Metamodeling of Bayesian networks for decision-support
systems development

Isabel M. del Aguila and José del Sagrado

Abstract. The knowledge modeling and software modeling phases
in Knowledge-Based System development are not integrable, in
terms of representation, due to the different languages needed at the
steps of the development. This paper focuses on bring closer these
languages. By one hand, we define a meta model which contains
the key concepts used in the definition of a knowledge model as
a Bayesian network. On the other hand, we define an extension
of UML using profiles that can bridge the gap in representation
and facilitate the seamless incorporation of a knowledge model, as
Bayesian network, in the context of a knowledge-based software
development.

1 Introduction

Knowledge-based systems (KBSs) are characterized by their high
risk, loose definition, poor structure and subjective requirements.
These software systems were introduced in the early 1970s as
expert systems from the field of artificial intelligence (Al) research.
Originally their goal was to transfer expertise from domain experts
to a some kind of knowledge base that may be integrable in a
software system. However, nowadays knowledge engineering is
changing as it turns towards the modeling approach. A KBS can
be defined as “’software that has some knowledge or expertise about
specific, narrow domain, and is implemented such that Knowledge
base and the control architecture are separated. Knowledge-Based
Systems have capabilities that often include inferential processing
(as opposed to algorithmic processing), explaining rationale to users
an generating non-unique results” [19]. From this definition is easy
to see the many roles played by the knowledge model (knowledge
bases). Models provide an abstraction about reality and through this
knowledge models the human experts problem solving approaches
in order to be used in the development of software solutions.
Knowledge models usually are described in a specific purpose
language. There is not a standard, because it depends heavily on
knowledge representation mechanisms (i.e. rules, semantic networks,
frames). However, from a commercial point of view, the development
of a software system focuses on customers, that is, in order to
develop any software solution we need to gather requirements from
customers and translate it into software functionalities. All the
desired functionalities do not have to apply artificial intelligence
techniques.Thus, software systems usually integrate a KBS with
other needed software enterprise components.

These not knowledge based components are described using
modeling languages from the software engineering domain (UML
is the most used standard). This lead us to combine several modeling

! Department of Languages and Computation, University of Almerfa, Spain,
email: imaguila@ual.es

Client Client
(A) (B)

Software Knowledge Software Knowledge
engineer engineer engineer engineer
Clien<t(

©)
Software Knowledge
engineer engineer

Figure 1. Different views of a software development project

languages in the same project. Figure 1 shows the vision of a
software development project from the points of view of a customer,
a software engineer and a knowledge engineer. The knowledge
engineer (Figure 1A) uses knowledge engineering methods to define
the project’s task, relegating to the background the tasks defined by
software engineering. The software product that results from this
process is a KBS. From another perspective, the software engineer
(Figure 1B) systematically applies its skills, tools and software
engineering methods to develop a software product (system), where
knowledge is only another element. Finally, the customer’s view
of the project (Figure 1C) focuses on quality and the need of
cooperation between the two engineerings and their own modeling
languages [2, 3], so that the final software product properly covers
all her/his needs. In other words, software components based and
not based on knowledge must be integrated in shaping the software
system for the end user.

The use of different modeling languages limits the applicability
of one of the software development schemes more widespread in
our day, Model-Driven Architecture (MDA) [13]. This approach, to
information software systems development, separates specification
of the system functions from implementation of these functions in a
given platform, focusing on models as a higher level of abstraction
during systems construction [5]. This fact leads developers to
a significant decoupling between platform-independent models
(PIMs) and platform-specific models (PSMs). Separation between
specification and implementation is also a basic feature in KBS (see

[19]). Our problem is putting together different modeling language
notations into a single platform independent model, so that the
knowledge model and the UML model are expressed in a compatible
format. Therefore, we need a extended PIM that include algorithmic
and inference functionalities. A single language allows a great level
of abstraction and makes easy the implementation process. The same
PIM model can be translated to different platforms: the core goal of
MDA.

This work propose a extension of UML when Bayesian Networks
(BN) [21, 15, 16] are the representation selected by knowledge
engineers to model the knowledge. We focus on BN because among
all the knowledge modeling languages, Bayesian networks can be
successfully used to represent expert knowledge on an uncertain
domain. Today, BNs are expressed by applying its own algebraic
notation, but if we want a BNs to be part of a software solution,
we must be able to express themselves in the same language that
is commonly used to model general purpose software (i.e. UML).
In this paper we propose an approach which aims to improve the
development of decision support system, reinforcing the aspects of
BNs modeling. In order to achieve this goal, we introduce a BN
metamodel and a UML profile as means to build the PIM for a KBS
that represents knowledge based on a BN.

The rest of this paper is structured as follows. Section 2 introduces
the basic fundamentals of Bayesian networks. The general MDA
translation schema for BNs is explained in Section 3. Section 4
describe a basic metamodel for BNs (BayNet) that provides a specific
and intuitive notation for modeling BN-based KBS. The extension
of UML taking as basis the BN metamodel BayNet to create an
UML profile for BNs (UBN) is studied in Section 5. Then, Section 6
shows how to apply UBN profile to the development of a simple pest
control BN-based KBS. Finally, the conclusions and future works are
exposed in Section 7.

2 Bayesian Networks Basics

A Bayesian network is a probabilistic graphical model that represents
a set of random variables and their conditional dependencies via a
directed acyclic graph. Because a Bayesian network is a complete
model for the variables and their relationships, it can be used to
answer probabilistic queries about them.

Formally, a BN [21, 15, 16] is a pair (G, P) where

e G = (V,E) is a directed acyclic graph whose set of nodes V =
{X1,Xa,: -, Xn} represents the system variables and whose set
of arcs E represents direct dependence relationships among the
variables, and

e P is a set of conditional probability distributions containing
a conditional probability distribution P(X;|pa(X;)) for each
variable X; given its set of parents pa(X;) in the graph.

The joint probability distribution over V can be recovered from this
set P of conditional probability distributions applying the chain rule

as:
n

P(X1,--+, Xn) = [P(Xi | pa(X.)). M)
1=1

The process of obtaining the graph and the probabilities of a BN can
be done either manually, from experts’ knowledge on the domain,
or automatically, from databases. In the first case, the elicitation of
probabilities constitutes a bottleneck in the development of BNs [9].
A BN-based KBS needs to translate this algebraic notation to
environments, such as Elvira [10], that consists of software packages

for the edition, use and evaluation of BN. These environments
provide class libraries that can be integrated as any other component
into a software application (i.e. BN-based KBS). This application
will be released to the end user and will contain an implementation
of the network itself and network capabilities, such that inference
from observed values of some variables.

In particular, the Elvira system [10] is tool to construct
probabilistic decision support systems. Elvira works with Bayesian
networks and influence diagrams and can operate with discrete,
continuous and temporal variables. It has an easy to use Graphical
User Interface (GUI) (see Figure 2). In addition you can edit, easily,
the ASCII format of the Elvira systems to introduce your models. It
has methods for inference, learning, abduction, fusion of knowledge
and making decisions, and some tools to check the efficiency of the
algorithms.

e e

Archive Inferencia Ver Tarcas Opciones Ventana Ayuda
D@ E| &0 | &| P [[inferenca »
U700+ Funden |FA 3 @ W |14 < EioHEBicasesapne > M o M= E | @ =
i ElE

L2 C\Users\i plkese 2012\pro_meta\bayelvira2\asia.elv
Visit 1o Asia

Tuberculosis Lung Cancer Bronchitis
ves T To ¥ = T s — T
] e 055 |EI aas] — 05s

Dyspnea
e — 3
0.0

Figure 2. Elvira’s main interface

The program Elvira has its own format for storing models,
a parser, exact and approximate (stochastic and deterministic)
algorithms for inference on both discrete and continuous variables,
a graphical interface for building and evaluating Bayesian networks
and influence diagrams, with specific options for canonical models
(OR, AND, MAX, etc.), explanation of reasoning, decision making
algorithms, learning (model building) from databases, fusion of
networks, etc. Elvira is written and compiled in Java, which allows
the program to run on different platforms and operating systems:
Linux, MS-DOS/Windows, Solaris, etc.

2.1 Reasoning with Bayesian Networks

Probabilistic reasoning in BNs consists in computing the posterior
probability distributions of some variables of interest v; € Vi
given some observed variables Vg (this sets of findings is called
evidence), P(vr|Vg). This process is performed via a flow of
information through the network in any direction. If we give a causal
interpretation to the links in the network (i.e. for an arc X; — X
we say that X; is a cause of X; and X is the effect of X;), we can
perform several types of reasoning [17]:

e Diagnostic reasoning, the evidence flows in the opposite direction
to the arcs, from effects to cause (i.e. some effects receive evidence
and some of their causes are the variables of interest).

e Predictive reasoning, the evidence flows in the direction of the
arcs, from cause to effect (i.e. some causes receive evidence and
their effects are the variable of interests).

e [ntercausal reasoning, the evidence flows in all directions. This
type of reasoning involves reasoning about mutual causes of a
common effect (i.e. the effect and some of the causes receive
evidence and some of the causes are the variables of interests).

Sometimes reasoning does not match into these three types, because
any variable can be an interest variable and may be an evidence
variable and information flows in either direction (i.e. the effects
of a causes and the causes of the second receive evidence and the
central cause is the variable of interest). This situation occurs when
diagnostic and predictive reasoning are used simultaneously.

3 Bayesian Network as PIM

In terms of MDA vocabulary, a BN is a PIM, Elvira is a platform
model into which a BN has to be translated in order to define the
final PSM. Elvira software also offers Java support for the BN, that
is to say, it provides the last level of the MDA approach (i.e. the
code).

PIM PSM
BN Elvira
model model classes
UML @ Design class Java
model model code
m2m m2c

transformation
transformation

Figure 3. MDA for BN-based KBS

Figure 3 shows the translation model proposed. Both, the
transactional (or interaction) PSM and the knowledge (or BN) PSM
are expresed in terms of object-oriented design languages coming
from Software Engineering (i.e. UML) and their translation into code
is solved by means of a m2c translation. Many CASE tools, like
Visual Paradigm, Microsoft Visual Studio or Enterprise Architect,
already incorporate, at least to some degree, this kind of translation.
But to use the power of MDA, is also necessary to express the
PIM of these two parts of the software solution. There are modeling
languages in the Software Engineering area that allow to express the
PIM, but what about the BN? What is its language model? Is it UML
compatible?

The MDA approach has been applied in other forms of knowledge
representation as rules [7, 1]. From the metamodel of the rule-based
languages have been defined UML profiles and automated tools, that
translate the rules of PIM models into rules-based web-systems by
combining Java Server Faces with Jess rule engine [6]. But, BNs
lack of a modeling language compatible with UML that allows the
application of MDA. Model transformation consists on the process
of converting one model to another model of the same system in a
different abstraction level: from PIM to PSM and from PSM to code.
MDA tools allow these transformations to be automated and executed
automatically.

Our goal is to create an UML-compatible modeling language
for BNs. The Object Management Group (OMG) has defined two
extension mechanisms for UML: metamodel model and profile
extensions [14]. First extension mechanism involves the process

of defining a new metamodel on which to build an entirely
new language defined through the Meta-Object Facility (MOF)
specification. But if we do not want to change UML semantics and
only particularize some concepts, we can extend UML using a series
of mechanism offered by the language itself: the profiles. [12].

We know that all the knowledge representation mechanisms are in
themselves languages. So we can choose to build a totally new MOF
language, but it may not respect the standard UML metamodel. This
fact will prevent existing UML tools to manage the new language
concepts in a natural way. To offer a proposal that also gives support
to UML, leads to a greater number of users and reduce the learning
curve in the new language. For all these reasons and agreeing with
the proposals of several authors [18, 22, 4], we also propose the use
of UML profiles. In any case, according to several studies [11, 12],
the starting point for developing a UML profile is the metamodel for
the platform or of the domain of the application that is going to be
modeled. In our case, the starting point is a BN metamodel (called
BayNet) that will allow us to specify how BN concepts are related to
and represented in standard UML. Visual Paradigm is the CASE tool
used to define this metamodel and its associated profile.

BayNet Structure
" i \\\‘
<<yuses>> 3 q:<reﬁne>> Fulur}a new packages
needs .-~ | buils T
PR ! ~
]

BayNet Reasoning BayNet Learning

Figure 4. BayNet metamodel’s basic structure

4 Metamodel for Bayesian Network

A metamodel includes domain entities, retrictions between them
and limitations on the use of entities and relationships. BNs are
complex in nature, beside its structure we have to face with complex
concepts, as inference and learning, that have to be approached by
successive approximations. This is the reason why we have split
the metamodel in several packages as it is shown in Figure 4. The
BayNet metamodel is the basis for providing a specific and intuitive
notation for modeling BN-based KBS.

In a first approximation to BayNet, we only focus on BayNet
structure (as we need to define the BN structure to define a model)
and BayNet reasoning (as we need to carry out inference in order to
reasoning with a BN) packages (see Figure 5). The BayNet structure
package represents the basic components of a BN (BNet class): its
qualitative (i.e. directed acyclic graph) and quantitative (i.e. set of
probability distributions) parts. The qualitative part is represented by
the class Variable and its self-association. An Assignment consists in
assigning a State to a Variable modifying, accordingly, its marginal
probability. The quantitative part is represented by means of the
classes Configuration and Relation. For each given child-father
association (Configuration) in the directed acyclic graph is assigned
a conditional probability value (Relation). That is, we assign a

<<metamodel>> o
BayNet Structure
Qualitative BNet
0.1 child Configuration
Variable athe) Quantitative
0
1 "
ASSignment 777777777 @
I 2.*
State

<<use>>

 —
3 <<metamodel>> s
i BayNet Reasoning
[Assignment_| <[Inference |
— =
Evidence \ \ Propagation |

[[]

} I_Process! } I_Entity } } |_Task }

Figure 5. BayNet metamodel

probability value to each combination of values of a variable X; and
its parents pa(X;) in the graph, to define the conditional probability
distribution P(X;|pa(Xi)).

In BayNet reasoning, an inference can be view as a process
(I_Process), a class able to carry out inferences (I_entity) or an
operation inside a class (I_task). These three views allows to model
different levels of abstraction in the decision tasks associated to a
BN-based KBS. An Inference is an aggregation of the observed
variables (Evidence) together with the execution of the operations
needed to make evidence flow on the network and to compute
the posterior probability distributions of the variables of interest
(Propagation).

5 UBN profile

UML offers the possibility to extend and adapt its metamodel to
a specific area of application through the creation of profiles. The
BayNet metamodel is the basis that will provide a specific and
intuitive notation for modeling BN-based KBS and including it in an
UML project. UML profiles are UML packages with the stereotype
<< profile >>. A profile can extend a metamodel or another
profile while preserving the syntax and semantic of existing UML
elements. It adds elements which extend existing classes. UML
profiles consist of Stereotypes, Constraints and Tagged Values.

e A stereotype is a model element defined by its name and by the
base class(es) to which it is assigned. Base classes are usually
metaclasses from the UML metamodel, for instance the metaclass
<< Class >>, but can also be stereotypes from another profile.

e Constraints are applied to stereotypes in order to indicate
restrictions. They specify pre- or post conditions, invariants,
etc., and must comply with the restrictions of the base
class. Constraints can be expressed in any language, such as

programming languages, natural language or Object Constraint
Language (OCL).

o Tagged values are additional meta-attributes assigned to a
stereotype, specified as name-value pairs. They have a name and
a type and can be used to attach arbitrary information to model
elements.

<<Stereotype>>
Bnet (Package)
author : Text

<<Stereotype>>
Variable (Class)

<<Stereotype>>
|_Process (Use Case)
reasoning_type : Enum

<<Stereotype>> <<Stereotype>>
State (Class) Ei |_Entity (Class) @
<<Stereotype>> <<Stereotype->>
father (Association) LTk |_Task (Operation)

@

Figure 6. UBN stereotypes and icons

We use UML profile to define a UML Bayesian network profile
(UBN). The aim of UBN is to define a language for designing,
visualizing, specifying, analyzing, constructing and documenting the
artifacts of knowledge-based systems, that represents it knowledge
as a BN. The next step is to map the BayNet metamodel, described
in the above section, to UML metaclases and make the necessary
extensions. The mapping is a non-trivial task, because we need to
know in deep how to apply the UML language. Most of concepts
will map to stereotypes on a selected UML metaclass. Also we can
define icons for most of the stereotypes, that allows the modeler to
use intuitive symbols instead of UML shapes. Figure 6 shows the
actual mapping with UML metaclasses.

Once the UBN is defined, it can be used in the software
development of a particular application by defining a stereotyped
dependency (<< applyProfile >>) between the UBN package
an the package that is being under development for the application,
as Figure 7 shows. A partial view of the class model of Elvira
is included as it is needed in order to define the m2m translation
between PIM and PSM (see Figure 3).

6 Case Study: A pest control BN-based KBS

This section shows how to apply UBN in an specific KBS
development project. The project follows a development
methodology described in [3], the process model proposed
allows the seamless inclusion of Bayesian networks into the final
software solution for an organizational environment. Let us begin
with a brief description of the project to assist decision making in
an agricultural domain. Our problem is related to pest control in
a given crop under the regulation of Integrated Production. The

elvira

UBN

<<Stereotype>>

onet(Paciage) | OO
author : Tect 00

1
€ .
-vgriables

Relation
m FiniteStates
<csteretype>> |
» || Task(Operation) |

N exactResull
J @ Propagation ; RelationList

<<Stereotyper> <<Stereotyper>

Variable (Class) @ I_Pm:as(u’ucan)“@

reas oning_type : Enum ‘

<<Swiectper> |
I_Entity (Class) |

<<Stereayper> |
State (Class)

<<Steeoyper> |
father (Association) | -

<<appliedProﬁlé>> E<<use>>

1
Integrated_Production_KBS

Figure 7. Bayesian network KBS modeling packages: pest control
application

Integrated Production Quality standard is adopted by a group of
growers in order to achieve a quality production certification. The
adoption of this standard forces growers to be disciplined in growing
which involves intervention by technicians, marketing controls, and
periodical inspection by the standard certification agencies.

The three main steps in the development of software systems that
embed functionalities based and not based on knowledge, concerning
the decision support process and the information management
processes, are: Requirement modeling (RM), Expert modeling (EM)
and Specification of the software solution (SSS)[3]. The first two are
in charge of the definition on the PIM model according MDA (see
Figure 3), and here is where UBN gets its value, because we can use
only UML in order to execute RM and EM.

Software project development starts with business and RM
modeling. The first activity consists of collecting, structuring
and organizing all the relevant data for a concise and accurate
definition of the problem to be solved by the software system.
Integrated production involves handling and storing a huge amount
of information about crops, and making decisions about all the tasks
that have to be performed to fulfill the quality regulations.

We model the processes that are represented as use cases.
The typical processes in an integrated production problem are
shown in Figure 8. All tasks related to information required for
quality management standards, without needing any knowledge
based approach, are: Market Production, Act in Crop, Certify Crop
Quality, and Finish Growing. All tasks related to pest control are
performed by growers and agronomists in the Monitor crop process
and represents the inference tasks that we need to model by means of
a Bayesian network. The decision process when monitoring a crop
is made at two levels. First, a decision is made on whether crop
control action is necessary by sampling pests and estimating risk of
attack. Then if it is decided that crop control action is required, the
product (chemical or biological) to be applied has to be selected. The
treatment advised has to respect natural enemies and other biological
products previously used.

The next steep is to finish the PIM, using UML and UBN in order
to define the system without considering platform level details. That
is, from use cases we need to define the conceptual models. In this
section, as specific case, we focus on the Monitor crop use case that

A

grower

é

<<| Process>>
monitor crop

% market
production
agronomist distributor

certify crop
quality
% finish govemement technicians
quality technicians growing

Figure 8. Use cases

can be described as the following informal scenario: Each week,
the agricultural expert samples the crops condition and makes an
estimate of the risk of pest attack. Crop sampling consists of direct
observation and count of harmful agents in randomly selected plants.
Where imbalance is detected, the expert advises treatment meeting
the integrated production standard.

A crop is a complex system consisting of a plot of land, plants,
a set of diseases and pests, and natural enemies that may be able to
control them. The problem is to decide what treatment to apply, in
order to maintain a balanced system. Figure 9, shows the UML class
diagram obtained. Some of the classes in the model are variables of
the Bayesian network (EM).

Within the scope of integrated production systems, when an
agricultural expert visits a greenhouse, he writes down the date of
the visit and samples the crop, including information about fauna,
weather (wind, rain, etc.) and environment (weeds). The general
schema for a crop-harmful agent pair consists of observing the
crops condition and fauna. Crop condition is measured in terms of
its phenology. The presence of fauna is important to estimate the
intensity of the attack. The crop condition, along with the intensity of
pest attack, determines the need for applying a plant health treatment
or not. Periodical inspections of this kind are performed weekly.
Figure 10 shows the BN structure elicited from the knowledge of
the domain expert. Once the BN structure has been established, the
probabilities are estimated completing the construction of the BN
model. This expert modelling process has been successfully applied
to determine the need of applying a treatment for olives’ fly [8].

In order to select the set of relevant variables, we start from the
initial conceptual model of the project that has to be refined. A first
version of the PIM is shown in figure 9. Some of the modeling
elements are stereotyped, using UBN, as nodes in a BN, Crop
condition is measured in terms of its phenology. The presence of
fauna is important to estimate the intensity of the attack. The crop
condition, along with the intensity of pest attack, determines the need
for applying a plant health treatment or not. Periodical inspections
of this kind are performed weekly. Relationship that complete the
qualitative part of the BN are shown as stereotyped associations of

]
4 <<Bn:t>>“e
Person :i;:?dogy I =L
name leaf oot |
phone bud . ;
<<Variable?> <<Variable>>
\\\Ninged fofm Parasite_level
Plot
location b T
Techinician area make
features Visit
asisst * | date <<Variable>>
Distributor | | Grower Crop condition«rm > <<Variable>>
adress adress A ‘ Fauna condition
comergialize T, . *—u—ti______ <<fal‘r'1er>>
Plant _J--"<<Variable>>
belongsto [variety [" Days until harvest
Cooperative initial Date
code <<Variable>>
adress Treat decision

Figure 9. Partial view of the PIM

type << father >>. Once the BN structure has been established,
the probabilities are estimated (quantitative elicitation activity) based
on a local government database of cases, completing the construction
of the BN model. This expert modeling process has been successfully
applied to determine the need of applying a treatment for the olives’
fly (dacus olae) [20].

Finally, the specification of the software solution (SSS) represent a
m2m translation that produces the PSM. Based on the PSM obtained,
a m2c translation can be used to obtain a BN-based KBS in order to
assists grower and technicians in pest control decision support tasks.

Parasite
level
Crop Fauna

condition condition
Treat
decision

Figure 10. A BN structure for a crop-harmful agent pair

Days until
harvest

7 Conclusions

In this work we have presented a metamodel (BayNet) and an
UML profile (UBN) for BN-based KBS modeling. This metamodel
covers several important aspects for achieving the seamless inclusion
of BN models into a final software solution for an organizational
environment. The applicability of our solution has been tested in a
simplified version of a real world problem: integrated production in
agriculture.

Our proposal allows to manage a domain-specific language for
BN without changing UML semantics. This can be view as a
general framework to apply Model Driven Development, extending
it to the BN-based KBS case. Developing a profile is a difficult
task that implies to perform many steps. The next steps of this
research will consist in defining an specification of constraints and
operations using OCL, validate the profile using a CASE tool as
Visual Paradigm and test it in a real-life development project that
includes knowledge-base features.

ACKNOWLEDGEMENTS

This research has been funded by the Control crop Project (PIO-TEP-
6174) from the Counseling of Economy, Innovation and Science,
Government of Andalusia (Spain) and the Spanish Ministry of
Education, Culture and Sport under project TIN2010-20900-C04-02.

REFERENCES

[1] Mohd Abdullah, Ian Benest, Richard Paige, and Chris Kimble, ‘Using
unified modeling language for conceptual modelling of knowledge-
based systems’, in Conceptual Modeling - ER 2007, eds., Christine
Parent, Klaus-Dieter Schewe, Veda Storey, and Bernhard Thalheim,
volume 4801 of Lecture Notes in Computer Science, 438—453, Springer
Berlin-Heidelberg, (2007).

(2]

(3]

(4]

(51
(6]

(71

(8]

(91

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

Isabel Maria del Aguila, Joaquin Cafadas, José Palma, and Samuel
Tinez, ‘Towards a methodology for hybrid systems software
development’, in SEKE, eds., Kang Zhang, George Spanoudakis, and
Giuseppe Visaggio, pp. 188-193, (2006).

Isabel Maria del Aguila, José del Sagrado, Samuel Tinez, and
Francisco Javier Orellana, ‘Seamless software development for systems
based on bayesian networks - an agricultural pest control system
example’, in ICSOFT (2), eds., José A. Moinhos Cordeiro, Maria
Virvou, and Boris Shishkov, pp. 456-461. SciTePress, (2010).

Saartje Brockmans, Robert Colomb, Peter Haase, Elisa Kendall, Evan
Wallace, Chris Welty, and Guo Xie, ‘A model driven approach for
building owl dl and owl full ontologies’, in The Semantic Web - ISWC
2006, eds., Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist,
Daniel Schwabe, Peter Mika, Mike Uschold, and Lora Aroyo, volume
4273 of Lecture Notes in Computer Science, 187-200, Springer Berlin
/ Heidelberg, (2006).

Alan W. Brown, ‘Model driven architecture: Principles and practice’,
Software and System Modeling, 3(4), 314-327, (2004).

Joaquin Caifadas, José Palma, and Samuel Tinez, ‘A tool for mdd of
rule-based web applications based on owl and swrl’, in KESE, eds.,
Grzegorz J. Nalepa and Joachim Baumeister, volume 636 of CEUR
Workshop Proceedings. CEUR-WS.org, (2010).

Joaquin Canadas, José Palma, and Samuel Tunez, ‘Defining the
semantics of rule-based web applications through model-driven
development’, Applied Mathematics and Computer Science, 21(1), 41—
55, (2011).

José del Sagrado and Isabel del Aguila, ‘Olive fly infestation prediction
using machine learning techniques’, in Current Topics in Artificial
Intelligence, eds., Daniel Borrajo, Luis Castillo, and Juan Corchado,
volume 4788 of Lecture Notes in Computer Science,229-238, Springer
Berlin / Heidelberg, (2007).

Marek J. Druzdzel and Roger R. Flynn, ‘Decision support systems’,
in Encyclopedia of Library and Information Science, ed., Allen Kent,
volume 67, 120-133, Marcel Dekker, Inc., New York, NY, (2000).

T. Elvira Consortium, ‘Elvira: An environment for creating and using
probabilistic graphical models’, in Proceedings of the First European
Workshop on Probabilistic Graphical Models (PGM-02, eds., J. Gémez
and A. Salmerén, pp. 1-11, (2002).

Lidia Fuentes and Antonio Vallecillo, ‘An Introduction to UML
Profiles’, The European Journal for the Informatics Professional, 5(2),
(April 2004).

Giovanni Giachetti, Francisco Valverde, and Oscar Pastor, ‘Improving
automatic uml2 profile generation for mda industrial development’,
in ER Workshops, eds., 1I-Yeol Song, Mario Piattini, Yi-Ping Phoebe
Chen, Sven Hartmann, Fabio Grandi, Juan Trujillo, Andreas L. Opdahl,
Fernando Ferri, Patrizia Grifoni, Maria Chiara Caschera, Colette
Rolland, Carson Woo, Camille Salinesi, Esteban Zimanyi, Christophe
Claramunt, Flavius Frasincar, Geert-Jan Houben, and Philippe Thiran,
volume 5232 of Lecture Notes in Computer Science, pp. 113-122.
Springer, (2008).

O. M. G. Group, MDA Guide Version 1.0.1, document omg/03-06-01
edn., june 2003. http://www.omg.org/cgi-bin/doc?omg/03-06-01.

O. M. G. Group, UML Specification, Version 2.0, 2005.
http://www.omg.org/spec/UML/.

Finn V. Jensen and Thomas D. Nielsen, Bayesian Networks and
Decision Graphs, Springer Publishing Company, Incorporated, 2nd
edn., 2007.

Uffe B Kjrulff and Anders L Madsen, Bayesian Networks and Influence
Diagrams, Springer New York, 2008.

K. Korb and A. Nicholson, Bayesian Artificial Intelligence, Chapman
and Hall, 2nd edn., 2010.

Francois Lagarde, Hudscar Espinoza, Francois Terrier, and Sébastien
Gérard, ‘Improving uml profile design practices by leveraging
conceptual domain models’, in Proceedings of the twenty-second
IEEE/ACM international conference on Automated software
engineering, ASE °07, pp. 445-448, New York, NY, USA, (2007).
ACM.

Mary Lou Maher and R. H. Allen, Expert System Components,
American Society of Civil Engineering, 1987.

Francisco Javier Orellana, José del Sagrado, and Isabel Maria del
Aguila, “Saifa: A web-based system for integrated production of olive
cultivation’, Comput. Electron. Agric., 78(2), 231-237, (September
2011).

Judea Pearl, Probabilistic reasoning in intelligent systems: networks of

[22]

plausible inference, Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

Bran Selic, ‘A Systematic Approach to Domain-Specific Language
Design Using UML’, , IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing, 2-9, (May 2007).

