KnowWE — A Wiki for Knowledge Base Development

Joachim Baumeister, Jochen Reutelshoefer', Volker Belli',
Albrecht Striffler', Reinhard Hatko? and Markus Friedrich!

Abstract. The development of knowledge systems has been driven
by changing approaches, starting with special purpose languages
in the 1960s that evolved later to dedicated editors and environ-
ments. Nowadays, tools for the collaborative creation and mainte-
nance of knowledge became attractive. Such tools allow for the work
on knowledge even for distributed panels of experts and for knowl-
edge at different formalization levels. The paper (tool presentation)
introduces the semantic wiki KnowWE, a collaborative platform for
the acquisition and use of different types of knowledge, ranging from
semantically annotated text to strong problem-solving knowledge.
We also report on some current use cases of KnowWE.

1 Introduction

The utility of decision-support systems proved in numerous exam-
ples over the past years. The actual progression of knowledge-based
systems goes back to the early years of expert systems. Starting with
dedicated Al languages, such as LISP [22] and Prolog [15], task-
driven tools have been developed to construct intelligent systems
more efficiently, e.g., see [6, 7]. Recently, a number of development
tools promoted the creation of knowledge on different formaliza-
tion levels. That way, explicit process knowledge (e.g., rules, deci-
sion trees, fault models) can be linked with ontological relations or
even text and multimedia content. Semantic wikis [21] are a promi-
nent example for supporting such a knowledge formalization contin-
uum [3], e.g., see the systems Semantic MediaWiki[14], PIWiki [16],
and MoK:i [8].

In this paper, we introduce the semantic wiki KnowWE that
emphasizes the development of strong problem-solving knowledge
within the knowledge formalization continuum. The system is the
latest successor of a 30-years list of ancestors of diagnostic expert
shell kits. Starting with the system MED1 [19] and MED2 [17] (ini-
tially implemented in INTERLISP, then ported to FRANZLISP) the
knowledge engineers needed to use an internal knowledge represen-
tation syntax to built the knowledge bases. The successor D3 [18]—
an implementation in Allegro Common Lisp—oftfered a graphical
user interface based on forms, tables, and trees to simplify the
knowledge acquisition and to enable domain specialists to define the
knowledge by themselves. The full reimplementation d3web (started
in 2000 and implemented in Java) brought multi-user and multi-
session capabilities to the reasoning engines and also offered a web-
based user interface for developed knowledge bases for the first time.
As well, the knowledge modeling environment KnowME (Knowl-
edge Modeling Environment) was implemented in Java and copied

1 denkbares GmbH, Friedrich-Bergius-Ring 15, D-97076 Wiirzburg, Ger-
many, email: name.surname @denkbares.com

2 Department of Intelligent Systems, University of Wiirzburg, Germany,
email: name.surname @uni-wuerzburg.de

the graphical editors of the shell-kit D3, but also added sophisticated
tools for testing and refactoring the developed knowledge bases [5].

However, all aforementioned systems only support the work of one
knowledge engineer at the same time, thus hindering a collaborative
and distributed development process with many participants. Further-
more, the graphical editors restricted the structuring possibilities of
the knowledge bases by the system-defined structure and expressive-
ness. In consequence, the engineers often needed to fit their knowl-
edge structure into the possibilities of the tool. More importantly, the
mix of different formalization levels was not possible, e.g., by relat-
ing ontological knowledge with solutions of a decision tree.

As the successor of KnowME the system KnowWE (Knowledge
Wiki Environment) [4] offered a web-based wiki front-end for the
knowledge acquisition and supported the collaborative engineer-
ing of knowledge at different formalization levels. Strong problem-
solving knowledge is mixed with corresponding text and multimedia
in a natural manner. The knowledge base can be flexibly structured
by distributing the particular knowledge modules over a collection of
linked wiki articles, each covering a particular aspect of the domain.

In the following sections, we describe notable features and devel-
opments of the system KnowWE and we briefly discuss some current
applications.

2 Applications and Usage of KnowWE

In this section, we first sketch the typical application domains of
KnowWE and then we describe typical practices for knowledge de-
velopment with the system.

2.1 Application Domains

Historically, the typical use of the system was the development of di-
agnostic knowledge bases, since this problem category was the core
domain of d3web and its predecessors. Nowadays, KnowWE is still
used to develop decision-support systems for diagnosis, classifica-
tion, or recommendation tasks. As KnowWE can be also used for
ontology engineering and clinical guideline engineering, however,
the application areas are broadened today. For example, we see ap-
plications for the definition of clinical guidelines [9], the configura-
tion of HCI devices [13], and the ontological formalization of ancient
history [20].

In summary, almost all applications combine formal knowledge
with informal content of the wiki, thus improving the develop-
ment and the use of the knowledge system. In the following sec-
tion we describe basic practices for developing knowledge bases with
KnowWE.

2.2 Practices for Knowledge Development

Distribution of Knowledge In form-based tools the knowledge is
typically entered in predefined editor fields. That way, the knowledge
engineer is bound to the given organization strategy of the particular
tool. In a semantic wiki the engineer is free to partition and distribute
the knowledge across the wiki articles. Thus, specific articles can
be created to define the particular aspects of the knowledge base. In
many cases, this freedom is a significant advantage when compared
to form-based tools, since the distribution strategy can be adapted to
the current project requirements and the characteristics of the knowl-
edge. However, in any way the knowledge engineer has the burden to
formulate a distribution strategy for the knowledge in the wiki before
starting with the knowledge engineering task.

In the past, a number of useful distribution patterns have been
identified. It is important to notice that the patterns can/should be
modified according to the project requirements, and that they can be
combined with other patterns.

e Solution-oriented distribution: For each possible system output
(or coherent group of outputs), an article is created in the wiki. The
article contains the definitions of the output and formal knowledge
to derive this particular output. For larger systems, sub-articles can
be defined that are linked from the main article.

e Problem area-oriented distribution: For each problem area (co-
herent and named groups of inputs to the system), an article is
created in the wiki. Each article contains the definitions of the
problem area (e.g., symptoms concerning the problem area) and
links to articles, where derivation knowledge is defined relevant to
the particular problem areas.

e Concept-oriented distribution: For each concept of the applica-
tion domain an article is created. Attributes and relations of this
concept are also defined on this article. Also links to related con-
cepts are included.

Namespaces and Compilation of Knowledge In the past, tools only
allowed the creation of one knowledge base at the same time. Current
environments enable the development of a collection of knowledge
bases within one workspace. Here, coherent parts of knowledge need
to be clustered and labeled by namespaces. For smaller knowledge
bases, namespaces are often used to tag the knowledge relevant for
this knowledge base.

A dedicated article is used as a sink for the definition of a knowl-
edge base, i.e., to collect the knowledge packages for the specified
namespaces. That way, a wiki can be used to create different vari-
ants of a knowledge base, i.e., by having an article compiling all
knowledge labeled with namespaces n/, and by having another ar-
ticle compiling all knowledge labeled with namespaces n/ and n2.
The namespaces and corresponding compilation of knowledge is de-
picted in Figure 1.

As a historical remark, the current mechanism of namespaces and
their compilation is different from the original ideas of KnowWE de-
scribed in [4]: Back then, every article was compiled into a single
knowledge base and therefore had to include all relevant concepts
and derivations. In a distributed problem-solving process the differ-
ent wiki articles and knowledge bases, respectively, communicated
with each other exchanging input and output concepts. The outputs of
the problem-solving process were displayed to the user in an aggre-
gated view. The concept of distributed problem-solving uncovered
two critical issues in real-world knowledge base development: First,
the reasoning process was not intuitive for domain specialists who

Article A Article B

’_Jj

Knowledge Base K2 b _<<uses>>
77> becici
uses: nl,n2 Decision Trees (n2)

<<uses>> S~ <<uses>>

Article C S
v -

Article D

Terminology (nl) Rules (nl)

<<uses>> -7 <<uses>>

Fo-----%
\

Article E

Knowledge Base K1

uses: nl

Figure 1. Distribution and namespaces of the knowledge across a set of
wiki articles. Knowledge bases are flexibly compiled be defining a number
of namespaces.

were usually not familiar with distributed reasoning algorithms. To
help the users, very sophisticated explanations for derived solutions
needed to be presented in order to allow for effective debugging when
problems appeared. Second, the wiki often was used only as the de-
velopment environment of the knowledge base. The target platform
of the knowledge system typically differed from the wiki system,
so the knowledge base needed to be joined and exported from the
wiki into a single knowledge base to be applicable for the later use.
In consequence, the exported knowledge base needed further quality
management, since the reasoning results of the distributed reasoning
may differed from the reasoning results of the monolithic knowledge
base. Therefore, the test and development of a monolithic knowledge
base (the setting of the target platform) within the wiki appeared to
be more efficient for developers.

Endpoints for Testing the Knowledge During knowledge base de-
velopment it is important to have powerful interfaces to test the cur-
rent state of the knowledge base. In KnowWE, we offer a dialog in-
terface for testing strong problem-solving knowledge, i.e., by pre-
senting a form to enter values for input concepts. Derived solutions
are presented in a configurable output panel. The test dialog and out-
put panel can be placed in an arbitrary wiki article in order to give
the user the required flexibility to test the knowledge base where it is
currently developed.

For ontology engineering we offer a markup to formulate
SPARQL [24] queries for RDF ontologies [23]. For OWL ontologies
we are able to formulate specific class expression queries in Manch-
ester OWL syntax [12].

Simple Support for Authoring Administration Within a colla-
borative development process not all involved engineers are working
on the knowledge base at the same time. Moreover, the engineers are
often not located at the same place. Therefore, the tool needs to offer
support for administrative authoring tasks. Typical examples are as
follows:

e Label unfinished areas of the knowledge base, i.e., todo tasks.

e Mark identified issues in knowledge definitions, i.e., problems.
e Specify urgent tasks for the development phase.

For all these tasks a specific user or group of users needs to be at-
tachable in order to personalize them.

KnowWE offers a simple todo markup, that can be used to la-
bel content or formal knowledge in the wiki article with the action
requests as described above. Furthermore, a tagging plugin allows
for the annotation of entire pages. Tag clouds with instant access to
tagged pages can be inserted into the wiki; most often at the bottom
of the left navigation panel.

Use of Standard Wiki Features KnowWE benefits from a set of
useful features, that usually comes with a standard wiki distribution:

e A user and group management allows for the fine-grained defini-
tion of user rights (view and edit) for single articles.

e All wiki articles are under version control. That way, older ver-
sions of an article (and its contained knowledge definitions) can
be compared with the current version of the article. When neces-
sary an older version of an article can be restored.

o A recent changes view displays a list of recently modified articles
and knowledge definitions. With this feature, it is easy to keep
track of the current development process.

3 Notable Features

KnowWE is a development environment that supports the knowledge
engineer on all aspects of the development process, such as author-
ing assistance, error handling, refactoring, manual testing, and qual-
ity management. In this section we present a selection of the most
relevant features of KnowWE.

3.1 Knowledge Acquisition

In KnowWE, knowledge is formalized by using (knowledge) markup
languages. A markup language is a formal syntax provided with an
internal mapping to the target knowledge representation which is per-
formed instantly after page save by a compilation script. The markup
languages can be used at any place in the wiki articles to create el-
ements of the knowledge base allowing for interweaving formal and
informal knowledge. Figure 2 shows an article taken from an ex-
emplary car fault diagnosis wiki describing the concept Clogged air
filter. The article contains informal content such as plain text and
images (e.g., in the top half of the article) as well as formalized
knowledge (rules at the bottom part of the article). KnowWE pro-
vides markup languages for creating knowledge bases in the d3web’
format and for creating ontologies in OWL. For the d3web reasoner,
markups for decision trees, set-covering models, decision tables,
and rules are provided as introduced in [2]. Additionally, executable
flowcharts can be designed in the DiaFlux language by using a graph-
ical editor available the wiki [10]. For the development of ontologies
KnowWE provides markups based on well-known languages such
as the Manchester Syntax for OWL [12] and the Turtle Syntax for
RDF *.

3.2 Authoring Support

In addition to the basic wiki editing interface, KnowWE provides
different kinds of editing support. The system provides instant edit

3 http://d3web.sourceforge.net
4 http://www.w3.org/TeamSubmission/turtle

functionality that allows to edit a section, i.e. a coherent part of an
article, within the view of the wiki page as shown in Figure 3.

Typically, the editing of tables is difficult when using the standard
text markup for tables. Therefore, KnowWE provides instant editing
capabilities for tables in a WYSIWYG style allowing each cell to be
edited by one click as shown in Figure 5. The table content is stored
within the wiki page source in standard wiki markup.

IF (Engine start = does not start OR Engine start = engine barely starts)
THEN Flat battery = PS5

IF Engine start = engine starts
THEN Flat battery = N5

E R%Coveringl.ist E
i Flat battery { i
"Check: Battery." = not ok [++],
Starter = does not turn over,
Engine start = does not start,

}

i Bpackage: demo

Figure 3. Authoring parts of an article using the instant edit feature.

Additionally, a code completion mechanism supports the user to
create markup sections in the text editing panel.

Often, it becomes necessary to obtain an overview of the occur-
rences and uses of a particular domain concept. Figure 4 shows an
overview page for the concept Leaking air intake system, that is dy-
namically generated when requested by clicking on the concept name
in the wiki. Besides the pure information about the concept, also
small refactoring capabilities are available: At the top, a renaming
tool is presented that allows the wiki-wide renaming of the concept,
thus ensuring a working and consistent knowledge base. In the bot-
tom part of the info page, the user can see an overview of the wiki
articles, where the concept is used (links yield to the particular oc-
currences in the wiki).

3.3 Testing

As a modern knowledge engineering environment, KnowWE sup-
ports an agile knowledge engineering approach. Here, knowledge
bases are developed in an evolutionary manner, always maintaining
an executable and correct version at a certain level of competency. In
this context, (automated) testing is very important to ensure success-
ful evolutionary development cycles. Test cases are either developed
manually by defining expected solutions for a given set of inputs
or are imported from external testing suites. We adopted the con-
tinuous integration practice known from software engineering into
the knowledge engineering tool KnowWE. A continuous integration
dashboard in the wiki is used to define a collection of quality tests
(for validation and verification). As a special knowledge markup, the
dashboard can be configured easily to support tailored quality man-
agement for the respective project. Registered automated tests are
performed on the current version of the wiki knowledge base and

KnowWE
M

Home
Documentation / FAQ
Demos

« Car Fault Diagnosis

« Body-Mass-Index

+« Temperature Progression
Administration

» All pages

+ Recent changes

+ Plugins

+ Recent changes

e Left menu

@ Continuous Integration

Demo pemoBMI DemaTemperature

Documentation sue

attachment basicMarkup battery complle
CONUNUGUSIMEGRATION COVENNgLIST eXpresskns

fomulas imageMap interview knowledgebass

package properties question guickl resource rule
setcovenng solution tables testcase timedb todo

wvanabdes wikiMarkup xcl
Tags (edit): Demo

KnowWE 20120604_02:29
JSPWiki v2.8.3-svn-19

G'day (anonymous guest) Login My Prefs

Demo - CloggedAirFilter

Your trail: Demo - Master, Demo - CloggedAirFilter, Demo - Continuous Quick Navigation Q
Integration, Main, Demo - Main - Car Diagnosis
View Attach (2) | Info Edit | More... ¥

Clogged air filter

General

The (combustion) air filter prevents abrasive particulate matter from
entering the engine's cylinders, where it would cause mechanical wear and
oil contamination.

Most fuel injected vehicles use a pleated paper filter element in the form of |
a flat panel. This filter is usually placed inside a plastic box connected to the |
throttle body with an intake tube. |

Older vehicles that use carburetors or throttle body fuel injection typically
use a cylindrical air filter, usually a few inches high and between 6 and 16
inches in diameter. This is positioned abowve the carburetor or throttle body,
usually in a metal or plastic container which may incorporate ducting to
provide cool and/or warm inlet air, and secured with a metal or plastic lid.

clogged air filter

Typical Symptoms

Typical symptoms for a clogged air filter are for example: Driving, unsteady idle speed and weak
acceleration, but also problems when starting the car starting problems and an increased fuel consumption
(based on average mileage) and the currently measured mileage or abnormal exhaust fumes.

A typical starting problem which is connected to this problem is a barely or not starting engine in
combination with a starter that turns over.

A clogged air filter can cause black exhaust fumes which will turn the color of the exhaust pipe to sooty
black.

IF Driving = unsteady idle speed
THEN Clogged air filter = P4

IF NOT (Driving = unsteady idle speed
OR Driving = weak acceleration)
THEN Clogged air filter = N5

IF (Exhaust fumes = black AND Fuel = unleaded gasoline)
THEM Clogged air filter = P5

IF ((Engine start = does not start
OR Engine start = engine barely starts)

AND Starter = turns over)
THEN Clogged air filter = P4

dpackage: demo

Repair Instructions

A clogged air filter needs to be replaced by a new one. Therefore, the air
filter housing have to be found. It will be either square (on fuel-injected
engines) or round (on older carbureted engines) and about 12 inches (30
cm) in diameter.

Aftar Incatinn the hnocinn the errewe nr rlamhe nn the tan nf it hawve tn he

Figure 2. A wiki page from a car-fault diagnosis knowledge base in KnowWE.

W - ClCarDiagnosis

Builds Build #8 (Jun 6, 2012 12:47:19 PM) in 9 msec.
. #8) ArticleHasErrorsTest
@ 7 1 test objects tested successfully
@ 6 @ TestArticlesContain ("FixMe:"; "Demo - Continuous Integration”)
77 test objects tested successfully
] #5) . - - :
@ TestsuiteRunnerTest ("Demo - Test Cases”)
' #4 FAILURE: Testsuite failed! (Total Precision: 0.79, Total Recall: 1.0) (test object: Demo - Test Cases)
Q #3 0 test objects tested successfully
Q §2 & EmptyQuestionnaireTest
FAILURE: Knowledge base has empty guesticnnaires:
] #1

MileageQuestions
(test object: CarDiagnosis)
D test objects tested successfully

Figure 6. The continuous integration dashboard of KnowWE showing messages of the current test runs and the history of the previous development stages.

Leaking air intake system (Solution)

Rename to

Leaking air intake system -

Definition

SolutionTreeSclutionDefinition in Demo - Terminoclogy

References
v Demo - Test Cases

+ SoplutionReference in Demo - Test Cases (TestCase)
+ SoplutionReference in Demo - Test Cases (TestCase)

p Demo - LeakingAirIntakeSystem
p Demo - Terminology

Other occurrences

Demo - Main - Car Diagnosis
Doc SetCoveringKnowledge

Doc Solutions

Demo - LeakingAirIntakeSystem
Doc TestCase

¥ ¥ rv¥rwx

Figure 4. The generated object-info page for every concept allows for the
renaming of the concept and it shows the use of the concept across the wiki
articles.

Time Driving Checks
Os insufficient power on partial load = Driving = insufficient power on partial load

15 |unsteady idle speed Leaking air intake system = SUGGESTED

Save Cancel Delete oA o oAl = A

Figure 5. Inline editing of tables by the WYSIWYG interface of the wiki.

give verbose feedback to the knowledge engineers by status mes-
sages on the dashboard as shown in Figure 6.

At any time, the dashboard displays the current state of the wiki
knowledge base with respect to quality at one glance. Also the his-
tory of builds is listed on the left panel of the dashboard. Older builds
can be inspected by clicking on the build number, for instance, be-
cause the developer wants to check the reason for the build problem.
For the selected build the applied tests are shown in the center of
the dashboard. In case of errors, the tests give detailed reports on the
error s as well as links are provided for further investigation and de-
bugging of the issue. In Figure 6, the top two tests have been passed
successfully, while the lower two tests have failed showing more de-
tails explaining the actual problem. The tests can be activated by
three trigger-modes onChange, onSchedule, and onDemand. In the
mode onChange, the tests are executed after each modification of
a wiki article which changed the knowledge base. This mode pro-
vides the most immediate feedback possible. However, for very time
consuming tests this mode can yield inconvenient delays. The mode
onSchedule executes the tests on a regular basis according to a spec-
ified schedule, for instance at night. This mode is preferable also for
tests with considerable high execution time. Further, in the mode on-
Demand all responsibility for test execution is left to the user, since
the user has to explicitly start a continuous integration run. The user
has to decide, when the execution is reasonable, which often is an
option for tests with high runtime (considering sufficiently experi-
enced users). It is important to note, that the user can define different

dashboards, for instance, one for quick tests running onChange and
another one for executing larger/time-consuming tests onSchedule.

Additionally to the dashboard, located on a specific wiki page,
KnowWE provides a CI-Daemon (daemon for continuous integra-
tion) which can be connected to a dashboard. The CI-Daemon is al-
ways visible in the KnowWE user interface basically only showing a
colored bubble (green, red, or grey) representing the current state of
the connected dashboard. In Figure 2 the CI-Daemon is visible as a
green bubble on the left of the page below the navigation menu. In
this way, the users are always aware of the current quality state not
requiring to frequently visit the dashboard article. A very important
category of tests for knowledge bases are the competency tests which
can be implemented by (sequential) test cases [1]. Figure 7 shows a
markup for the definition of sequential test cases in KnowWE. Dur-
ing execution, the test case is performed line-by-line. Equal signs ex-
press assignments of input data, added to the current testing session.
Expressions containing brackets are expected derivations. The test
fails, if the expected derivations do not match the actual ones. That
way, input-output behavior of a knowledge base can be covered by
automated competency tests which can be attached to a continuous
integration dashboard easily.

View | Attach (1) Info Edit = More... ¥

Test cases

"Leaking air intake system (Demo)" {
Driving = insufficient power on partial load :
Leaking air intake system (suggested);
Driving = unsteady idle speed :
Clogged air filter (suggested);

"Check: Air filter." = ok,

"Average mileage /100km" = 10,

"Real mileage [100km" = 12,

Driving = insufficient power on full load :
Leaking air intake system (established);

¥

"Clogged air filter (Demo)" {
Exhaust pipe color = sooty black,
Fuel = unleaded gasoline :
Clogged air filter (suggested);

Driving = unsteady idle speed,

Driving = weak acceleration,

"Check: Ignition timing." = ok :

Clogged air filter (established);
¥

@package: demo

Figure 7. Markup for the definition of sequential test cases.

3.4 Knowledge Use

For instant manual testing of the created knowledge base KnowWE
provides an embedded interview component which can be embedded
into any wiki article. Figure 8 shows the interview interface which is

dynamically generated from the connected knowledge base. It allows
the user to answer the input questions and instantly gives feedback of
the derived solution concepts. In the shown example, the combina-
tion of inputs derived the established solution concept Bad ignition
timing. The solutions Clogged air filter, Flat battery, and Leaking air
intake system are also suggested as potential solutions while Dam-
aged idle speed system is marked as an excluded solution.

» General
¥ Observations

Exhaust fumes black | blue | invisible | unknown

Exhaust pipe color brown | grey | light grey | sooty black | unknown
Fuel diesel | unleaded gasoline | unknown

Average mileage /100km | unknown

Real mileage /100km | unknown

Engine noises knocking | ringing | no felse | unknown

engine barely starts | engine starts | does not start

Engine start
| unknown
Starter does not turn over | turns over | unknown
insufficient power on partial load |
X insufficient power on full load | unsteady idle speed
Driving

| low idle speed | delayed take-off |
weak acceleration | no felse | unknown

P Technical Examinations

Derived Solutions

@ Bad ignition timing
© Clogged air filter

o Flat battery & Edit Markup
O Leaking air intake system

s, Damaged idle speed system

== Exhaust pipe color evaluation = normal

ShowSolutions v

Figure 8. The interview component for manual knowledge base testing.

For developed ontologies KnowWE provides an inline-query
mechanism to summarize the knowledge of the ontology as a dy-
namic content element. Using a markup based on the SPARQL lan-
guage, queries can be defined within the wiki pages. They are evalu-
ated on page load on the current version of the developed ontology.
The result of the query is displayed in the view of the wiki article.

4 Known Uses of KnowWE

KnowWE is currently used in several knowledge engineering
projects of different subject domains, both in academic and industrial
contexts. In this section, we report on a selection of these projects and
we give a brief overview of the use of the system KnowWE.

4.1 Managing Chemical Safety with KnowSEC

KnowSEC (Managing Knowledge of Substances of Ecological Con-
cern) is a group-wide wiki to manage substance-related work(flows)
within a group of the German Federal Environmental Agency
(Umweltbundesamt). Here, every substance is represented by a dis-
tinct wiki article storing important information such as chemical end-
points, relevant literature, or comments of group members. The in-
formation is entered in (user-friendly) editors in the wiki and trans-
lated into special markups in the background; thus, the information is

also stored in an RDF ontology. That way, the information currently
available in the wiki but also the latest knowledge changes can be
aggregated and visualized by integrated SPARQL queries.

Besides the storage of weakly formalized knowledge, KnowSEC
also offers knowledge-based modules that support the classification
of substances for a number of critical chemical characteristics. At the
moment, modules are available for supporting the assessment of the
relevance, the persistence, the bioaccumulation, and the toxicity of
a given substance. These aspects (e.g., relevance, persistence, etc.)
are developed in the wiki using different namespaces, so they can
be maintained and tested independently from the other aspects. For
the users of KnowSEC, a joint knowledge base with all aspects is
virtually defined including all above namespaces.

Currently, the knowledge base is still under development. The joint
version of the knowledge base consists of 214 questions (user inputs
to characterize the investigated substance) grouped by 46 question-
naires, 146 solutions (assessments of the investigated substance), and
more than 1.000 rules to derive the assessments. The rules are auto-
matically generated from entered decision tables that allow for an
intuitive and maintainable knowledge development process.

Two knowledge engineers are supporting a team of domain spe-
cialists, that partly define the knowledge base themselves, partly giv-
ing domain knowledge to the knowledge engineers.

4.2 Modeling Clinical Guidelines in KnowWE

Within the project CliWE® (Clinical Wiki Environments), KnowWE
is extended by plugins to allow for the collaborative development
of Computer-Interpretable Guidelines (CIGs). Clinical guidelines are
based on evidence-based medicine and improve patient outcome by
providing standardized treatments. Their computerization allows for
decision-support systems at the point of care, or even the automated
application by closed-loop systems in the setting of Intensive Care
Units. The goal of CLiWE is to create a platform that supports the en-
gineering of CIGs by spatially distributed domain specialists. There-
fore, the graphical CIG language DiaFlux was created. Its focus lies
on the direct applicability and understandability by domain special-
ists [9]. By offering only a small set of intuitive language elements,
the guidelines can in the best case be built and maintained by the
domain specialists themselves. Currently, the extensions developed
within CliWE are used in the project WiM-Vent®. Its goal is to inte-
grate medical expertise concerning mechanical ventilation and phys-
iological models into an automated mechanical ventilator [11]. In
the course of this project, one knowledge engineer guides and sup-
ports one domain specialists (backed up by a committee of further ex-
perts) during the knowledge engineering process. The latest version
of the guideline contains 17 DiaFlux modules, that in total contain
295 nodes and 345 edges. During its development, the testing capa-
bilities of KnowWE are extensively used. So far, about 1.100 contin-
uous integration builds were automatically executed. Especially the
empirical testing feature is applied to define and process local test
cases, as well as ones that are created using external tools, e.g., a
Human Patient Simulator. Those simulated patient sessions can then
be replayed in KnowWE for introspecting and debugging the guide-
line execution. A high-lighting of the taken paths within the DiaFlux
models serves as an accessible means of explanation for the domain
specialists.

5 funded by Draegerwerk AG & Co. KGaA, Liibeck, Germny, 2009-2012
6 »WiM-Vent” - Knowledge- and model-based Ventilation, funded by BMBF
(Federal ministry of education and research)

4.3 ESAT: Selecting Assisting Technologies for
Handicaped People

ESAT (Expertensystem fiir Assistierende Technologien [german]) is
an expert system designed to determine an appropriate set of human-
computer interaction devices for handicapped people. In the appli-
cation scenario a detailed profile of the physical capabilities (e.g.,
visual or motorical abilities) for a person is entered into the system.
The knowledge base derives a set of input and output devices, that
together provide optimal computer interaction for that specific per-
son. In advance, the underlying domain knowledge has been elab-
orated by a comprehensive study in 2008. The actual implementa-
tion of a corresponding executable knowledge base using KnowWE
has started in spring 2011. Currently, the ESAT knowledge base
has been completed and the system will be launched for a testing
phase at the project’s initiator (FAB”). The knowledge base has been
implemented by mainly one knowledge engineer using KnowWE.
For knowledge representation production rules are used. In total the
ESAT knowledge base currently contains 654 rules distributed on 74
wiki articles. Also in this single-user context the possibility of free
structuring allows for reasonable and clear distribution of the knowl-
edge. The terminology is defined on different wiki articles dealing
with vision, hearing, motoric and haptic abilities and general skills
(e.g., braille) respectively. The about 50 different types of input and
output devices (e.g., various kinds of keyboards, sensors, displays)
are each described in distinct wiki articles also containing the rules
relevant for the derivation of the particular device. Five heuristics
have been established within a theoretical study, describing solutions
for major categories of handicaps. These are implemented on distinct
wiki articles forming the core of the derivation knowledge. The test-
ing framework for continuous integration discussed in Section 3.3 is
extensively used to guarantee the save development process by un-
covering undesired side-effects of modifications including at least
one sequential test case for each device and heuristic. More details
about the project are given by Kreutzer [13].

4.4 Continuous Medical Cataract Knowledge with
WISSKONT

The WISSKONT project considers the creation of an intelligent in-
formation system in the medical domain of cataract surgery. The sys-
tem is currently under development and it will support the ophtal-
mologist during the treatment process before, in-between, and after
the cataract surgery. That way, the system needs to present relevant
knowledge of the domain, which is integrated at varying degrees of
formality. For instance, textbook content with images describe par-
ticular aspects of a treatment process, whereas temporal relations
of the treatment phases are represented by ontological annotations.
Here, informal content is correlated by ontological relations. In con-
sequence, a semantic search mechanism provides the presentation of
the relevant information at any stage of the treatment process. Ad-
ditionally, for a number of decision tasks occurring during the treat-
ment, distinct decision-support modules are created, e.g., the selec-
tion of an appropriate lens for the surgery based on the patient’s pa-
rameters. The integration of formalized and informal knowledge al-
lows the ophtalmologist to verify the recommendations of the knowl-
edge base by analyzing the comprehensive support information pro-
vided with the recommendation.

The WISSKONT project is part of the WISSASS project, a coop-
eration of the Karlsruhe Institute of Technology, Germany (KIT) and

7 http://www.vo-fab.at/

the denkbares GmbH. It is funded as a ZIM-KOOP® project by the
German Federal Ministry of Economics and Technology (BMWI).

5 Conclusion

In this paper, we presented the current state-of-the-art of the semantic
wiki KnowWE. The tool is used in knowledge engineering projects
that have a distributed and collaborative nature. Also, KnowWE is
capable to jointly represent and use knowledge at different levels of
formalization and therefore allows for the flexible organization and
elicitation of knowledge. We showed notable features of the tool,
such as dedicated markups and editors for knowledge acquisition and
use, but also features for (continuously) testing the developed knowl-
edge base. Publicly known projects and applications were reported,
that use KnowWE as their primary knowledge engineering environ-
ment.

REFERENCES

[1] Joachim Baumeister, ‘Advanced empirical testing’, Knowledge-Based
Systems, 24(1), 83-94, (2011).

[2] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe,
‘Markups for knowledge wikis’, in SAAKM’07: Proceedings of the Se-
mantic Authoring, Annotation and Knowledge Markup Workshop, pp.
7-14, Whistler, Canada, (2007).

[3] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe, ‘Engi-
neering intelligent systems on the knowledge formalization contin-
uum’, International Journal of Applied Mathematics and Computer
Science (AMCS), 21(1), (2011).

[4] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe,
‘KnowWE: A semantic wiki for knowledge engineering’, Applied In-
telligence, 35(3), 323-344, (2011).

[5] Joachim Baumeister, Dietmar Seipel, and Frank Puppe, ‘Agile devel-
opment of rule systems’, in Handbook of Research on Emerging Rule-
Based Languages and Technologies: Open Solutions and Approaches,
eds., Giurca, Gasevic, and Taveter, IGI Publishing, (2009).

[6] B.G. Buchanan and E.H. Shortliffe, Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project,
Addison-Wesley, 1984.

[71 John H. Gennari, Mark A. Musen, Ray W. Fergerson, William E.
Grosso, Monica Crubézy, Henrik Eriksson, Natalya F. Noy, and Sam-
son W. Tu, “The evolution of protégé: An environment for knowledge-
based systems development’, Int. J. Hum.-Comput. Stud., 58(1), 89—
123, (January 2003).

[8] Chiara Ghidini, Barbara Kump, Stefanie N. Lindstaedt, Nahid Mah-
bub, Viktoria Pammer, Marco Rospocher, and Luciano Serafini, ‘MoKi:
The enterprise modelling wiki’, in ESWC’09: The Semantic Web: Re-
search and Applications, volume 5554 of LNCS, pp. 831-835. Springer,
(2009).

[9] Reinhard Hatko, Joachim Baumeister, Volker Belli, and Frank Puppe,
‘DiaFlux: A graphical language for computer-interpretable guidelines’,
in KR4HC’11: Proceedings of the 3th International Workshop on
Knowledge Representation for Health Care, (2011).

[10] Reinhard Hatko, Jochen Reutelshoefer, Joachim Baumeister, and Frank
Puppe, ‘Modelling of diagnostic guideline knowledge in semantic
wikis’, in Proceedings of the Workshop on Open Knowledge Models
(OKM-2010) at the 17th International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW), (2010).

[11] Reinhard Hatko, Dirk Schidler, Stefan Mersmann, Joachim Baumeis-
ter, Norbert Weiler, and Frank Puppe, ‘Implementing an automated ven-
tilation guideline using the semantic wiki knowwe’, in EKAW 2012:
18th International Conference on Knowledge Engineering and Knowl-
edge Management, eds., Heiner Stuckenschmidt, Annette ten Teije, and
Johanna Voelker, (2012).

[12] Matthew Horridge, Nick Drummond, John Goodwin, Alan Rector,
Robert Stevens, and Hai H Wang, ‘The manchester owl syntax’, in
Proceedings of OWL: Experiences and Directions (OWLED’06), eds.,
Bernardo Cuenca Grau, Pascal Hitzler, Connor Shankey, and Evan Wal-
lace, Athens, Georgia, USA,, (2006).

8 http://www.zim-bmwi.de/

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Kreutzer, Ein Expertensystem zur Unterstiitzung korperbehinderter
Menschen, Diplomica, 2012.

Markus Krotzsch, Denny Vrandeci¢, and Max Volkel, ‘Semantic Me-
diaWiki’, in ISWC’06: Proceedings of the 5th International Semantic
Web Conference, LNAI 4273, pp. 935-942, Berlin, (2006). Springer.
Dennis Merritt, Building Expert Systems in Prolog, Springer, Berlin,
1989.

Grzegorz J. Nalepa, ‘PIWiki - a generic semantic wiki architecture’, in
ICCCI’'09: Computational Collective Intelligence. Semantic Web, So-
cial Networks and Multiagent Systems, number 5796 in LNCS, pp.
345-356. Springer, (2009).

Frank Puppe, ‘Requirements for a Classification Expert System Shell
and their Realization in MED2’, Applied Artificial Intelligence, 1, 163—
171, (1987).

Frank Puppe, ‘Knowledge Reuse among Diagnostic Problem-Solving
Methods in the Shell-Kit D3’, International Journal of Human-
Computer Studies, 49, 627-649, (1998).

Frank Puppe and Bernhard Puppe, ‘Overview on MED1: An heuris-
tic diagnostics system with an efficient control structure’, in Proceed-
ings of the German Workshop on Artificial Intelligence (GWAI-S3),
Informatik-Fachberichte 76, pp. 11-20. Springer, (1983).

Jochen Reutelshoefer, Florian Lemmerich, Joachim Baumeister, Jorit
Wintjes, and Lorenz Haas, ‘Taking OWL to Athens — Semantic Web
technology takes ancient greek history to students’, in ESWC’10: Pro-
ceedings of the 7th Extended Semantic Web Conference, pp. 333-347.
Springer, (2010).

Sebastian Schaffert, Francois Bry, Joachim Baumeister, and Malte
Kiesel, ‘Semantic wikis’, IEEE Software, 25(4), 8-11, (2008).

Guy L. Steele and Richard P. Gabriel, ‘The evolution of lisp’, in The
second ACM SIGPLAN conference on History of programming lan-
guages, pp. 231-270, (1993).

W3C. RDF - resource description framework recommendation:
http://www.w3.org/rdf/, February 2004.

W3C. SPARQL recommendation: http://www.w3.org/tr/rdf-sparql-
query, January 2008.

