and used specific notations (UbiFEX and Odyssey-FEX).
In [12], White and Schmidt proposed using feature models
for mobile application design, too. They base their claim on
the need for variability management. Similarly, Ridene and
Babier manage variability of mobile systems explicitly in test
models. For this purpose, they designed a domain specific
modeling language [6].

Considering behavioral models for dynamically variable sys-
tems, Muscevici et al. compared their DFPN approach to sev-
eral other Petri net extensions, e. g., self-modifying [8] or re-
configurable [4] Petri nets and stated that they can be mapped
to each other.

CONCLUSION AND FUTURE WORK

By applying our approach, it is feasible to link variability in
mobile and ubiquitous systems with behavioral test models to
generate test suites for different configurations and to change
context settings at runtime. To achieve this, we used feature
models to define variability of different systems under test and
test environment dimensions. With the help of context rules,
test engineers can map runtime-dynamic features to test steps
necessary to activate or deactivate (bind/unbind) features.

The test model itself is based on Dynamic Feature Petri Nets
(DFPN) enriched with a generated parallel branch derived
from the information given in the context rules. We claim that
this approach provides an expressive means to efficiently cre-
ate test models for dynamically variable systems, for instance
in the ubiquitous and context-aware domain. Compared with
related research, we achieve a large and measurable cover-
age of the configuration space including a variety of context
properties, high levels of reusability and automation through
modeling, and an extended formalization of test scenarios.

With regard to future work, we intend to evaluate MATE in
an industrial case study. In that process, we will measure
the effort of creating test models and also its benefit for test
projects in comparison to the conventional manual process.
Future research problems include coverage constraints that ad-
dress variability, the introduction of traceability mechanisms,

and the design of expressive graphical and textual modeling
languages to support test experts.

Acknowledgments

This research has received funding within the projects
#100084131 and #100098171 by the European Social
Fund (ESF) and the German Federal State of Saxony as well
as T-Systems Multimedia Solutions GmbH.

REFERENCES
1. Dalmau, M., Roose, P., and Laplace, S. Context aware
adaptable applications - a global approach. CoRR
abs/0909.2090 (2009).

2. Fernandes, P., Werner, C., and Murta, L. Feature

modeling for context-aware software product lines. In
Proceedings of the 20th International Conference on

Software Engineering & Knowledge Engineering (San
Francisco, CA, USA, 2008) (2008).

3. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., and
Peterson, A. S. Feature-oriented domain analysis
(FODA). Tech. rep., Software Engineering Institute,
Carnegie Mellon University, 1990.

4. Llorens, M., and Oliver, J. Structural and dynamic
changes in concurrent systems: reconfigurable Petri nets.
Computers, IEEE Transactions on 53,9 (2004),
1147-1158.

5. Muschevici, R., Clarke, D., and Proenca, J. Feature petri
nets. In Proceedings of the 14th International Software
Product Line Conference (SPLC 2010) (2010).

6. Ridene, Y., and Barbier, F. A model-driven approach for
automating mobile applications testing. In Proceedings of
the 5th European Conference on Software Architecture,
ACM Press (2011), 9.

7. Rosenmiiller, M., Siegmund, N., Thiim, T., and Saake, G.
Multi-dimensional variability modeling. In Proceedings
of the Workshop on Variability Modelling of
Software-intensive Systems (VaMoS) (2011).

8. Riidiger, V. Self-modifying nets: A natural extension of
Petri nets. In Automata, Languages and Programming,
vol. 62 of Lecture Notes in Computer Science, Springer
(1978), 464-476.

9. Satoh, I. A Testing Framework for Mobile Computing
Software. IEEE Transactions on Software Engineering
29,12 (2003), 1112-1121.

10. Utting, M. Practical model-based testing: a tools
approach. Morgan Kaufmann, 2007.

11. Wang, H., and Chan, W. K. Weaving context sensitivity
into test suite construction. In Proceedings of the 2009
IEEE/ACM International Conference on Automated
Software Engineering, ASE ’09, IEEE Computer Society
Press (2009), 610-614.

12. White, J., and Schmidt, D. C. Model-driven product-line
architectures for mobile devices. Journal On The Theory
Of Ordered Sets And Its Applications (2008), 9296-9301.

	Introduction
	Overview

	Modeling Approach
	Configuration Space Feature Models
	Feature Petri Nets and Test Modeling
	Defining Feature Dynamics
	Generation of Test Cases

	Tool Support
	Related Work
	Conclusion and Future Work
	Acknowledgments

	REFERENCES

