
Template-based Extensible Prototyping for Creativity-
and Usability-Oriented Knowledge Systems Development

Martina Freiberg and Frank Puppe 1

Abstract. In knowledge-based systems (KBS) development, there
still is a lack of research regarding user interface (UI) design and
(usability) evaluation. Thus, especially KBS UIs still often are de-
veloped in a rather ad hoc manner, lacking reusability of proven so-
lutions and potentially valuable experimentation with design alter-
natives and their thorough evaluation. We propose the tailored KBS
prototyping and engineering tool ProKEt for practically supporting
Template-based Extensible Prototyping, a technique for more effi-
cient, affordable, and UI design/usability evaluation oriented KBS
development. Further, we report current projects where both the ap-
proach and the tool provided valuable support.

Keywords: Knowledge-based System, Knowledge System Engi-
neering, Extensible Prototyping, UI Design, Usability Evaluation

1 Introduction

Knowledge-based systems (KBS) engineering still constitutes an ef-
fortful, expensive task in terms of development time and costs; also,
the focus often is on knowledge base development whereas UI de-
sign, creativity/experimentation, or even formal usability evaluation
are considered rather lower priority task—if considered at all. Proba-
bly due to the numerous benefits of web-based systems, an increasing
number of knowledge-based/expert systems seems to be developed
for the web. However, such systems apparently often are being de-
veloped for quite specialized contexts in a rather ad hoc manner and
not (re)using (neither providing) any patterns or best practices espe-
cially regarding the UI/interaction design. Amongst the reasons for
this may be the lack of research—c.f. Duan et al. [9]—and tool sup-
port for encompassing KBS development, i.e., particularly integrat-
ing UI design and usability evaluation. An important premise for cre-
ative KBS (UI) development, for reusability of existing solutions and
their usability-related evaluation is the availability of an affordable
development methodology and tool. With regards to general KBS
development there exist various software tools—such as JavaDON
[15], or KnowWE [6]—as well as development methodologies—e.g.,
CommonKADS [14], or the Agile Process Model [5]. Yet, such ap-
proaches mostly focus on knowledge base design and evaluation. In
contrast, we propose ProKEt as tailored development tool for web-
based KBS that seamlessly couples agile KBS development—with
particular focus on UI/interaction design—with semi-automated us-
ability evaluation activities; therefore, the tool particularly supports
Template-based Extensible Prototyping—a tailored form of evolu-
tionary prototyping—and fosters reuse of existing KBS solutions.
Concerning usability evaluation—specifically collecting click log

1 University of Würzburg, Germany, email: freiberg/puppe@informatik.uni-
wuerzburg.de

data—there exist a vast range of both research-based and commer-
cial tools; however, those mostly need to be separately installed and
configured. In contrast, ProKEt seamlessly integrates appropriately
tailored evaluation mechanisms.

In Section 2, we propose Template-based Extensible Prototyping
in more detail. We then introduce the KBS engineering tool ProKEt
in Section 3 for practical support of the described, tailored prototyp-
ing approach for KBS. In Section 4, we report experiences with the
approach and the tool during current projects. We conclude with a
summary of the presented research and an outlook on prospective
future work in Section 5.

2 Template-based Extensible Prototyping

Evolutionary prototyping—see e.g. [7]—in particular evolves
mature prototypes continuously into productive systems; yet the
process, until a productive stage is reached may be quite lengthy.

Template-based Extensible Prototyping (TEP) We propose
Template-based Extensible Prototyping (TEP) as a tailored form of
online evolutionary [7] prototyping that additionally (re-)uses cer-
tain template or pattern sets for accelerating development. In con-
trast to basic evolutionary prototyping, TEP particularly focusses on
the anytime production of functional systems. TEP basically con-
sists of the two stages pure prototyping, and productive prototyp-
ing; consequently, it results in two types of prototype artifacts: An
interactive, potentially slightly stripped-down user interface proto-
type (pure prototype), that can be transferred into an entirely pro-
ductive, non-prototypical system with no effort. In the context of
KBS, we think of pure prototypes as a specific excerpt of the sys-
tem that mirrors only the core KBS specific UI and interactions, but
not yet contains general required functionality such as session per-
sistence or login mechanisms. In the productive prototyping stage,
the pure prototype is transferred into a productive system by asso-
ciating it with the respective knowledge base and aforementioned
add-on functionality. For a detailed introduction of basic Extensible
Prototyping and how it can be integrated with agile KBS develop-
ment, see [12]. The additional usage of proven KBS solutions in the
form of templates further enriches Extensible Prototyping by foster-
ing efficiency and affordability as copying & and adaption/extension
can be exploited. Templates thereby are applied directly at the pure
prototyping stage when developing the UI of the prototype and fu-
ture system, respectively. The range of templates should encompass
more generic, system-level templates—e.g. for the entire framing
UI design—to fine granular templates—e.g. for single UI elements
such as buttons or the representation of questions and their answer
alternatives. We propose a set of (system-level) templates derived



from practical project experiences in the next section. Besides from
UI templates, knowledge patterns—for creating the knowledge base,
such as proposed in [13]—are an opportunity for further leveraging
the overall KBS development process.

Due to the application of reusable UI/KBS templates where
reasonable and due to the deliberate exclusion of certain system
aspects, pure prototyping becomes an affordable and straightforward
task—even the more when TEP-tailored tools such as ProKEt,
see Section 3, are available. Thus, it particularly supports the
development of multiple alternative KBS prototypes in parallel
and/or to develop in a highly iterative manner. Also, a more creative,
experimental KBS design process is fostered, as e.g. novel KBS
UI forms can be experimentally tried out while there is no need
to deal with selecting—or newly developing—the appropriate
required knowledge representation immediately. It can be argued,
that template-based development and using a specific and thus
potentially restricted tool could rather hinder than unfold creativity;
there, we argue that it is no strict prerequisite to always make
use of all or even any existing templates, but they are more to be
seen as additional option to accelerate development in cases where
system requirements and framing conditions are similar. Moreover,
we claim it a major important feature of such template sets to be
assembled of modular entities that built on each other and can be
most easily extended; this allows for reusing just the templates that
match the given requirements (and save time and efforts) and to
get creative with other parts. Regarding template selection, this is
currently intended as a manual process, depending on the project
requirements and on the experiences of the knowledge engineer;
however, we also plan to further enrich the approach with a template
selection KBS which could—based on some entered framing
properties—propose and setup the most appropriate template for a
given context. Further, the affordability of frequent iterations sup-
ports usability-oriented development both implicitly and explicitly.
Implicitly, as iterative development most often naturally detects
shortcomings and flaws of the system which are more likely to be
refined the more development iterations are performed. Explicit
usability support is provided, as it becomes possible to create several
alternative pure prototypes—which, as described above, exhibit
a mature UI and the core interaction—and to formally evaluate
them in a straightforward manner under quite realistic framework
conditions. Due to the possibility to create alternative prototypes by
simply adding adapted/other knowledge bases to the pure prototype,
both UI and knowledge base can be assessed and refined in a highly
iterative and visual manner.

Exemplary KBS UI Templates Due to practical experiences
in past and current KBS projects, several system-level templates for
web-based KBS could be identified. The Questionary style displays
questions in resemblance to paper-based questionnaires. Two exem-
plary realizations of the Questionary template are shown in Figure
1, A (1-column style) & B (3-column style). For a more compact
UI, the Daily template was developed; an exemplary 3-column Daily
prototype is depicted in Figure 1, C. There, questionnaires and their
included questions form a column-wide, visual entity similar as in
common newspapers. Both Questionary and Daily style can be ap-
plied for documentation KBS—where the focus is on collecting data
uniformly and correctly—as well as for consultation KBS—that de-
rive one or several solutions based on the user input provided for
the questions. Questionary and Daily style are introduced some-
what more elaborately in [12]. As an example for an efficient, skill-
building KBS UI, we propose the iTree template, particularly apt for

clarification consultation KBS—i.e., systems, where only a single is-
sue is rated. An exemplary implementation is shown in Figure 2, A.
The core issue as well as the questions–a tailored form of yes/no
questions with additional value neutral/uncertain—that determine
the core issue rating are presented in a hierarchical, tree-like man-
ner. The core issue rating is derived from its top-level questions—
placed directly underneath the core issue and are interactively and
recursively navigable. We refer to [10] for a more detailed introduc-
tion of the iTree. Also applicable for clarification KBS, yet also for
multiplex consultation KBS—where one issue/solution out of a po-
tentially extensive set of solutions is to be derived due to the provided
input—is the One-Question template. An example is shown in Fig-
ure 2, B. It basically aims at closely imitating a conversation between
the system and a user by always presenting only the one appropriate
next question at a time. The intention of such a strict conversational
style is to ease the interaction as that way the user can always fully
concentrate on the current question at hand, letting the KBS guide
the problem solving workflow. In [10] also more details on the One-
Question style are given. Of the proposed templates, so far only iTree
and One-Question contain explanation modules, i.e., parts of the UI
where the results of the KBS session are displayed and explained—in
iTree above the tree part and in One-Question above the main, con-
versational question display panel. This is mostly due to the fact, that
Questionary and Daily style were so far only applied in the context of
documentation KBS where no solutions/diagnoses/explanations are
required; nevertheless, there exist rough, alternative Questionary pro-
totypes that also include prototypical explanation modules realized,
e.g., as additional side panels.

3 ProKEt: Practical KBS Development Support

ProKEt is a tailored Prototyping and Knowledge systems
Engineering tool for web-based documentation and consultation
KBS; it additionally provides support for various usability evaluation
activities and fosters Template-based Extensible Prototyping (TEP).
Pure prototypes are constructed in ProKEt by simply specifying a
certain template name—e.g. oqd for the One-Question template—
when defining the prototype-knowledge in a tailored XML format;
then ProKEt automatically selects the required system-level and sub-
templates and assembles them into a KBS prototype (pure prototyp-
ing). Templates thereby are defined by using the StringTemplate [4]
technique, whereas the specific design/styling of UI elements is
mostly done by separate CSS; relevant core interactivity—e.g., value
abstraction—which needs to be imitated in pure prototypes is real-
ized by JavaScript and is included automatically. When switching
to productive prototyping, the basic KBS framework remains the
same, making productive prototyping as easy as linking a productive
knowledge base and potentially slightly adapting the base specifica-
tion regarding, e.g., the CSS to be used. ProKEt currently supports
exclusively d3web [1] knowledge bases which allow for defining a
vast range of knowledge representations, such as (heuristic) rules,
decision trees, or set-covering knowledge. This straightforward pure-
to-productive-prototyping switch is supported for a bunch of basic
KBS templates—as summarized in the previous section—out of the
box. Thus ProKEt allows for a straightforward and affordable pro-
totyping and engineering process in cases where framing conditions
and system requirements are similar. Yet, also creativity is fostered,
as existing templates and/or style files can easily be adapted or even
completely rewritten, whereas the ProKEt framework—that finally
assembles prototypes and productive KBS and enriches them by the
required interactivity—needs not to be altered normally. For a more



extensive introduction of particularly the agile prototyping and engi-
neering process with ProKEt and a detailed description of the tool,
see [12]. It has to be noted, that when used as a prototyping envi-
ronment alone, ProKEt (is not intended to and) does not provide any
way to create (d3web) knowledge bases. However, when addition-
ally using the semantic wiki KnowWE [6] for knowledge base devel-
opment, both UI front-end and KB back-end can be developed in a
tightly interconnected manner: Changes made to the knowledge base
in the wiki can directly be deployed to the ProKEt artifact by a sim-
ple button click, making the changes immediately visible in the UI,
which in turn eases the direct investigation of the recent changes and
the potentially resulting side-effects regarding the UI.

Regarding usability, ProKEt directly offers integrated functional-
ity to perform usability evaluations. This fosters the seamless in-
tegration of more or less extensive or formal evaluations into the
KBS development process. Therefore, ProKEt basically offers quan-
titative and qualitative data collection mechanisms, which can be
added for both prototypes and productive KBS by a simple prop-
erty in the knowledge specification. As a result, e.g. questionnaires
are included within the prototype UI and/or click logging is acti-
vated. Thus, developers can setup and conduct various evaluation
scenarios and assess the current development state in a favorable way
any time. Regarding quantitative data, ProKEt provides a tailored,
mouse click and keyboard event logging mechanism that records
all relevant actions during KBS usage sessions. Based on that data,
ProKEt furthermore automatically calculates a bunch of known us-
ability metrics—such as Success Rate, or Average Task Time. For
qualitative data collection, ProKEt supports both the integration of
form-based questionnaires/surveys—standard measures as e.g. the
SUS [8] are provided out of the box, yet own questionnaires can be
integrated equally easily—and of anytime feedback—a mechanism
for collecting free user feedback at any time during a KBS session.
All recorded data—quantitative as well qualitative—can be exported
to a standard CSV format for further processing e.g. in statistical
software. For more details on ProKEt’s usability extension, see [11].

4 Case Studies

Several current projects so far showed the general applicability as
well as the value of the Template-based Extensible Prototyping ap-
proach and the ProKEt tool.

Mediastinitis The Mediastinitis Registry [3] is a german na-
tional project for improving patient care in a cardiac medical con-
text. Therefore, certain medical data are collected and statistically
evaluated as to develop appropriate future treatment strategies—for
more details, see [12]. For best supporting data entry by the medical
staff, a knowledge-based documentation system was implemented.
Based on a first specification of the underlying knowledge, the first
prototype—Figure 1, A—was created; based on that, ProKEt al-
lowed for creating also the two alternative designs in a straightfor-
ward manner by just adapting the respective UI templates and style
files, and linking them with the existing knowledge. Thus the entire
KBS framework, that was working for the first prototype, was reused,
which greatly shortened the development efforts required for the UI
alternatives (shown in Figure 1, B & C). After selecting the proto-
type fitting the requirements and expectations of the medical doctors
best—Figure 1, B—a productive knowledge base was created and in-
cluded with the chosen prototype UI (productive prototyping stage).
In the further course, one of the doctors from the project reviewed
the respectively current prototype by entering exemplary cases; the
required adaptions—both regarding the knowledge base and its rep-

resentation in the UI—were made in a timely manner and the expert
continued reviewing the adapted prototype; thereby, the possibility to
adapt UI and knowledge base separately from each other, but imme-
diately re-merge them into new productive KBS for further review-
ing was particularly valuable. This highly iterative process allowed
for detecting and removing several non-obvious flaws regarding both
knowledge base and UI, and thus for improving the system’s overall
usability.

(A)

(B)

(C)

(A)

Figure 1. The three initial Mediastinitis prototypes (in german). 1-column
questionary style (A); 3-column questionary style (B); daily style (C).

EuraHS EuraHS [2] is a project of the European Hernia Soci-
ety (EHS) with the goal to improve patient care and increase knowl-
edge regarding abdominal wall hernia surgery. Similar as in Medi-
astinitis, relevant data is to be collected and statistically evaluated;
due to the similar basic framing conditions and application context,
the first EuraHS prototype could be quickly built by (re)using the
basic Mediastinitis prototype framework and just adapting the ini-
tial, exemplary knowledge specification. Based on that prototype, a
first phase of iterative development began, where the expert partic-
ipation remained passive, as he reviewed the respective prototypes
and just reported what to refine. However, once the knowledge was
transferred into a productive d3web knowledge base—starting the
productive prototyping process—the expert was enabled to actively
participate in the further development. This was possible due to the
mechanism to immediately deploy adapted knowledge to the dialog
system via the direct linkage between the knowledge base develop-
ment tool KnowWE [6] and the dialog UI. This extensive expert par-
ticipation was perceived highly beneficial as it led to a high satisfac-
tion on the side of the expert due to his active involvement and result-
ing identification with the system; it further saved time and efforts, as
on the one hand the expert knowledge was formalized in an unsophis-
ticated manner and thus contained less flaws, and on the other hand
the parallel development of KBS/UI (university team) and KB (ex-
pert) led to quicker overall results. The highly iterative process again
enabled many KB and UI refinement cycles, thus enhancing the over-
all quality of the system. The final EuraHS implementation is quite
similar to the final Mediastinitis system—c.f. Figure 1, B—however
enhanced by several additional features including image questions
(where answers can be selected visually) and a more comprehensive
mechanism for flexibly fading in and out parts of the UI depending
on already provided answers. For a more detailed description of Eu-
raHS, see [12].



JuriSearch JuriSearch was started in 2012 as a cooperation
between the university of Würzburg and the RenoStar corporation
and aims at building a freely accessible, web-based knowledge-based
system for the legal domain for various topics, such as right of can-
cellation or the law of tenantry. The target system is intended to in-
tegrate both a standard consultation (entrance) module—helping the
user to preselect the specific problem definition—and various clar-
ification modules for each potential problem—which then validate
the concrete rating of that issue. Target users range from legal lay-
men—searching for a basic understanding/estimation of their case to
(fresh) lawyers seeking for guidance regarding legal (sub)domain(s)
that are not exactly their special field of work. So far, the focus lay on

IF

IF

AND

AND

IF

IF

IF

OR

Core Issue

Y

Y

Y

N

Y

N

N

Y

Y

N

N

N

J

reject

confirm

neutral

(G)

N

N

N

N

N

Y

Y

Y

Y

Y
Details

Is the dismissal formally legal?

Is the dismissal legally correct regarding the contents?

Is the dismissal not prohibited due to timely limitations?

Is the dismissal not prohibited due to special laws?

Was the statutory period of notice adhered to?

(B)

(A)

J

N

N

N

N

N

Y

Y

Y

Y

Y
Details

Is the dismissal formally legal?

Is the dismissal legally correct regarding the contents?

Is the dismissal not prohibited due to timely limitations?

Is the dismissal not prohibited due to special laws?

Was the statutory period of notice adhered to?

(B)

Figure 2. The two JuriSearch prototypes: interactively navigable iTree
clarification style (A), and One-Question clarification style (B).

the clarification modules each of which rates exactly one distinct core
issue, e.g. ”Was the cancellation legally correct” (labour legislation
domain). Initially, we experimented with two alternative yet distinct
UI forms: An iTree implementation, depicted in Figure 2, A, and a
One-Question UI, depicted in Figure 2, B. Therefore, first an iTree
prototype was implemented based on a rough specification of the un-
derlying knowledge. The possibility, to create various prototypes by
simply exchanging the knowledge specification again proved valu-
able, as that way the prototypes could be reviewed highly iterative
by a RenoStar staff member; this strongly supported the refinement
and correction of both the underlying knowledge but also its most
appropriate UI representation. ProKEt further allowed for creating
the alternative One-Question UI in an affordable and timely manner
in parallel to the iTree development. Based on those two alternative
prototypes, so far several comparative assessments were performed.
As first goal of the studies, it was assessed whether the iTree or the
One-Question UI style were more suitable—if any—for the target
context in general; there, the results of the studies indicate, that for
the specific context of legal clarification consultation—a domain of
highest expertise which needs to be mirrored adequately yet under-
standably by the KBS—the iTree is perceived more suitable and in-
tuitively usable than the One-Question UI. Elaborate details on that
study can be found in [11]. Furthermore, studies were conducted as
to asses two distinct alternative knowledge base structures for the
iTree style—one adhering to a legal specialist deduction scheme, the
other specifically intended to provide more guidance and overview
for legal laymen users; there, so far no significant distinction could
be identified whether one scheme works better than the other. How-

ever, both the knowledge base as well as the UI could be drastically
improved by refining them according to the respective insights and
user comments gained in the user studies.

5 Conclusion
For leveraging the issue of a lacking integration of UI-related cre-
ativity and usability activities in KBS current development, we pro-
posed Template-based Extensible Prototyping as KBS development
technique that despite originally being developed specifically for the
KBS domain may as well be applicable in general software engineer-
ing. For practical support of the approach, we introduced the KBS en-
gineering tool ProKEt and we reported case studies that showed the
applicability and value of the approach and tool. Regarding future
work, current and upcoming projects raised the need for extending
the collection of KBS classes and UI templates supported by ProKEt.
Also, integrating mouse tracking mechanisms as addition to the ex-
isting click logging seems promising as to gain even more detailed
insights regarding the UI usage evaluation. Equally, an automated, vi-
sual evaluation aid—that compares the solutions derived by the users
with the correct solutions—could strongly support usability related
evaluations. Further, a more formal classification of existing KBS
types and respective suitable UI styles/interaction forms—e.g. in the
form of a KBS pattern catalogue or also an interactive pattern selec-
tion KBS—could enrich the overall approach; thereby, the combina-
tion of UI templates/patterns and KB patterns [13] seems promising
for encompassing, reusability-enabling KBS development.

REFERENCES
[1] http://d3web.sourceforge.net/ , last checked Jun. 1st, 2012.
[2] http://eurahs.drwontwikkeling.nl/, last checked Jun. 1st, 2012.
[3] http://www.dgthg.de/register, last checked Jun. 1st, 2012.
[4] http://www.stringtemplate.org/, last checked Jun. 1st, 2012.
[5] Joachim Baumeister, Agile Development of Diagnostic Knowledge Sys-

tems, IOS Press, AKA, DISKI 284, 2004.
[6] Joachim Baumeister, Jochen Reutelshoefer, and Frank Puppe,

‘KnowWE: A Semantic Wiki for Knowledge Engineering’, Applied In-
telligence, 35(3), 323–344, (2011).

[7] Michel Beaudouin-Lafon and Wendy Mackay, ‘Prototyping Tools and
Techniques’, in The human-computer interaction handbook: fundamen-
tals, evolving technologies and emerging applications, pp. 1006–1031,
Hillsdale, NJ, USA, (2003). L. Erlbaum Associates Inc.

[8] J. Brooke, ‘SUS: A quick and dirty usability scale’, in Usability evalu-
ation in industry, eds., P. W. Jordan, B. Weerdmeester, A. Thomas, and
I. L. Mclelland, Taylor and Francis, London, (1996).

[9] Y. Duan, J. S. Edwards, and M. X. Xu, ‘Web-based expert systems:
benefits and challenges’, Information & Management, 42, 799–811,
(September 2005).

[10] Martina Freiberg and Frank Puppe, ‘itree: Skill-building user-centered
clarification consultation interfaces (to appear)’, in KEOD 2012 - Pro-
ceedings of the International Conference on Knowledge Engineering
and Ontology Development, (2012).

[11] Martina Freiberg and Frank Puppe, ‘Prototyping-based Usability-
oriented Knowledge Systems Engineering’, in To appear in Proceed-
ings of Mensch und Computer 2012, (2012).

[12] Martina Freiberg, Albrecht Striffler, and Frank Puppe, ‘Extensible pro-
totyping for pragmatic engineering of knowledge-based systems’, Ex-
pert Systems with Applications, 39(11), 10177 – 10190, (2012).

[13] Frank Puppe, ‘Knowledge Formalization Patterns’, in Proceedings of
PKAW 2000, Sydney Australia, (2000).

[14] Guus Schreiber, Hans Akkermans, Anjo Anjewierden, Robert de Hoog,
Nigel Shadbolt, Walter Van de Velde, and Bob Wielinga, Knowledge
Engineering and Management - The CommonKADS Methodology, MIT
Press, 2 edn., 2001.

[15] Bojan Tomic, Jelena Jovanovic, and Vladan Devedzic, ‘JavaDON: an
open-source expert system shell’, Expert Systems with Applications,
31(3), 595 – 606, (2006).


