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Abstract. Research on conjoint analysis/preference aggre-
gation/social choice aggregation is performed by more than
forty years by various communities. However, many proposed
mathematical models understand preferences as irreflexive,
transitive and statical relations while there is human psy-
chology research work questioning these properties as being
not enough motivated. This works propose to position the
conjoint analysis inside a logical framework allowing for non-
transitive and globally inconsistent preferences. Using a pref-
erence logics one can define a logic-based utility allowing to
obtain an aggregate semantics of the collective choice.

1 Introduction and Motivation

Conjoint Analysis (CA) in marketing research was introduced
forty years ago [26] being influenced by economics ([36], [35])
and mathematical psychology ([39], [40], [7]). While the begin-
ning was devoted mostly to understand how individuals evalu-
ate products/services and form preferences (see, [26], [34], [43]
and possibly others), in the last thirty years the CA litera-
ture focused more on predicting behavioral outcomes by using
statistical methods and techniques ([8]) and this resulted in
a widespread variation in CA practice. Recently, applications
in innovation market were developed ([9]).

The traditional conjoint task is related to the rational econ-
omy model where agents tend to action towards maximizing
their utilities.

While traditional models obtain significant results when
processing complete, transitive and acyclic (consistent) prefer-
ences, many communities mention that such models are quite
far from the real life. When asking people about thing they
like, then they may not answer (incompleteness), or they may
change their initial preferences due to reception of new infor-
mation (preference change). In addition, while it seems that
the preference system of one respondent must be non contra-
dictory, when processing preferences from many respondents
this assumption does not remain valid. Some of our previous
work argued towards a logic-based model for conjoint analy-
sis.
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The research reported by [46] proposed a mathematical op-
timization approach by translating ratings into algebraic con-
straints, but such solution requires acyclicity and transitivity
and not changing preferences. New debates on solution pro-
posed by [46] were reported by [31] in the context of non-
additive utility aggregations such as Choquet integral. How-
ever, none of these approaches consider non-transitive and/or
cyclic preferences, [48].

[23] introduced a logic-based utility but the approach was
limited by a number of assumptions such as consistency
(acyclic preferences) ignorance (of neutral rated questions),
transitivity and the restriction of using only 2 stimuli choice
pair comparisons. Moreover, while it argued on the logical
nature of the users ratings and rankings, it does not consider
preference change and interview adaptation. Many of these
restrictions were introduced by the method of computing the
logic-based utility, basically adaptation of the weighted ma-
jority learning algorithm allowing only binary preference as
input.

As discussed by [24], computing beliefs from ratings and
rankings is much close to the mental expectations of respon-
dents and identified three kinds of beliefs that can be obtained
from question answers. The proposed framework considers
consistent respondent belief sets but on belief sets aggrega-
tion there is no need to require consistency: moreover this is
inline with the Arrow’s impossibility theorem (see [5] and [6]).

Although traditional non-adaptive conjoint solutions re-
quire static, non-changing, preferences, when data collection
is interactive one may experience preference change. More-
over, the actual online solutions on data collection show many
cases when the data is collected over days and not by a stan-
dard survey in a contiguous manner. As such, respondents
may remake-up their mind therefore change is frequently ex-
pected. Also, [24] pointed that may be useful to use weighted
beliefs due to the imprecise nature of the user ratings. In
addition, among other distinctions it was emphasized that
while individual beliefs are consistent (no assumption of user
irrationality), collective beliefs may nmot be consistent. In ad-
dition, while the AGM model [4] considered consolidation as
a maintenance operation of removing some dispensable be-
liefs resulting in a consistent knowledge base, we would like
to avoid such approach due to missing of motivated criteria
with respect of belief elimination.

The goal of this paper is to argue on the opportunity to
use a preference logics framework allowing non-transitivity
and inconsistency in preference data.



2 Related Work

The classical model of computing an utility function is the ad-
ditive linear model (see [8] for details). Basically, the overall
utility is an additive linear combination on value scores ad-
justed with attribute scores and compensated with a constant
depending on interview i.e.,
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where

U(o;) — is the total score on product profile oy,

Bri = Uk(ar:) — is the user preference on value ax; of attribute

Ak, and

Ty — 1, Zf oj.Ak:akl
gl 0, otherwise

u is a calibration constant (mean preference value across all

objects). Usually Ug() is called part-utility function or part-

worth function and its specification depends of the attribute

type (categorical and quantitative).

In practice a conjoint study may contain both types of
attributes. Significant examples of categorical attributes are
brand names or verbal descriptions containing levels such as
”high”, ”medium”, ”low” while quantitative attributes are the
ones which are measurable on either an interval scale or a ra-
tio scale (e.g., speed of a processor, size of a screen). While
there were proposed many models to encode the part-worth
functions, two models are representative:

)

1. the vector model, Ui (ar;) = wibr, where wy, is the weight
of attribute Ay, and 0y; is the weight of the value ax; €
dom(Ayx)) and

2. the ideal point model, Uk (ar) = wi(Or — 0;60)27 where 019
is the weight of the ideal value axo of attribute Ag.

In overall the standard conjoint problem reduces to find all
Bri and p by using training data of user-rated utilities for a
training object dataset.

2.1 Machine Learning Approaches

During the last thirty years, Machine Learning research devel-
oped very similar problems, offering either statistically-based
or logic-based solutions. As in traditional conjoint analysis,
the difficulty relates to the fact that the set of all possible
behaviors given all possible inputs is too large to be covered
by the set of observed examples (training data). Hence the
learner must generalize from the training data. Learning from
examples towards forecasting the future behavior is one large
field of research.

2.1.1 Support Vector Machines

Support Vector Machines, [10], [47] was proposed as a clas-
sification methodology by machine learning community. Ba-
sically, the standard model takes a set of input data and,
classify each given input as being part of one of two possi-
ble categories (such as ”like” and "unlike”). There is research
proposing to use this model on conjoint analysis too (e.g.,

[16]).

The main assumptions of this method are: (a) there is pref-
erence data for a set of objects O and (b) the utility function
is linear. Each preference data (e.g., 01 = o02) is translated
into an inequality between corresponding utilities of the cor-
responding objects (u(01) < u(02)). The method then involves
minimizing the sum of errors for the inequalities and the sum
of of the squares of the weights in the utility function.

As usual, each attribute value a;; € dom(A;), i = 1,...n has

weight 6;;. We denote E;k) the weights vector corresponding

to the k-th object o§k>. The goal is to estimate the individ-
ual partworths w = (w1, ...,wn) considering a linear utility
function (e.g., the vector model) U(o) = w - § for each 0 cor-
responding to an object o € O.

We encode preference data by respondent interviews: at the
k-th question we show a subset O, = {ogk)7 ~--70$ka)} co
asking the respondent to choose one object as ”the most
liked”. Without loosing the generality (via reordering) we can
assume that the respondent choose first object as the pre-
ferred one. This choice is encoded as the set of constraints,
m(0§’“> - Hgk)) <0,7=2,...,nk, and reduce the conjoint prob-
lem to a classification problem. [16] proposes to train a La-soft
margin classifier only with positive examples obtained from
respondent ratings, using a with a hyperplane through the ori-
gin and modeling the answering noise with dummy variables
egk). It trains one algorithm per respondent to get individual
vector weights wP for each respondent p and then to com-
pute individual partworths by calibration with the aggregated
partworths i.e. w = ﬁ > ep WP and then o = w
The training conditions are:

Minimize : w* + C D opneP ity (a?Z(k))2
suchthat : w(0" — ") <1 — &

where C' is a constant depending on the respondents set.

2.1.2 Learning from Preferences

Recall the learning problem similar with most of conjoint
analysis tasks:

Given a (very large) set of objects (each object repre-
sented as a set of attribute-value pairs), and a set of
evaluation instances (each object is evaluated by experts
obtaining a score, typically a real number) find a learning
algorithm being able to evaluate any subset of the initial
set of objects being compliant with expert evaluations.

As learning algorithms use evaluated training data it looks
straightforward to input the learner with a database of ex-
amples in which the human expert has entered scores for
each possible choice. However, similar with traditional con-
joint analysis, there are two critical issues of this approach:
(a) many domains have very large set of possible objects there-
fore is would be a tremendously time consuming for the ex-
pert to create the complete evaluation rank. Moreover, the
training dataset must also contain enough ”bad” alternatives
otherwise the expert will be tempted to produce only high
scores for everything and as such, to obtain a rank which is
not useful; (b) in many cases experts do not think in terms
of absolute scoring functions therefore will be very difficult,



sometimes impossible, to create training data containing ab-
solute scores. These reasons yields many researchers to con-
sider pair comparisons rather than scoring individual alter-
natives(there is a large literature concerning the way users
create preferences. The reader may consider [37], [12], [40],
[17] and probably many other). Preference learning was pio-
neered by [53] and continued by [55], [33], [20] and possibly
others. Basically, given a set of (partial) profiles and a pref-
erence function of these profiles we want be able to train a
computer program to classify new (so far unseen) profiles by
assigning a correct rank to each profile. The ratio of correctly
classified data points is called the accuracy of the system.

As such conjoint analysis is similar with a learning task:
learning wtility functions from respondent preferences. The
conjoint problem can be seen as learning to rank a set of
objects by combining a given collection of initial rankings
or preference functions. In machine learning community this
problem of combining preferences arises in several applica-
tions, such as that of combining the results of different search
engines, or the collaborative filtering problem. During the last
20 years a number of algorithm were developed: a pioneering
algorithm is described in [14] and [15] as an extension of the
early work reported by [38]. Advances in learning from pref-
erences were reported by [19], [20], and [30]. As described by
[20], the task of learning object preferences is:

Let O = {(a1,...,an)|a; € dom(A;)} be the set of all pos-
sible product representations and let S = {o1,...,0n} C
O be a set of training objects (aka full profiles, product
representations). Let P be a set of respondents and
{Psp : S xS — {0,1}|p € P} the set of pairwise
preferences on training data. Learn a utility function
U : O — R that ranks any subset of O.

Notable, while conjoint analysis typically assume a linear util-
ity function (see details by [8]), learning from preferences does
not require utility linearity but many strategies on learning
from preferences still assume linear combinations as potential
ranking functions. A significant solution introduced by [14]
and improved in [15] considers learning a global preference as
a weighted linear combination of all respondent preferences,
and then derive a final ordering which is maximal consistent
with this preference. Other research ([53], [30]) uses a differ-
ent strategy, specifically direct learning of the utility func-
tion directly from the respondent preferences. [53] introduces
a two-state symmetric neural network architecture that can
be trained with representations of states and a training sig-
nal (corresponding to the user preferences) indicated the pre-
ferred state. Subsequent works on this solution were reported
by [55], [29], [33], and [27].

2.1.83 Logic-based Approaches

A logic-based approach was proposed by [46]by replacing the
utility function with a logical formula best fulfilling a set of al-
gebraic constraints derived from preference processing. They
use Commuting Quantum Query Language (CQQL, [45]) a
logical language based on combinations between Boolean con-
ditions and proximity/similarity conditions over specialized
variants of logical operators producing weighted formulas.
The problem is formulated as below:

Let O = {(a1,...,an)|ai € dom(A;)} be the set of all
possible object representations and S C O a set of train-
ing objects. < denotes the preference relation on train-
ing data S. Find a weighted full DNF CQQL formula
U =V, wym; (m; is the j-th minterm and w; € [0, 1]
its weight) such that U best fulfills the user preferences
i.e. when CQQL evaluation is performed over objects in
O then the obtained rank is consistent with user initial
preferences.

If 0;, =< 0;; then the following constraint is considered
evalcgor (U, 0i,) — evalcoqr(U, 0i,) > 0

Because CQQL evaluation has simple arithmetic rules for
formula evaluation, from the computational point of view
the problem reduces to a linear optimization: Mazimize :
Zoinoil (evalcoqr(U,0:,) — evalcoqr(U,0:,)) under the
above described constraints. The readers may consider [46] for
details on problem solving strategies (such as simplex com-
putations, feasible and unfeasible states, solutions to avoid
overfitting and more.)

Automated extraction of rules from evidences was largely
discussed by connectionist learning community (early work
by [41], pioneered by [21] and subsequently discussed by [51],
[25], [52], [11], [49], and possibly others) under the umbrella
of a much general task:

How can we extract models from the training data in an
automated manner and use these models as the basis of
an autonomous rational agent in the given domain.

One of the most important features of such an approach is
that it combines the computational advantages of connec-
tionist models with the qualitative knowledge representation
proposed by the Al community.

It is obvious that a solution of this problem must consider
two stages: (1) Learning the model and (2)Performing infer-
ence using this model. This work follows only the first stage
of the problem — if there is a learned ruleset then there are
many opportunities to perform inference according with var-
ious semantics (crisp, probabilistic, fuzzy and so on) and a
discussion of appropriateness of each of them should be large.

Inside a rule framework the conjoint problem is to find out
a set of rules that best model the respondent preferences.
One can consider learning of various kinds of rules (possibly
weighted), each of them supporting various semantics includ-
ing probabilistic models [42], incomplete/imprecise informa-
tion, [54], plausibility-based models [18], [22] or quantum logic
semantics [45]:

1. Simple rules (propositional rules):

[(_‘)Ail Ny A(_‘)Aik ~ A

ik+1}

where (—)A denotes a possibly negated attribute;

2. Positive attribute-value rules:

[Ai1 ~ v A, /\Aik >~ vy, v Aik+1 ~ UikJrl}

where v;; € dom(Aij), Aij ~ v;; means that Aij takes a
value around Vi (The reader should notice that ~ includes
ordinal values, e.g., A;; = v;;);



3. Attribute-value rules with negation:

[(m) A vy A, A=) Az, = vi, ~ Aik+1 = Uik+1]

where —\Aij = v;; means A,']. #* Vi
4. General attribute-value rules:

[(_‘)Ail TR /\(_‘)Aik = Vi, (_')Aik+1 = Uik+1]

The first three kinds of rules were largely addressed by
data mining community when learning association rules.
Researchers developed different kinds of association rules:
Boolean (crisp) association rules, quantitative association
rules, fuzzy association rules. Association rules were pioneered
by [44] and then established by [2], and [3]). Standard associ-
ation rules consider two measures of interestingness: support
and confidence although other models may add two more:
lift and conviction or adopt non-standard ones, [32]. Learn-
ing association rules is usually performed under both a user-
specified minimum support and a user-specified minimum
confidence requirements.

There were developed many algorithms starting with the
most known one, Apriori ([3]) and continuing with many oth-
ers (Eclat, FP-growth and so on.) A significant step is the
Assoc algorithm [28] which enables mining for generalized as-
sociation rules (including negation i.e. attribute-value rules
with negation) and does not restrict for minimum support
and confidence.

However, on our knowledge, none of this research consid-
ering the conjoint analysis task: basically the training data
set for learning association rules does not distinguish vari-
ous users. All the data is uniform (mostly, it comes from e-
commerce transactions) and it may refer to one user (such as
in recommender systems, [1] ) or to many but not consider-
ing distinct training data for each of them, therefore the con-
joint task is somehow hidden. In addition the conjoint analysis
problem in the context of learning association rules does not
directly performs from preferences: using transactional data
as input, there should be some algorithm computing binary
preferences.

The first kind of rules were considered, in context of adap-
tive conjoint analysis, by [23] in conjunction with weighted
CQQL (see [45] for language description), an extension of the
relational calculus using quantum logic paradigm which de-
fines metric(or similarity) predicates, weighted conjunction
(Mo, ,6,), weighted disjunction (Ve, 6,) and quantum negation.
Clearly (as explained by [25] and [52]) there is a need for
both a preference measure to rank the rules and a learning
algorithm which uses the preference measure to find the best
k rules. The work reported by [23] describes a heuristic and
learning approach to use the respondent preferences on stimuli
to compute a rule preference relation (called minterm prefer-
ence because the rules were learned as weighted minterms of
the CQQL full disjunctive normal form) and then use a learn-
ing algorithm to compute a ranking on the minterms set.

3 Conjoint Analysis using Preference
Logics

This section introduces a logical framework allowing (a) en-
coding of preferences as choice formulas, (b) defining a logic-
based utility inside a preference logic to allow creation of col-

lective beliefs and (c) performing rule extraction and expla-
nation and formal interpretation.

3.1 Preference Logics

We follow the approach defined by [50] on preference logic
introduced as a special case of logic by defining a preference
relation between the interpretations of the underlining logic as
we consider this approach being simple and powerful. Below
we recall some of the [50] results.

Let £ be a standard logic and C a strict partial order on
interpretations ( we say Z, is preferred to Z; and denote Z; C
Z5). Then, L = (£,C) is a new logic, a preference logic. The
basic artifacts such as satisfaction, validity and entailment
are defined by [50]. Recall that while the standard logics are
monotonic?. Recall the definitions of satisfiability, validity and
entailment:

Definition 1 ([50])

Let F,G € L. Let T be an interpretation.

T preferentially satisfies F' (denoted Z =c F) if Z |E F and
there is no I' such that Z C I' and ' = F. As usual, T is
called the model of F'.

F preferentially entails G (denoted F = G) if

VI,I = F=TEc G

That is the preferred models of G are also preferred models
of F.

As described by [50], £ is a non-monotonic logic because
there may be formulas F, G € L such that both F' = G and
F =c —G. Moreover, it is not necessary that F is inconsistent,
it is just sufficient that F' do not have preferred models.

A significant case of preference logics was introduced by [13]
under the name of choice logic. Basically, choice logic defines
the ordered disjunction (denoted x) as a special kind of stan-
dard disjunction (V) as such introducing a preference relation
between the interpretations and models. The ordered disjunc-
tion has the same models as regular disjunction but there is
a preference relation between these models. For example, if
A x B is a disjunction between two atoms. Then Z; = {A},
Ty = {A, B} and 73 = { B} are its models. Then Z3 C Z, and
Zs C 71 meaning that Z; and Zs are preferred models.

Intuitively, as [13] reports, the ordered disjunction means
that when Fi x ...F, we prefer models that first satisfies Fi
and if this is not possible then we prefer models satisfying F5,
and so on. Choice logic defines the degree of satisfaction for
all logic formulas

Definition 2 ([13])

The optionality of a formula (the number of choices to satisfy
a formula) is opt(A) =1 if A is an atom.

opt(—F) =1

opt(F1 V F3) = max(opt(F1), opt(F2))

opt(F1 A F2) = max(opt(F), opt(F»))

opt(F1 X F2) = opt(F1) + opt(F2)

[13] defines the preference relation (C) between models of logic
formulas and consequently the entailment. It is shown that

2 In the sense that if Fy, Fa, F3 € £, if I} = F3 then Fy A Fy = Fs.



the entailment satisfies cautious monotony and cumulative
transitivity:

Proposition 1 ([13])

Let S be a set of choice logic formulas and A, B be classical
formulas.

SEcAand SE- B= SU{A} - B

From the computational point of view, choice logic can be
translated to stratified knowledge bases.

4 Modeling Conjoint Analysis

Conjoint analysis collects preferences from user interviews us-
ing a variety of question types but the most used ones are
trade-off matrices and pair-comparisons. A trade-off matrix
([34]) asks a respondent to consider a pair of attributes. It
displays all combinations of values for those attributes, ask-
ing the respondents to provide a ranking for the combinations.
The Table 1 show an example of a trade-off matrix related to
attributes OperatingSystem and Battery life. While trade-off

12 hours | 6 hours | 4 hours | 2 hours
Android 1 2 7 5
‘WinPhone 3 4 6 11
other OS 8 9 10 12

Table 1. A trade-off matrix with respondent ranking

matrix are quite efficient on ranking binary stimuli, trade-off
matrices cannot be used if we consider stimuli with more than
two attributes. A solution to these limitations is to use pair
comparisons. Pair comparisons are seen as choice questions

Left side OR Right side
Android Windows Phone,...
AND Left AND
> 500EUR, ... < 3.5” screen, ...
> 4” screen,... And,...
AND Neutral AND
Battery life 6h WIFI, ...
> 47 screen,... Battery life 10h,...
AND Left AND
other OS no WIFI, ...
Table 2. Pair Comparisons and Ratings

evaluated by favoring either ”the left side” or ”the right side”
or "neutral”.

4.1 Preferences as Choice Formulas

Let Aq,..,A, be a set of attributes (unary predi-
cates) with dom(A;) the domain of values. Let O =
{(a1,...,an)la; € dom(A;)} be the set of all possible
product representations. The choice logic ordered disjunc-
tion operator makes this logic suitable candidate to en-
code user ratings as choice formulas. The trade-off ma-
trices introduces a rank between choices e.g., the matrix

from Table 1 say that OS(”Android”) A Battery(”12h”)
is preferred to OS(”Android) A Battery(”6h”) as well
as OS("WinPhone”) A Battery(”12h”) 1is preferred to
OS(” Android) A Battery(”4h”) and so on.

Definition 3 (Mapping trade-off matrices)

Let a trade-off matriz based on predicates A1 and As.

If Ay (u) A Ax(v) is preferred to A1 (u’) A A2(v') then this pref-
erence is encoded into the choice formula:

Al(u) AN Az(’l}) X A (’LLI) A AQ(U/)

that is preferring models that, if possible first satisfy
A1 (u) A As(v)3.

Definition 4 (Mapping pair comparisons)

Let q be the pair comparison

q = A(a) and B(b) OR C(c) and D(d).

If the left side is preferred then this preference is encoded into
the choice formula:

A(a) A B(b) x C(e) A D(d)

If q is rated neutral then this preference is encoded into the
formula:
A(a) A B(b) vV C(c) A D(d)

Similarly, if the right side is preferred then this preference is
encoded into the choice formula:

C(c) A D(d) x A(a) A B(b)

4.2 Towards Logic-based Conjoint Analysis

Let A = {A4,...,A,} be a set of unary predicates with
dom(A;) the domain of values. Let O = {(ai,...,an)|a; €
dom(A;)} be the set of all possible product representations.

Definition 5 (Normal Form)
A full ordered disjunctive normal form (ODNF) over choice
logic defined by the language A is a formula

U= x;(Li(B) A ... A Ln(12))

where L](le;) is a literal corresponding to the predicate Ay (ei-
ther Ag(l]) or =Ak(l])) and U], € dom(Ay).

Let C the set of all choice formulas derived from user prefer-
ences. Then, the generic conjoint analysis task is described as
below:

Find U = x;(Li(lJ) A ... A Ln(1%)) such that U best
fulfills the user preferences i.e. there is a maximal set of
constraints C’ C C such that U - C for all C € C'.

Of course, the economics community does not really need the
complete DNF but, most of the cases only a subset of the
ODNF (the most important clauses). In addition, sometimes
the constraints may come weighted (using some weight w €
(0,1]) and then the concept of maximal set can be replaced
by a subset of constraints with a sum of weights greater than
a specified threshold.

3 This corresponds completely to the psychological meaning of
trade-off matrices where the respondent does not reject any of
the alternatives



Rule extraction from a computed ODNF (or a subset) is
straightforward as the experts like to understand the depen-
dencies of a specific predicate value with respect of the re-
maining predicates. As such rules are obtained by transform-
ing U to conjunctive normal form (CNF) and then deriving
rules from each clause according with specific predicates as
conclusions.

Let R be a the derived ruleset as described above. Then,
all preferred models of R corresponds to preferred objects in
0.

As such we propose an updated process chain of adaptive
logic-based conjoint analysis as depicted by Figure 1.

R
| > |

Learning
Logic-based utility

Inference and Explanation

New
Question

Logic-based Conjoint Analysis

L e e e e e e —_ -

Figure 1. Logic-Based Adaptive Conjoint Analysis Chain

5 Conclusion

We proposed a model of logic-based conjoint analysis by con-
sidering encoding respondent preferences as beliefs (as such
allowing belief change) and encoding this beliefs to choice for-
mulas. While the individual beliefs translates into consistent
constraints set the collective beliefs (all constraints collected
from all respondents) may not be a consistent set. The Table
3 describes the kind of preferences used by the analyzed mod-
els. As seen the proposed approach is useful when the model
intends to capture phycological phenomena such as change or
irrationality (inconsistency) as well as when formal explana-
tions of decisions need to be computed. This work is at its be-
ginnings: beside fine tuning and debugging, obtaining feasible
algorithms to compute the logic-based utility is a mandatory
next step. Analyzing such algorithms may open discussion on
improvements of the preference logic too as traditional pro-
cessing of pair comparisons also consider Likert scales as rat-
ing methods. In addition, a close look on the necessary belief
framework (a discussion was started by [24]) is necessary.

Aggregation Require Require Allow Static
Models Irreflexive | Transitive | Indifference | Preference
CA (econ.) yes yes yes yes
SVM yes yes no yes
Preference yes yes no yes
Learning

Rule yes yes no yes
Learning

Preference yes no yes no
Logic (belief rev)

Table 3. Conjoint Analysis Preference Requirements
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