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Abstract. There are two main approaches to the design Business
Rules. The first one involves formalized methods that strictly define
the syntax and semantics of rules. This approach usually requires
technical skills or conceptual knowledge and therefore is not appro-
priate for everyone. In the second approach, dedicated rule languages
are used for facilitating rules specification. Nevertheless, such lan-
guages are usually programming solutions without a precisely de-
fined semantics. This may cause ambiguities in knowledge interpre-
tation and thus, the efficient rule interoperability becomes impossi-
ble. The goal of our work is to develop a formalized model for a
rule representation which will allow for an effective rule interchang-
ing. For this purpose, we want to combine the above mentioned ap-
proaches by tailoring the formalized rule representation called XTT2
to languages provided by CLIPS or Drools. This paper is the first
step in our research providing an identification of the most important
differences between the XTT2 and CLIPS rule languages.

1 Introduction
Rule-Based Systems constitute a mature technology in the field of
Artificial Intelligence. Over the years, they were applied in many do-
mains like medicine, engineering [7] or decision support [10]. De-
spite their maturity, many ideas, algorithms and solutions that are
applied in new technologies, such as Business Rules (BR) [22], Se-
mantic Web [2] or Complex Event Processing [12], are derived from
the classic Rule-Based Systems [9].

Business Rules are one of the latest application of classic rules.
They are intended to be created by business people in order to define
logical aspects of business. Despite the fact that business people may
not have any technical skills or scientific knowledge, BR must be
appropriate to be used by such users. Currently, many techniques are
used for the specification of BR, from description in natural language
to design by using formalized methods. There is no single method
that is considered to be the best. Usually, a designer chooses one
according to his or her own preferences.

Rules specification in natural language is very intuitive and does
not require any specialized skills. Moreover, such a method allows
for an easy specification of very complex rules. However, such in-
formal description may be very vague, especially in case of complex
rules which may be hard to understand or in the worst case may be
misunderstood. This type of problems can be prevented by using for-
malized methods having the following advantages:

• they provide a clear framework enabling uniform knowledge mod-
eling with well-defined expressive power,
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• speed up the design process – formalized rule language opens pos-
sibility to partially formalize the design process which can, in turn,
lead to better detection of design errors, possibly at early develop-
ment stages,

• allow for a superior knowledge base quality control – formal
methods can be used to identify logical errors in rule formulation,

• simplify knowledge interoperability – partially formalized trans-
lation to other knowledge representation formats are possible, and

• allow for custom inference modes – structured rule bases require
inference strategies alternative to the classic inference algorithms.

This paper is organized as follows: Section 2 gives a short mo-
tivation for our work. A short introduction to the XTT2 method is
provided by Section 3. Section 4 is the main part of this paper dis-
cussing the most important differences between XTT2 and CLIPS.
The paper is concluded with Section 5 providing short summary and
information concerning future works.

2 Motivation

Together with the development of BR design methods, a number
of development tools also increases. Among them very important
are Drools [4] and OpenRules3. Sometimes, it is desirable to have
a mechanism for exchanging knowledge between different tools.
This makes maintenance of the rule bases easier and allows for more
efficient usage of these tools. Nevertheless, the existing tools usually
allow for BR modeling in an informal way and do not provide any
common rule representation model. This provides ambiguity in the
rule semantics and in turn, does not allow for efficient interchanging.

A problem of knowledge interoperability is known since classic
rule-based expert systems and still remains an open issue. During
the years, several approaches to this problem were proposed. The
most important of them are: Knowledge Interchange Format4, Rule
Markup Language [3], Rule Interchange Format [8] and REWERSE
Rule Markup Language [23]. Nevertheless, the above mentioned
methods provide a very general model of rule-based knowledge rep-
resentation, what makes their practical application hard or even im-
possible. Hence, practical tools supporting any of these methods do
not exist or provide only partial support.

The main objective of our current research is to develop a for-
malized method for an efficient rule interoperability. We assume that
this can be done by providing a common and logic-based rule rep-
resentation model. Thanks to such a model, the semantics of rules,
specified in other representations, can be clarified or defined. What

3 See: http://openrules.com
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is more, this model will allow to specify which representation can
be losslessly translated to another and how this translation should be
performed. We assume that the model will be based on the formal-
ized rule representation method called XTT2 [19] which is provided
by the Semantic Knowledge Engineering (SKE) methodology [16].
The XTT2 method (see Section 3) is a visual method for model-
ing structured rule bases. This method is intended to be a rigorously
formalized rule language. Nevertheless, a rigorous formalization has
restricted the expressiveness of the language. Thus, in comparison
with other methods, XTT2 has several limitations and significant dif-
ferences. This is why our current work is focused on the extension of
XTT2 towards such languages as CLIPS5 [6] or Drools. These two
languages have been selected as the reference because they proved to
be successful implementations of rule-based systems.

CLIPS is a classic rule-based expert system shell developed by
NASA in 1984. The original intent for CLIPS was to gain use-
ful insight and knowledge about the construction of expert system
tools and to lay the groundwork for the construction of a replace-
ment tool for the commercial tools being used in that time. Because
of its portability, extensibility, capabilities, and low cost, it has re-
ceived widespread acceptance throughout the government, industry,
and academia. Development of this tool has improved the accessi-
bility to expert system technology throughout the public and private
sectors for a wide range of applications and diverse computing en-
vironments. CLIPS became one of the most commonly known rule
language that was used for e.g. image processing or recognition.

As a classic rule-based tool, CLIPS became a reference tool also
for other tools like Jess which is a rule engine and scripting environ-
ment providing rule language. It is written in Java. Jess was origi-
nally a clone of the essential core of CLIPS, but has begun to acquire
a Java-influenced flavor. Therefore, it is a convenient tool for giving
Java applets and applications the ability to reason.

Drools is a much younger project which was started in 2001. Cur-
rently Drools is widely used by Business environment as Business
Logic Integration Platform providing a unified and integrated plat-
form for Rules, Workflow and Event Processing. Drools-based rules
are specified using dedicated rule language and processed by dedi-
cated rule engine called Drools Expert. Similarly to Jess, this engine
is also written in Java and allows for easy integration with other ap-
plications written in this language.

The above mentioned tools are not intended to provide a formal-
ized rule representation that is necessary for efficient rule interchange
preserving their semantics. The provide only programming solutions
for rapid development of the rule bases. In our work, we try to com-
bine the advantages of formalized methods and programming so-
lutions. This paper describes the first step of this work. The main
contribution is the comparison of the XTT2 method with the CLIPS
language, by identifying the differences and limitations of XTT2 in
terms of CLIPS. It describes the most important aspects of extending
XTT2 towards CLIPS and challenges that must be overcome for an
efficient rule interoperability between these two representations.

3 Overview of XTT2
This section gives a short introduction to XTT2 (eXtended Tabular
Trees) [17, 18]. XTT2 can be considered a multidimensional concept.
It involves many aspects of the rule-based systems design:

• Rule Base — this aspect involves issues related to structure and
maintenance of a rule base.
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• Rule Syntax — defines how the knowledge can be expressed and
what are the limitations of a provided rule language i.e. this issue
concerns rule language syntax as well as its expressiveness.

• Rule Semantics — defines the semantics of the rules and how they
should be interpreted.

• Rule Processing — is related to inference mechanism as well as
the way how the knowledge processing is performed.

This section is divided into four subsections describing XTT2 in
terms of above mentioned aspects.

3.1 Rule Base
An XTT2-based rule base contains attributes that store values. Each
attribute-value pair can be considered as a single fact. The set of all
pairs is called system state and is defined as follows:

s : (A1 = S1) ∧ (A2 = S2) ∧ . . . ∧ (An = Sn) (1)

where Ai are the attributes and Si are their current values.
It is important to notice, that the number of attributes (facts) is con-
stant during the inference process. The knowledge base modification
can be made only by changing attribute value.

XTT2 provides modularized rule base, where rules working to-
gether are placed in one context. Contrary to the majority of other
systems, where a basic knowledge item is a single rule, in the XTT2
formalism the basic component displayed, edited and managed at a
time is a single context. A single context corresponds to a single de-
cision table. Thus, only those rules which have the same conditional
and decisions attributes can be placed in one context i.e. each rule in
a decision table determines values of the same set of attributes.

XTT2 is a hybrid knowledge representation combining a decision
network and decision tables. Tables are linked together forming a
network-like structure of the XTT2 decision tables. Links define or-
der in which tables should be processed. Considering a single table
as a blackbox for determining attribute value, the links corresponds
to functional dependencies between attributes.

3.2 Rule Syntax
The XTT2 rule language provide a dedicated syntax called HeKatE
Meta Representation (HMR). This is a textual representation that can
be easily read by human and automatically processed by an inference
engine. Moreover, the HMR language is suitable for visual represen-
tation (see Figure 1). Thanks to this, such a knowledge representa-
tion provides not only high density of knowledge visualization, but
assures transparency and readability. Additionally, the visual repre-
sentation is fully supported by the HQEd [20] graphical editor. Using
this editor, a HMR-based representation can be automatically gen-
erated for a given visual model. Then, the HMR representation is
processed by the HeaRT [15] tool which is the dedicated inference
engine for reasoning with the XTT2 rule bases [1].

For study purposes, an example below presents the same rule
in three representations: natural language, HMR representation and
XTT2-based visual representation. The rule comes from Cashpoint
case study [5] and is as follows:

if
driver is younger than 25 years
and
it has driving licence at least three years

then
increase the driver current discount by 50%



Figure 1. An example of visual representation of XTT2 rule base

Figure 2. An example of visual representation of XTT2 rule

This rule can be easily expressed with HMR syntax:

xrule ’Table1/1’:
[driverAge lt 25,
drLicAge gte 3]

==>
[driverDiscount set (driverDiscount+50)]

The figure 2 depicts the equivalent visual representation of the pro-
vided HMR syntax.

3.3 Rule Semantics

XTT2 is based on the Attributive Logic with Set of Values over Finite
Domains (ALSV(FD)) logic [11, 18]. ALSV(FD) is a formal frame-
work for attributive logic that provides syntax, semantics and some
notes on inference rules for a logical calculus in which attributes
can take set values (generalized attributes). In comparison with other
attributive logics, its expressive power is increased through the in-
troduction of new relational symbols enabling definitions of atomic
formulae. This logic provides very strict and rigorous definition of
rule semantics allowing for knowledge definition which can be un-
ambiguously interpreted.

A single rule in ALSV(FD) is defined as a set of ALSV(FD)
triples. The exemplary rule from Section 3.2 can be expressed in
ALSV(FD) in the following way:

r1 : (driverAge,<, 25) ∧ (drLicAge,>=, 3)→
→ (driverDiscount, :=, driverDiscount+ 50)

The complete formalization of XTT2 can be found in [19].

3.4 Rule Processing
XTT2 provides a dedicated rule processing mechanism. This is an
advanced inference algorithm that can work in one of four modes:
Fixed Order, Data, Token and Goal Driven (for more details see [13]).
The inference mechanism is responsible for evaluating and executing
(firing) rules. The rules are processed in predetermined order which
is specified by taking the following issues into account: inference
mode, links between modules, order of the rules in the XTT2 table.

4 Challenges in the Rule Interoperability between
XTT2 and CLIPS

The goal of our work is to develop a common unified rule repre-
sentation model for efficient rule interoperability between different
rules representations. Our starting point is formalization of the XTT2
method which provides the underlying ALSV(FD) logic. Neverthe-
less, the current form of the method does not use the ALSV(FD) logic
effectively (lack of support for complex types) and has several lim-
itations. In comparison to CLIPS, this language constitutes a subset
of CLIPS. In this context, the knowledge interchange between XTT2
and CLIPS requires many improvements and changes that must be
done in XTT2 in order to provide a better coverage of CLIPS. Some
of the limitations stem from the made assumptions and others stem
from the visual representation. This section provides a detailed de-
scription of the most important challenges in the context of extending
XTT2 and efficient rule interoperability with CLIPS. The section is
divided into subsections according to aspects introduced in Section 3.

4.1 Rule Base
Rule base modification CLIPS provides a mechanism allowing

for modifying a Knowledge Base (KB) by asserting, retracting and
modifying facts. This can be done using the following commands:
assert, retract and modify. Thanks to this, when the system
is running, the number of facts in the KB can be changed. In contrast
to CLIPS, the XTT2-based knowledge base defines a system with a
constant number of facts described by attributes. During the execu-
tion, attributes are neither created nor removed from the knowledge



base. Only the current value of the attribute can be changed. Never-
theless, the process of asserting and retracting facts in XTT2 can be
achieved using generalized attributes (see paragraph Multivalued at-
tributes in Section 4.2).

Modularization of Knowledge Base Both, XTT2 or CLIPS pro-
vide mechanism for creating modularized knowledge base. In XTT2,
set of rules that work together are grouped into so called contexts.
Each context corresponds to a single XTT2 table and contains rules
which have the same attributes in their conditional and conclusion
parts. In turn, CLIPS provide modules which can be defined using
defmodule construct. In contrast to XTT2, CLIPS modules do not
provide any policy determining which construct can be placed in
a module. In particular any rule (or other construct) can be placed in
any module. In fact, this is also possible in XTT2 and can be achieved
by extending rules LHS and RHS by all attributes that appears in the
other rules in this context. However, this can lead to formation of
large tables in which majority of cells contain always true compar-
isons (an example of such table is depicted in Figure 3).

CLIPS modules allow a set of constructs to be grouped together
such that explicit control can be maintained over restricting the ac-
cess of the constructs by other modules. This type of control is sim-
ilar to global and local scoping used in languages such as C. The
default behavior in CLIPS restricts constructs in one module to be
accessible in another. However, this can be modified and selected el-
ements can be permitted to be visible from other modules. In turn, the
XTT2 rules placed in one context are not accessible from another.

In both CLIPS or XTT2, modules are used by rules to provide exe-
cution control. In CLIPS, each module has its own pattern-matching
network [13], and thus only rules from the active module can be ac-
tivated and executed. Similarly, in XTT2 only rules from the active
context are evaluated and can be executed.

Variables CLIPS provides two elements which allow for stor-
ing information: facts and variables. Nevertheless, the semantics of
these two elements is different. Facts are knowledge-based elements
which defines what is currently known. Any change made in a set
of facts invokes the pattern-matching process. In contrast to facts,
variables are used for defining non knowledge-based values e.g. val-
ues of some factors, constant values, etc. Variables can be used as a
part of pattern-matching process, however changes of their values do
not invoke pattern-matching. CLIPS variables can be defined using
defglobal construct e.g.:

(defglobal ?*high-priority-factor* = 100)

In turn, XTT2 does not provide any concept having the same se-
mantics as CLIPS variables. The system designed with XTT2 con-
sists of attributes. According to ALSV(FD), the state of the XTT2-
based system is defined as a set of current values of all attributes
specified within the knowledge base. From logical the point of view,
the state of the system is represented as a logical formula (1). Ac-
cording to this definition, all XTT2 attributes are considered to be
knowledge-based elements.

It is important to notice that the inference mechanism from XTT2
works in different way than in CLIPS. It evaluates rules in predeter-
mined order and changes in attribute values do not affect it.

4.2 Rule syntax
Complex types The first and most important limitation of the

XTT2 is related to complex types. A complex type is a data type

that provides its own structure and aggregates a fixed set of labelled
fields, possibly of different types, into a single type. An example of
such type is a structure that is known from C programming language.
The ALSV(FD) logic provides support for complex types and objects
throughout attribute function which denotes a property of an object
and allows for accessing its value using property name. However,
currently XTT2 uses only atomic types for defining all attributes in
the knowledge base and assumes that only one object (in this case
it is the system being described) with a specific property name ex-
ists. In turn, CLIPS provides deftemplate element that allows
for defining complex facts consisting of number of typed properties
(called slots in CLIPS-based vocabulary):

(deftemplate person
(slot name (type SYMBOL))
(slot surname (type SYMBOL))
(slot gender (type SYMBOL))
(slot height (type INTEGER))
(slot age (type INTEGER))

)

This example defines a template of person which allows for creating
complex facts consisting of five typed properties: name, surname,
gender, height and age.

Multivalued attributes ALSV(FD) provides a generalized at-
tribute that can take more than one value at any point of time. This is
very important and useful feature of ALSV(FD), however it is hard
to assess to which element of the CLIPS language it corresponds.
There are two obvious possibilities:

• facts list of the same type – a generalized attribute can be used
for aggregation of values having the same type. A value of gener-
alized attribute is defined as set. Such sets can be modified using
set theory operators. In particular union of sets or difference of
sets can correspond to CLIPS operations of asserting or retracting
facts to/from knowledge base.

• multivalued slots – the deftemplate construct in CLIPS allows
for defining multivalued slots which can take more that one value:

(deftemplate person
(slot name (type SYMBOL))
(slot surname (type SYMBOL))
(slot gender (type SYMBOL))
(slot age (type INTEGER))
(slot height (type INTEGER))
(multislot friends (type SYMBOL))

)
(assert (person (name Tom) (surname Joe)

(gender M) (age 18) (height 180)
(friends John Alex Emma))

)

This defines a man (M) Tom Joe that is 180 cm tall and 18 years
old and has three friends: John, Alex and Emma. It is important
to notice that the list of friends is not treated as one string contain-
ing spaces, only as the list of three separate values.
Usually multislot contains values with the same semantics (infor-
mally described by a slot name). Apart from the support for com-
plex types, the generalized attribute in XTT2 can be used in the
same context as the multivalued slots in CLIPS.



Figure 3. An example of a large XTT2 table

Expressions in LHS The XTT2 method provides mechanisms for
logical quality analysis called HalVA [14]. It allows for discovering
logical anomalies such as inconsistency, redundancy, contradictions
etc. In order to assure higher efficiency of HalVA, the LHS of the
rule can contain only a simple attribute-to-value comparisons e.g.:

A = 12 B > 23 C in {1,2,3}

Such comparisons test a specific attribute against its value. Thus,
an attribute is always on the left hand side of a comparison and con-
stant value or set of constant values on the right hand side. Neither
attributes nor expressions are allowed on the right hand side e.g.:

A = 11+1 B < A-3

In turn, the Right Hand Side (RHS) of a rule can contain complex
expressions and attribute references:

A := A+1 B := 4*3

In contrast to XTT2, CLIPS allows for any complex expressions in
conditional part of the rules. This limitation of XTT2 can be omitted
by creating an additional decision table having required expression
in its RHS. The figure 4 depicts the equivalent construction in CLIPS
and XTT2. The rules comes from the Cashpoint example [21] and are
intended to check if a user has entered a correct PIN. This is done by
comparing enteredPIN and correctPin attributes. The equal-
ity of this two attributes is a condition that must satisfied in order to
authorize a user. In CLIPS this condition can be placed directly in
LHS of a rule, while XTT2 required an additional table (Table3)
and attribute (pinDifference).

Constraints ALSV(FD) provides a concept of attribute domain.
A domain is a finite set of admissible values that attribute can take.
Each domain is based on one of two primitive types symbolic or nu-
meric. In XTT2, for each attribute a domain must be specified. The
domain concept plays important role because it is used by verifi-
cation mechanism for discovering logical anomalies in knowledge
base. The example below shows a definition of types (in HMR lan-
guage) restricting values of the attributes describing a person. We
assume that:

name is not restricted and can contain any list of characters,
gender can take only two values: M for male and F for female,
height can take a value from the interval [0, 300],
age can take a value from the interval [0, 120].

xtype [name: name,
base: symbolic].

xtype [name: gender,
base: symbolic,
domain: [M,F]].

xtype [name: height,

base: numeric,
domain: [0 to 300]].

xtype [name: age,
base: numeric,
domain: [0 to 120]].

In CLIPS, a value of a slot can be restricted using similar
concepts: primitive types, list of values, ranges. However, CLIPS
provides more primitive types than XTT2: SYMBOL, STRING,
LEXEME, INTEGER, FLOAT, NUMBER, INSTANCE-NAME,
INSTANCE-ADDRESS, INSTANCE, EXTERNAL-ADDRESS, and
FACT-ADDRESS. Moreover, CLIPS allows for restricting a number
of elements in multivalued slots.

The equivalent CLIPS-based definition of slot constraints describ-
ing person may look like this:

(deftemplate person
(slot name (type SYMBOL) )
(slot surname (type SYMBOL))
(slot gender (type SYMBOL)

(allowed-symbols M F))
(slot height (type INTEGER) (range 0 300))
(slot age (type INTEGER) (range 0 120))
(multislot friends (type SYMBOL))

)

The one advantage of XTT2 in comparison with CLIPS is that the
XTT2 allows for defining symbolic ordered domains. Such concept
is similar to enum construct from C programming language. Thanks
to ordering, the symbolic values can be treated as ordinary integer
values e.g.:

xtype [
name: weekdaytype,
base: symbolic,
domain: [mon/1,tue/2,wed/3,thu/4,

fri/5,sat/6,sun/7],
ordered: yes].

In this example a type describing weekdays is defined. Each day has
assigned an equivalent numeric value. Thanks to that one can write:

mon > tue A = tue+wed

The results of this expressions are equal to results of corresponding
expressions where symbolic values were replaced with numeric.

Values binding In some cases, it is very hard or even impossible
to define LHS of a rule by using only logical and relational oper-
ators. Let us consider the following example: The knowledge base
contains information about a number of people described by proper-
ties defined in paragraph Complex types:



xrule ’Table3’/1:
[enteredPin eq any,

correctPin eq any]
==>
[pinDifference set
(correctPin-enteredPin)]

:’Table2’.

xrule ’Table2’/1:
[pinDifference neq 0]

==>
[authorizated set false,

failedAttempts set (failedAttempts+1)]
:’Table1’.

xrule ’Table2’/2:
[pinDifference eq 0]

==>
[authorizated set true,

failedAttempts set failedAttempts]
:’Table1’.

(defrule rule-1
?a <- (atm (enteredPin ?e)

(correctPin ?c)
(failedAtempts ?f))
(test (neq ?e ?c))

=>
(modify ?a (authorizated false)

(failedAtempts (+ ?f 1))))

(defrule rule-2
?a <- (atm

(enteredPin ?e)
(correctPin ?c))

(test (eq ?e ?c))
=>
(modify ?a (authorizated true)))

Figure 4. The equivalent construction in XTT2 (on the left) and CLIPS (on the right)

(person (name Tom) (surname Joe)
(gender M) (age 18) (height 180)
(friends John Alex Emma))

(person (name Emma) (surname Johnson)
(gender F) (age 19) (height 180)
(friends Tom Julia))

(person (name Alex) (surname Johnson)
(gender M) (age 17) (height 170)
(friends Tom Emma Julia))

Our task is to define a rule selecting all allowed pairs of persons
which can dance together. Two person can dance together when sat-
isfy the following conditions: 1) They have different gender and 2)
they have the same growth. Such a rule can be easily written us-
ing mechanism allowing for value binding. This mechanism allows
for retrieving desired value during inference and storing it in a user-
defined variable. Then, this variable can be used in further conditions
as well as conclusion part. The rule for our task can look like this:

(defrule rule-1 "Our solution"
(person (name ?n1) (surname ?s1)
(gender M) (height ?h))

(person (name ?n2) (surname ?s2)
(gender F) (height ?h))

=>
(printout t ?n1 " and " ?n2 crlf)

)

The LHS of the rule contains two conditions that refers to person
template. Thanks to this, the inference algorithm would try to match
all possible pairs of person facts. When a single match is per-
formed, then the variables (which names start with question mark)
are bound to the current value of the matched fact. Binding is made
only one time during a single match and the variable stores bounded
value until this particular match is finished. Thus, usage of bounded
variable in further conditions restricts the set of elements that can
be matched because matching algorithm must take its value into ac-

count. So, the variable binding can be used for defining restrictions
across several objects. In our example, the ?h variable is bound in
the first condition and then its value is used in the second condition.
This restricts the set of possible facts that can be matched to the sec-
ond condition, because apart from the value F of the gender slot,
a matched fact must have the same value of the height slot as the
fact matched in the first condition.

Variable bindings is currently not supported in XTT2. Thus, defi-
nitions of equivalent rule is currently not possible.

Functions CLIPS allows for defining functions. It is possible to
define a user-defined external functions that can be written in an ex-
ternal language e.g. C and then linked with CLIPS during recom-
pilation. Such functions can be later executed directly in CLIPS in
ordinary manner. Moreover, CLIPS provides a second mechanism
allowing for defining function directly in CLIPS by using CLIPS-
based syntax. This can be done with the help of the deffunction
construct. The CLIPS-based functions have all features that an ordi-
nary function can have i.e.: unique name, list of parameters, sequence
of actions, returned value, recursion. An example function that cal-
culates the factorial of an argument can be written as follows:

(deffunction factorial (?a)
(if (or (not (integerp ?a)) (< ?a 0)) then

(printout t "Factorial Error!" crlf)
else

(if (= ?a 0) then
1

else
(* ?a (factorial (- ?a 1))))))

It is important that each function can be invoked from any part of
a rule and can modify a knowledge base.

XTT2 provides a similar mechanism to CLIPS user-defined ex-
ternal functions through callbacks. Callback function is an external
function written in Prolog or Java language. Then, such function is
invoked by Prolog interpreter directly or by using JPL plugin for call-
backs written in Java.



Figure 5. An example of dialog invoked by callback function

Callbacks in XTT2 are strictly related to attributes. Each attribute
can have two callback functions assigned: input callback and/or out-
put callback. The input callbacks are used for retrieving attribute
value from outside system when value of an attribute is not defined.
Thus, this type of callback function can modify a knowledge base. In
contrast to input callbacks, the output callbacks cannot modify state
of the system and are used only for presentation purposes. The or-
der and time when a callback is invoked is determined by inference
algorithm and cannot be redefined. The example below depicts the
definition of input callback and attribute to which is assigned:

xcall ask_console_symbolic: [AttName] >>> (
alsv_domain(AttName,Domain,symbolic),
write(’availible answers are ’),
write(Domain), nl,
write(AttName), write(’: ’), read(Answer),
(member(Answer,Domain) ->

xattr [name: weekday,
abbrev: weekday,
class: simple,
type: weekdaytype,
comm: in,
callback: [ask_console_symbolic,[day]]

This callback function invokes dialog allowing user to provide
value of an attribute. The example of such dialog is depicted in Fig-
ure 5. The list of possible values is created according to attribute
type. The definition of the attribute weekday type can be found in
Section 4.2 in paragraph Constraints.

4.3 Rule semantics
Ordered structures CLIPS facts defined by using deffact con-
struct are also called non-ordered facts. This is because the fact struc-
ture consists of fields that are referred by named slots. Additionally,
CLIPS provides an ordered facts which encode information position-
ally. To access the information, a user must know not only what data
is stored in a fact but which field contains the data. The first field
of an ordered fact specifies a relation that applied to the remaining
fields in the ordered fact e.g.:

(father-of jack bill)

This fact defines that bill is the father of jack.
The current XTT2 method does not provide any concept with sim-

ilar semantics. ALSV(FD) provides support only for complex types,
where properties of object are referred by attribute function.

Rules properties The way, a rule is processed by CLIPS can be
modified by changing rule properties. CLIPS provides support for
two properties auto-focus and salience.

The auto-focus property allows an automatic focus com-
mand to be executed whenever a rule becomes activated. If the
auto-focus property for a rule is true, then a focus command
on the module in which the rule is defined is automatically executed
whenever the rule is activated. This property can be used for defining
rules responsible for values validation:

(defrule VIOLATIONS::bad-age
(declare (auto-focus TRUE))
(person (name ?name) (age ?x&:(< ?x 0)))

=>
(printout t ?name " has a bad age value."))

The above rule is activated whenever the VIOLATIONS module re-
ceives focus and checks if all the person facts accessible in that mod-
ule have correct value of the slot age.

The salience property allows for assigning a priority to a rule.
This property is a part of conflict resolution mechanism, which uses
a salience value for determining order of rules to be fired. Rules
with higher value have precedence to be executed.

XTT2 does not provide any rules properties directly. However, the
ALSV(FD) logic defines the decision component (table) as follows:

t = (r1, r2, . . . , rn)

This means that rules placed in an XTT2 table are ordered. The in-
ference engine uses this order for determining precedence of rules
evaluation and execution. This precedence can be changed by mov-
ing rules in the table.

This behavior corresponds to CLIPS salience rule property.
However, XTT2 forces the different values of rules priority in con-
trast to CLIPS that allows for rules with the same priority. This is
why, the XTT2 method do not provide conflict resolution strategies.

4.4 Rule processing
Facts maintenance Any modification of KB in CLIPS that is done
by using commands like assert, retract and modify, exe-
cutes a pattern-matching algorithm which attempts to match rules
to the current state of the system (as represented by the fact-list and
instance-list). Each rule that has satisfied their conditional part (LHS
– Left Hand Side) with respect to the modification is activated for
execution. CLIPS allows non monotonic inference because each rule
firing may again modify the KB. This inference process continues
while KB is being modified. During this time, any rule can be acti-
vated and executed many times.

As it was mentioned, the XTT2 knowledge base contains a con-
stant number of attributes (facts). The only modification that can
be made is changing of the attribute value. However, in contrast
to CLIPS, such modifications of the KB do not execute pattern-
matching algorithm in order to find the rules that have satisfied their
conditional parts against to a new system state.

This behavior is deliberate and follows from the method assump-
tions. According to this assumptions, the user defines the functional
dependencies between attributes (links between tables). Thus, if a
rule should be checked for execution when a value of an attribute
is changed, then a user must define an appropriate dependency. This
allows for optimized rule activating and more advanced inference
control in comparison with CLIPS.



5 Summary
The main focus of this paper is to compare XTT2 with the CLIPS
language. The scope of the provided comparison covers only the ba-
sic CLIPS language elements. In fact, the CLIPS language provides
fully object oriented syntax called CLIPS Object Oriented Language
(COOL). However, in the context of this paper the COOL syntax has
not been taken into account. This paper tries to identify differences
between these two languages in terms of the following aspects:

• Rule Base — differences related to knowledge maintenance and
representation,

• Rule syntax — comparison of the languages expressiveness,
• Rule semantics — differences in knowledge interpretation,
• Rule processing — issues related to different knowledge evalua-

tion and processing.

As it can be concluded from this paper, expressiveness of the XTT2
language (in comparison with CLIPS) is limited in each of the con-
sidered aspect. What is more, this paper shows that the ALSV(FD)
logic, on which XTT2 is based, has also several limitations. On the
other hand, in contrast to CLIPS, the XTT2 language provides strong
underlying formalism playing a key role in rule interoperability. Due
to the fact that CLIPS language is only a programming solution, a
definition of an efficient CLIPS-based knowledge interchanging can-
not be done. This is why, the extension of both the ALSV(FD) logic
and XTT2 is a must in order to define an unified and formalized
knowledge interoperability method. This extended formalism will
allow for preserving rule semantics during interchanging. What is
more, this method is intended to be supported by tools.

We selected the CLIPS language because it is considered to be
successful in the Artificial Intelligence research community and have
been used for many AI software projects. What is more, similarly
to CLIPS, the XTT2 language is intended to be rule-based systems
modeling method in their classic form. On the other side, the current
application of rules (Business Rules) differs from the classic systems.
One of the most important difference lies in different rule types. The
classic systems usually provide only one rule type called production
rule, while the BR-based languages provide five rule types: Denotic
Rules, Derivation Rules, Integrity Rules, Reaction Rules and Trans-
formation Rules. This rule classification is based on the specific rule
properties (e.g. monotonicity of KB modification) and purposes (e.g.
reaction on events). We do not discuss the differences between these
types in details, because this is out of scope of this paper. These five
types of Business Rules slightly extend the semantics of the produc-
tion rules. Nevertheless, each type of Business Rule can be repre-
sented in classic rule-based systems using the production rules. This
is why, despite the classic nature of CLIPS or XTT2, these languages
can also be used for BR modeling.

The mentioned in Section 2. methods for rule interoperability (e.g.
RIF) try to take rule properties and purpose into account. This is why,
such a language is divided into so called dialects. RIF provides two
standard dialects for rule representation: BLD (Basic Logic Dialect)
and PRD (Production Rules Dialect). In general, the BLD and PRD
dialects divide rules into two types: allowing for monotonic and non-
monotonic changes in the Knowledge Base. In terms of BR types,
usually the Derivation, Denotic and Transformation rules can be ex-
pressed in the BLD dialect while remaining in the PRD dialect.

Working on extension of XTT2 and ALSV(FD), the different types
of rules will be taken into account and different formalisms will be
provided. We assume, the unified rule representation model will be
based on the Attributive Logic. However, this issue will be elaborated
in details in the future work.
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[20] Grzegorz J. Nalepa, Antoni Ligęza, Krzysztof Kaczor, and Weronika T.
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