

Working with Grid Services and Resource Metadata using Existing Specifications and Tools

Savas Parastatidis

Savas@Parastatidis.name http://savas.parastatidis.name

IST Workshop, UCL - 16.12.2003

www.neresc.ac.uk

- Service Orientation
- Resources and the need for Metadata
- Grid Resource Metadata
- Conclusions

THE GRID

- "What is the Grid?"
 - "Neo, the Grid is everything you would like it to be"
- Just few...
 - Virtual organisations
 - Integration of distributed resources
 - Universal computer
 - Interconnection technologies for supercomputers
- Or... if you are a technologist
 - An application domain for the Web Services ideas and technologies
- Or... if you are a researcher/academic
 - A new set of interesting problems in distributed computing applied at a global scale
- A world-wide virtual computer (http://www.ibm.com/grid)
 - Computational resources
 - Data resources
 - Network bandwidth
 - Etc.

- Built around the concepts of service and message
- A service may be defined as a logical manifestation of some physical resources (like databases, programs, devices, or humans) that an organization exposes to the network
- A service is an entity that can send and receive messages
- A service adheres to a contract
 - Describes the format of the messages exchanged
 - Defines the message exchange patterns in which a service is prepared to participate

Service Orientation

- Don Box's four tenets about Service Orientation
 - Boundaries are explicit
 - Services are autonomous
 - Services share schema and contract, not class (abstractions)
 - Service compatibility is determined based on policy

Source: "A Guide to Developing and Running Connected Systems with Indigo" http://msdn.microsoft.com/Longhorn/understanding/mag/default.aspx?pull=/msdnmag/issues/04/01/Indigo/default.aspx and various talks

The Anatomy of a Web Service

- Large grained, loosely coupled
 - Performance, scalability, maintenance, re-use, etc.

Resources

- There is a many-to-many relationship between resources and services
- If resources are exposed outside an organisation's boundaries there is need for
 - Ontologies
 - Relationships
 - Location information
 - Lifetime information
 - Ownership/access restrictions information
 - Provenance
 - etc.

• Metadata

- OGSI: Open Grid Services Infrastructure
- Built around the concept of a Grid Service Instance
- A conceptual one-to-one association between a Service Instance and a Resource
 - Although not a restriction imposed by the specification
- Metadata about resource exposed through Service Data Elements (SDEs)

- A "requirement" due to the additional semantics introduced to services
 - 1-1 association with a resource
 - Coupling of interface and state
 - Coupling of interface and identity
 - "Publicly visible state" of a Grid Service Instance
- Why mandatory?
 - Better as an optional specification at the Open Grid Services Architecture level
- "Will be introduced in WSDL 2.0", "The Web Services community needs them"
 - WS-Attributes will be considered as a separate specification now

The Grid Resource Metadata Document

- Functionality equivalent to Service Data Elements
- Everything implemented using existing technologies and tooling
- Not Grid-specific (it's just an XML Schema document)

- Infrastructure does not need to be aware of the differences in metadata documents
 - Generic metadata Web services
 - Generic tools for Peer-to-Peer metadata propagation
 - Generic metadata registries
 - Databases

Identity

- Grid Resource Identifier (GRI) (like an LSID)
 - Everlasting, unique resource identifier (Uniform Resource Name, URN)
 - Can be stored in a database or printed in a journal
 - Decoupling of identity from interface

A service could be seen as a resource

Demo

- A generic browser
- Few Web Services (in Java and .NET)

SDEs vs GRM

- SDEs
 - Require additions to WSDL
 - New SDE-aware tools
 - Add semantics to a Web service
 - Requires a particular Web service interface (SDE-specific)
- Grid Resource Metadata document
 - Based on XML-Schema
 - No additions to WSDL or another specification
 - Existing tools work
 - Does not add semantics to a Web service, it's just a document
 - Could be published into a registry
 - Requires a particular Web service interface (Management interface or another interface) but other solutions can be built around it (e.g., P2P, registries, etc.)

- SDEs were invented to support a perceived requirement due to the semantics associated with Grid Service Instances
- The Grid Resource Metadata document is a functionally equivalent alternative to SDEs
 - Without requiring changes to the semantics of the underlying infrastructure or the tooling
 - Existing technologies to describe metadata does not have to change
 - Reuse all existing work
- Proposed as an "envelope" for metadata information
- Very simple solution

- Paul Watson (Paul.Watson@newcastle.ac.uk)
- Savas Parastatidis (Savas.Parastatidis@newcastle.ac.uk)
- Jim Webber (JimWebber@hotmail.com)

Web Services Grid Application Framework (WS-GAF)

http://www.neresc.ac.uk/ws-gaf

