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Abstract. Knowledge Discovery in Databases (KDD) has evolved
a lot during the last years and reached a mature stage offering plenty
of operators to solve complex data analysis tasks. However, the user
support for building workflows has not progressed accordingly. The
large number of operators currently available in KDD systems makes
it difficult for users to successfully analyze data. In addition, the cor-
rectness of workflows is not checked before execution. Hence, the
execution of a workflow frequently stops with an error after several
hours of runtime.

This paper presents our tools, eProPlan and eIDA, which solve the
above problems by supporting the whole life-cycle of (semi-) auto-
matic workflow generation. Our modeling tool eProPlan allows to
describe operators and build a task/method decomposition grammar
to specify the desired workflows. Additionally, our Intelligent Dis-
covery Assistant, eIDA, allows to place workflows into data mining
(DM) tools or workflow engines for execution.

1 Introduction

One of the challenges of Knowledge Discovery in Databases (KDD)
is assisting users in creating and executing KDD workflows. Existing
KDD systems such as the commercial IBM SPSS Modeler3 or the
open-source KNIME4 and RapidMiner5 support the user with nice
graphical user interfaces. Operators can be dropped as nodes onto
the working pane and the data-flow is specified by connecting the
operator-nodes. This works very well as long as neither the workflow
becomes too complicated nor the number of operators becomes too
large.

However, in the past decade, the number of operators in such sys-
tems has been growing fast. All of them contain over 100 operators
and RapidMiner, which includes Weka, R, and several pluggable op-
erator sets (such as anomaly detection, recommendation, text and im-
age mining) now has around 1000. It can be expected that the transi-
tion from closed systems (with a fixed set of operators) to open sys-
tems that can also use Web services as operators (which is especially
interesting for domain specific data access and transformations) will
further accelerate the rate of growth resulting in total confusion about
what operators to use for most users.

In addition to the number of operators also the size of the KDD
workflows is growing. Today’s workflows easily contain hundreds
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of operators. Parts of the workflows are applied several times (e.g.
the preprocessing sub-workflow has to be applied on training, test-
ing, and application data) implying that the users either need to
copy/paste or even repeatedly design the same sub-workflow6 sev-
eral times. As none of the systems maintain this “copy”-relationship,
it is left to the user to maintain the relationship in the light of changes.

Another weak point is that workflows are not checked for correct-
ness before execution. As a consequence, the execution of the work-
flow oftentimes stops with an error after several hours runtime due to
small syntactic incompatibilities between an operator and the data it
should be applied on.

To address these problems several authors [1, 3, 18] propose the
use of planning techniques to automatically build such workflows.
However, all these approaches are limited. First, they only model
a very small number of operations and were only demonstrated to
work on very short workflows (less than 10 operators). Second, none
of them models operations that work on individual columns of a data
set: they only model operations that process all columns of a data
set in the same way. Lastly, the approaches cannot scale to large
amounts of operators and large workflows: their planning approaches
fail in the large design space of “correct” (but nevertheless most often
unwanted) solutions. A full literature review about IDAs (including
these approaches) can be found in our survey [13].

In this paper we describe the first approach for designing KDD
workflows based on ontologies and Hierarchical Task Network
(HTN) planning [5]. Hierarchical task decomposition knowledge
available in DM (e.g. CRISP-DM [2] and CITRUS [15]) can be used
to significantly reduce the number of generated unwanted correct
workflows. The main scientific contributions of this paper, hence,
are: First, we show how KDD workflows can be designed using on-
tologies and HTN-planning in eProPlan. Second, we exhibit the pos-
sibility to plug in our approach in existing DM-tools (as illustrated
by RapidMiner and Taverna). Third, we present an evaluation of our
approach that shows significant improvement and simplification of
the KDD-workflow design process. Thus, the KDD researchers can
easily model not only their DM and preprocessing operators but also
their DM tasks that is exploited to guide the workflow generation.
Moreover less experienced users can use our RM-IDA plugin to au-
tomatically generate workflows in only 7-clicks. Last but not least,
the planning community may find it interesting to see this real world
problem powered by planning techniques and may also find some of
the problems we faced and solved rather pragmatically inspiring for

6 Several operators must be exchanged and cannot be reapplied. Consider for
example training data (with labels) and application data (without labels).
Label-directed operations like feature-selection cannot be reapplied. But
even if there is a label on separate test data, redoing feature selection may
result in selecting different features. To apply and test the model, however,
exactly the same features have to be selected.
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further research.
The rest of this paper is structured as follows: Section 2 describes

the knowledge used for planning, then Section 3 details the compo-
nents of our system. Section 4 describes several evaluation methods
and, finally, we conclude with Section 5.

2 The Planning Knowledge
We modeled our Data Mining Workflow planning problem as a Data
Mining Worlkflow ontology (DMWF),7 which we succinctly illus-
trate here (a more detailed description of it can be found in [8, 9]).

The DMWF contains input/output objects and their meta-data
(Sec.2.1), which are sufficiently detailed to enable column-wise op-
erations – a feature that is not available in any of the previous ap-
proaches. In addition, tasks and methods are used to guide and sim-
plify the planning process. Each method consists of a sequence of
steps, where each step is a (sub-) task or an operator (Sec. 2.2 shows
some of the methods). In total, the DMWF contains more than 100
operators from RapidMiner (Sec. 2.3 illustrates one). The amount of
operators and their partial redundancy made it favorable to structure
them in an inheritance hierarchy starting with abstract operators un-
til the basic operators which can be applied on the data. The number
of operators is not a limitation of the HTN-planning approach, but a
limitation set by the effort to model them and to keep them consis-
tent with changes introduced by new releases of RapidMiner. To get
a significantly higher number of modeled operators, semi-automatic
modeling or at least verification methods need to be developed.

Besides the main contribution of supporting users in designing
KDD workflows, this paper may also be interesting to the planning
community because it shows the successful usage of planning tech-
niques to solve the problem of workflow design and more generally
problem-specific software-configuration. It may stipulate further re-
search on planning as we solved some problems that did not get much
attention in planning so far. First, in our domain it is usually easy to
find a correct plan. The simplest correct plan for prediction uses the
default model (mean-value for regression, modal-value for classifi-
cation). This is a correct solution for all predictive modeling prob-
lems, but it is only the baseline that DM wants to improve and not
the wanted solution. We tackle that problem by excluding such un-
wanted workflows from our HTN. The real problem is not finding a
solution, but handling the large amount of solutions8. We handle this
by grouping of plans based on meta-level equivalent output (similar
characteristics of the output) 9 and by using the probabilistic pattern
generated by meta-learning (see Sec. 2.4) not only to rank the enu-
merated workflows, but also for a heuristic beam search in the space
of possible solutions. Another interesting problem is the large num-
ber of relevant operators that we handled by embedding conditions
and effects into an ontological operator hierarchy with inheritance.
This is supported by our eProPlan plugin into the popular ontology
editor Protégé. Furthermore, RapidMiner (and in DM in general) has
several special purpose control/loop operators like cross-validation.
They are parametrized operators (the number of folds and the sam-
pling strategy for cross validation). In contrast to other operators, it is

7 It is public available from http://www.e-LICO.eu/ontologies/dmo/
e-Lico-eProPlan-DMWF-HTN.owl. The best way to open this ontology is:
download Protégé 4.0 or 4.1 from http://protege.stanford.edu/ and
eProPlan from http://elico.rapid-i.com/eproplan.html (2.0.1 for
Protégé4.0 and 2.1.0 for 4.1).

8 With column-wise operations this may be very large, just consider having
5 alternative methods to discretize 100 attributes. This results in 5100 ≈
1070 possible correct plans.

9 ’Meta-level equivalent output’ can be defined as the IOOs-descriptions pro-
duced by the planner are equivalent up to the names of individuals.

not sufficient to choose the dominating operators since they contain
one or more subtasks that have to be planned as well. This is similar
to planning general control structures like if-then-else or loops, but
the problem is also easier to solve as these dominating operators and
their subtasks have a special purpose and, therefore, task/method de-
compositions as all other tasks. Figure 1a shows a cross-validation
workflow which uses first a preprocessing task and then it applies
cross-validation to produce and test the model as seen in Figure 1b.
During the training step it selects the important features and then it
trains the model. The produced model is then applied on the testing
data. The output is an average of the n runs (where n is the number
of folds, usually set to 10).

(a)

(b)

Figure 1: (a) Cross Validation as Operator (labeled as “Validation” in
the Figure) in a workflow; (b) Subtasks of Cross Valdation

2.1 Meta-Data to describe Input/Output Objects
The planner recognizes the IO-Objects (e.g. DataTable, Document-
Collection and ImageCollection), Background Knowledge, Model
(e.g. PreprocessingModel and PredictionModel, recording required,
modified, added and deleted attributes such that the conditions and
effects of applying these models on the data can be computed by
the planner), and Report (e.g. PerformanceVector and LiftChart). As
an example Table 1 shows the meta-data of a DataTable. The meta-
data for the user-data is generated by RapidMiner’s/RapidAnalytic’s
meta-data analyzer and passed to the planner. During the planning
process the planner generates the meta-data of an operator’s output
objects from the operator’s effect-specification (see Sec. 2.3).

Attribute #Attr Type Role #Diff #Miss Values Min Max Mean Modal Std.

age 1 Scalar input 0 [] 20.0 79.0 50.95 16.74
genLoad 1 Nominal input 2 36 [0,1] 1
label 1 Nominal target 2 0 [+,-] +
meas1 1 Scalar input 0 [] 0.10 3.93 1.845 0.861
meas2 1 Scalar input 30 [] 0.12 4.35 1.979 0.902
meas3 1 Scalar input 0 [] 0.33 5.35 2.319 1.056
sex 1 Nominal input 2 0 [f,m] m

Table 1: Meta-Data for a Data Table

One of the strengths of the IDA is the ability to plan workflows
with attribute-wise operations – a feature no other previous approach
had so far. Especially biological micro-array data can easily contain
several thousand columns, turning this possibility into a major per-
formance bottleneck. Looking at a number of such analyses we ob-
served that these columns often have very similar (if not identical)
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(a)

(b)

Figure 2: Methods for (a) Modeling with Test-Set Evaluation and (b) Preprocessing

meta-data and data characteristics, effectively eliminating the need
to differentiate between them during planning. To keep the strength
and avoid the performance bottleneck of several thousand attributes
that are identical on the meta-data level, we introduced attribute
groups that collect all attributes together where the operator con-
ditions would not discriminate between them anyway. This worked
well as all column-wise operators were able to handle not only single
columns but also specified sets of columns. Therefore, we are able to
generate workflows with attribute-group-wise operations for micro-
array and collaborative filtering data with even 50.000 attributes.

There are various approaches which have used meta-data to sug-
gest the best algorithm for a given problem [12, 4, 7] in the context
of meta-learning.

2.2 The Task/Method decomposition

The top-level task of the HTN is the DM task. It has six methods:
Clustering, Association Rule Mining, Predictive Modeling with Test
Set Evaluation (external given separation), Predictive Modeling with
Cross Validation, Predictive Modeling with Test Set Split Evaluation
(random 70:30 split), and Simple Modeling with Training Set Perfor-
mance.

The selection is directed by the (required) main-goal, i.e. Pattern
Discovery enforces Association Rule Mining, Descriptive Modeling
enforces Clustering, and Predictive Modeling forces the choice of
one of the others. If test data are provided Modeling with Test Set
Evaluation has to be chosen, otherwise the choice can be influenced
by an (optional) evaluation-subgoal (not possible with the current
GUI). If there are still several methods possible, they are enumer-
ated in the rank-order provided by the probabilistic planner (see Sec.
2.4). Each method consists of a sequence of steps, where each step
is a (sub-)task or an operator (it can also be an abstract operator sub-
suming several basic or dominating operators). Planning occurs in
the order of steps, however the resulting data flow is not necessarily
linear, as the grammar allows the specification of port mapping. Fig-
ure 2a shows the method Modeling with Test Set Evaluation and its

flow of IO-Objects in RapidMiner.10 The white nodes are tasks to be
planned and the other nodes are operators. Operators in RapidMiner
are grouped in a way similar to the DMWF. Some of the top nodes
have colors. The greenish ones are operators that deal with Model
as well as objects that inherit from Model. This includes all learn-
ers and the Apply Model operator. The more purple ones are data
transformation operators. The RapidMiner’s plan-interpreter adds a
Multiply node whenever an IO-Object is used by several operators.

The Preprocessing task has only one method (Fig. 2b). First an
empty preprocessing model is created using the operator “Group
Models”. It is then extended by the next steps. All its sub-tasks
have optional “Nothing to Do” methods (as shown for CleanMiss-
ingValues in Fig. 3c). Most of the preprocessing methods are recur-
sive, handling one attribute at a time until nothing is left to be done.
CleanMissingValues has two different recursive methods, the choice
is made by the planner depending on the amount of missing values. If
there are more than 30% values missing, the attribute can be dropped
(Figure 3b). When there are less than 50% missing, it can be filled
with mean or modal value (Figure 3a). If 30− 50% of the values are
missing, both methods can be used and plans for both are enumer-
ated in the order provided by the probabilistic planner. The usage of
column-wise operations is illustrated in Figure. 3, which shows how
depending on the amount of missing values per column the planner
chooses to fill or drop the column.

Figure 4 shows a generated workflow for the UCI data set labor-
negotiations, which has 16 attributes with various amounts of miss-
ing values. Note that in its output the planner compresses recursive
tasks into a single task to simplify the browsing of the workflow by
the user. Such column-wise handling can greatly improve the results
of workflows. For users, however, it is usually too much manual ef-
fort (placing and connecting the 22 operations and setting their pa-
rameters in the workflow below).

In total the HTN of the DMWF now contains 16 tasks with 33

10 Note that the figures illustrate the methods with structurally equivalent
workflows in RapidMiner and do not show the more complicated method
definitions in the ontology.



(a) (b) (c)

Figure 3: The (a) “Fill Missing Values”, (b) “Drop Missing Values”,
and (c) “Empty”/“Nothing to Do” Method that can be used in Fig. 2b

Figure 4: Resulting Example Workflow for Missing Value Cleaning

methods, such that it handles general DM from single table data sets
with adequate preprocessing. However, we believe that this will show
its real power in customer/application area specific grammars de-
signed and/or extended in eProPlan, resulting in adaptive customer
templates for workflows. The complexity of the produced workflows
depends on the characteristics of the dataset (if it has missing val-
ues, if it needs to be normalized, etc.) and on the number of modeled
operators for each steps of the KDD process (FeatureSelection and
DataMining have more operators). Due to space limitations, we only
illustrate some parts of the grammar here. The full grammar can be
inspected in the public available DMWF-Ontology11.

2.3 The Operator Models
To be able to express the operators’ conditions and effects for plan-
ning we stored them as annotations in the ontology. Conditions and
effects can contain concept expressions, SWRL-rules,12 and some
extended-SWRL-like built-ins. We have introduced a set of special
built-ins needed for planning (e.g., new, copy, copyComplex, etc.).
These built-ins allow to create, copy, and destroy objects during plan-
ning (e.g., models, produced IO-objects, weights, etc.). eProPlan al-
lows to define new built-ins which are stored as subclasses of the
Built-in concept. Each built-in can have types/parameters and the
corresponding implementation in Flora2 [16]. But users who want to
add new built-ins need to have some Flora-2 knowledge. They have
the possibility to define new functions/operations on the data and in-
troduce them in the conditions and effects. The built-ins’ definition
with parameters and implementation are stored as class annotations.

11 Use an OWL2 Ontology Editor like Protege to ”Open OWL on-
tology from URI” with http://www.e-lico.eu/ontologies/
dmo/e-Lico-eProPlan-DMWF-HTN.owl

12 http://www.w3.org/Submission/SWRL/

Inputs and outputs of an operator are defined as concept expres-
sions and are either stored as superclasses or as equivalent classes.
The parameters and the corresponding RapidMiner operator name
are stored in equivalent classes. Fig. 5 exemplifies the abstract op-
erator for a classification learner operator with its corresponding in-
puts/outputs, condition and effect.

”ClassificationLearner”:

Equiv. class: PredictiveSupervisedLearners and
(uses exactly 1 DataTable) and
(produces exactly 1 PredictionModel) and
(operatorName max 1 Literal)

Condition: [DataTable and (targetAttribute exactly 1 Attribute) and
(inputAttribute min 1 Attribute) and
(targetColumn only (DataColumn and
columnsHasType only (Categorial))) and
(inputColumn only (DataColumn and
columnsHasType only (Scalar or Categorial)))

](?D)

→ new(?this), ClassificationLearner(?this), uses(?this,?D)

Effect: uses(?this,?D), ClassificationLearner(?this),

inputColumn(?D,?IC),targetColumn(?D,?TC),

→ copy(?M,?D, {DataTable(?D), containsColumn(?D,? ),

amountOfRows(?D,? )}),produces(?this,?M), PredictionModel(?M),

needsColumn(?M,?IC), predictsColumn(?M,?TC)

Figure 5: An abstract operator: ClassificationLearner

A basic classification learner operator inherits all the characteris-
tics of the classification learner. In addition, it can define more refined
conditions or effects and more parameters. Fig. 6 shows the refine-
ment of the general class of all classification learners to a specific
Support Vector Machine implementation in RapidMiner. It has an
additional condition (binary target and scalar input attribute and no
attribute is allowed to have missing values), but it does not contain a
refined effect. Its effect is the one used for all classification learners
(it builds a predictive model that requires all input attributes to be
present to be applicable and predicts the target attribute).

”RM Support Vector Machine LibSVM C SVC linear”:

Equiv. class: RM Operator and
(usesData exactly 1 DataTable) and
(producesPredictionModel exactly 1 PredictionModel) and
(simpleParameter kernel type value ”linear”) and
(simpleParameter svm type value ”minimal leaf size”) and
(operatorName exactly 1 {”support vector machine libsvm”})

Condition: [MissingValueFreeDataTable and
(targetColumn exactly 1 CategorialColumn) and
(inputColumn min 1 Thing) and
(inputColumn only (ScalarColumn))

](?D)

→ RM Support Vector Machine LibSVM C SVC linear(?this),

simpleParameter svm type(?this,”C-SVC”),

simpleParameter kernel type(?this,”linear”)

Figure 6: A basic classification learner operator

Each input/output class expression (e.g., usesData exactly 1
DataTable) has an annotation which defines its port mapping to its
corresponding RapidMiner operator port (e.g., ”training set”). Both
conditions and effects are rules. Conditions check the applicability
(lhs) and infer the parameter settings (rhs); different solutions can
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infer that the operator can be applied with different parameter set-
tings. Effects compute the variable-bindings (lhs) for the assertion to
be made (rhs); all different solutions are asserted as the effect of one
operator application.

2.4 Probabilistic Ranking of Workflows

The HTN-planning method described in this paper enumerates all
possible workflows for a given problem. The operator models en-
sure that they are executable without error. Furthermore, the HTN-
Grammar prevents senseless operator combinations. For example,
first normalizing the data and then discretizing it does not make sense
since the normalization effect is absorbed by the discretization one.
Also, converting the scalar data to nominal and then converting it
back is a useless operation. Another example is dropping attributes
without a reason. Nonetheless, the planner can still generate a very
large number of correct candidate workflows and we are unaware
of any analytical knowledge available to decide which of them will
perform well on the current data. Meta-learning tries to learn rela-
tions between data characteristics and method performance. Hence,
the IDA uses such meta-learned [11] patterns to order the enumera-
tion of M candidate workflows (heuristic search) and to finally se-
lect the N best plans and present them to the user. The ranking ap-
proach works as follows: whenever several operators ( ’meta-level
NON equivalent output’ ) or methods are applicable, the PP is asked
for a (local, up-to now) ranking and delivers the plans in this order.
This determines which space is enumerated if the planner is asked
for a limited number of solutions. In the end, all generated alterna-
tives are ranked (with left and right context available) for the final
presentation to the user.

The planning knowledge described above also does not know
about the execution time of operators. This is caused by the fact that
the actual runtime of a DM method cannot be predicted easily be-
cause of the complexity of the generated models. It can be worst-case
bounded in the number of examples and attributes, but its actual size
is strongly affected by statistical properties (e.g. noise-level) of the
data. The runtime prediction of a DM method was first introduced in
[6]. The ranking in our planner, therefore, relies on a meta-learning
based method to predict the runtime of modeling and feature selec-
tion operators [19].

3 The Overall System

Our system has two main components as illustrated in Fig. 7: ePro-
Plan, our modeling support tool for new operators and new tasks to
be solved by the planner, and eIDA, which generates and deploys
workflows into DM-suites. eProPlan is the modeling environment
for the DM Workflow Ontology (DMWF). It allows to model new
operators and uses a task-method decomposition grammar to solve
DM problems. Designed as a plugin for the open-source ontology-
editor Protégé 4,13 eProPlan exploits the advantages of the ontology
as a formal model for the domain knowledge. Instead of employ-
ing the ontological inferences for planning (as done in [3, 17]) we
extend the ontological formalism with the main components of a
plan, namely operator conditions and effects for classical planning
and tasks-methods decomposition grammar for HTN-planning. This
allowed us to cleanly separate the inheritance from the planing mech-
anisms in our systems.

13 http://protege.stanford.edu/
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Figure 7: The eProPlan architecture

The planner is implemented in Flora2/XSB [16] and uses different
parts from the workflow ontology for different purposes (see Fig-
ure 8). Specifically, it employs both a specialized ABox (assertional
box—individual assertions) reasoner that relies on an external TBox
(terminological box: classes and properties) reasoner (e.g. Pellet14

or FaCT++ [14]) as a subroutine. Since the TBox reasoner can only
partially handle OWL2 (Web Ontology Language15), we filter all ex-
pressions that are not supported from the ontology. The resulting in-
ferred/completed TBox and its possibly inconsistent class definitions
are passed to our ABox reasoner. The ABox reasoner, implemented
in Flora2/XSB, first compiles the classified TBox obtained from Pel-
let on the initial ontology. Then, we process the operators together
with their inputs, outputs, preconditions, and effects that are stored
as OWL annotations. Tasks and methods are handled analogously.
Finally, we finish with the compilation of the problem definition,
which is represented by a set of individuals. The problem descrip-
tion has two elements: the input description in terms of meta-data
(characteristics of the data like attributes, types, median, etc.) and
the goals/hints entered by the user. Both are stored as a set of ABox
assertions. Having specified the planning domain and the problem
description, one can start planning DM workflows.

TBox classification
(Pellet)

Problem
definition

- Goals/Hints     
- Input Objects

Op Defs

HTN

TBox

ABox

Applicable operators

Apply Op

Expandable Task

Expand Task

Generate N Plans

ABox Reasoning

Planner (Flora2/XSB Prolog)

DM
Workflow
Ontology

Patterns Best Ranked N Plans
Meta-learning
Probabilistic 

ranking

Figure 8: Workflow Ontology and AI Planner capabilities.

eIDA is a programming interface to the reasoner & planner used

14 http://clarkparsia.com/pellet/
15 http://www.w3.org/TR/owl2-profiles/

http://protege.stanford.edu/
http://clarkparsia.com/pellet/
http://www.w3.org/TR/owl2-profiles/


to plugin such an Intelligent Discovery Assistant (IDA), based on
the services of the planner, into existing systems (so far into Rapid-
Miner and Taverna).16 It provides methods for retrieving the plans
starting from the data set meta-data and the selection of a main goal.
To improve the user experience with the RM-IDA plugin we have
developed a simple installer based on precompiled binaries. It works
on Linux, Mac OS X 10.5/6, Windows 7 and Windows XP systems.

The RapidMiner IDA Extension can be downloaded (or even auto-
installed) from the Rapid-I Marketplace. 17 So far it was downloaded
over 150 times during the first two months.

Both presented tools (eProPlan, eIDA) are open source and avail-
able on request.

An alternative implementation of RapidMiner IDA Extension ex-
ists for Taverna18. Taverna can execute all workflows composed of
web-services. It can execute the workflows generated by the IDA19

using any RapidAnalytics 20 server that provides all RapidMiner op-
erators as web-services. Extensions for other KDD tools (e.g., KN-
IME, Enterprise Miner, etc.) would require two steps: first modeling
their corresponding operators in the DMWF, second an implementa-
tion of the GUI and the plan-converter using the IDA-API.

4 Evaluation of the IDA

We tested the IDA on 108 datasets from the UCI repository of Ma-
chine Learning datasets. 21 It produced executable plans for all 78
classification and 30 regression problems. These datasets have be-
tween three and 1558 attributes, being all nominal (from binary too
many different values like ZIP), all scalar (normalized or not), or
mixed types. They have varying degrees of missing values. We are
not aware of any other Machine Learning or DM approach that is
able to adapt itself to so many different and divergent datasets. The
IDA also works for less well prepared datasets like the KDD Cup
1998 challenge data (370 attributes, with up to 50% missing values
and nominal data, where it generates plans of around 40 operators.
Generating and ranking 20 of these workflows took 400 sec. on a 3.2
GHz Quad-Core Intel Xeon.

4.1 Ease of Use

Without an IDA data mining is typically achievable by specialized
highly-trained professionals such as DM consultants. They have to
know a lot about DM methods and how they are implemented in
tools. They have to inspect the data and combine the operators into
an adequate workflow.

The IDA reduces the technical burden, it now offers ”DM with 7
clicks” (see Figure 5). (1) Show the IDA-Perspective of the tool; (2)
drag the data to be analyzed from the repository to the view or import
(and annotate) your data; (3) select your main goal in DM; (4) ask the
IDA to generate workflows for data and goal; (5) evaluate all plans
by executing them in RapidMiner; (6) select the plan you like most
to see a summary of the plan (the screenshot in Figure 6 is made
after this step); and finally, (7) inspect the plan and its results. Note
that these steps do not require detailed technical knowledge anymore.
Still a user should be aware of what (s)he is doing when (s)he uses

16 http://www.taverna.org.uk/
17 http://rapidupdate.de:8180/UpdateServer/faces/
product_details.xhtml?productId=rmx_ida

18 http://e-lico.eu/taverna-ida.html
19 http://e-lico.eu/taverna-rm.html
20 http://rapid-i.com/content/view/182/196/
21 http://archive.ics.uci.edu/ml/
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Figure 9: IDA Interface in RapidMiner

DM, i.e. (s)he should know the statistical assumptions underlying
DM (e.g., a user should know what it means to have a sample that
is representative, relevant, and large enough to solve a problem with
DM/statistics). But this is knowledge required in any experimental
science.

4.2 Speedup of Workflow Design
Besides making DM easier for inexperienced users, our main goal
in building the IDA was to speed-up the design of DM workflows.
To establish a possible speed-up we compared the efficiency of com-
puter science students after attending a DM class to a person using
the IDA. The study comprises in total 24 students (9 in 2011 and 15
in 2012). They had to solve the following DM problems:

• Take the UCI ”Communities and Crime” data from
http://archive.ics.uci.edu/ml/datasets/
Communities+and+Crime and

a) generate a fine clustering of data that allows me to look for
very similar communities

b) generate a description of the clusters (learn a model to predict
the cluster label build in task a)).

c) generate a function to predict ”ViolentCrimesPerPop” and
evaluate it with 10-fold cross-validation.

• Take the UCI ”Internet Advertisement” data from
http://archive.ics.uci.edu/ml/datasets/
Internet+Advertisements and generate an evaluated
classification for the attribute ”Ad/Non-Ad”.

All data are provided as already imported into RapidMiner (a local
RapidAnalytics server they could access). All students took/needed
the full 3 hours.

The study confirmed that the standard DM problems they had to
solve (clustering and prediction tasks on complex UCI data) can be
sped-up by the using an IDA whilst maintaing comparable quality:
it took the students 3 hours (designing and executing the workflows)
to solve the tasks, whereas a non-specialist using the IDA accom-
plished the same tasks in 30 minutes (IDA planning and minimal
manual adaptation and execution of the workflows) with a compa-
rable output. Table 10 shows how many students managed to solve
successfully the given problems and how the IDA solved it.

http://www.taverna.org.uk/
http://rapidupdate.de:8180/UpdateServer/faces/product_details.xhtml?productId=rmx_ida
http://rapidupdate.de:8180/UpdateServer/faces/product_details.xhtml?productId=rmx_ida
http://e-lico.eu/taverna-ida.html
http://e-lico.eu/taverna-rm.html
http://rapid-i.com/content/view/182/196/
http://archive.ics.uci.edu/ml/
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements


Task #Students Succeeded #Students
partial
success

IDA’s solution

Crime Data
Clean Missing Values 22/24 1/24 drop & fill
Many Valued Nominals 11/24 6/24 drop
Normalization - - yes
Clustering 9/24 - 2/10-means
Cluster Description 8/24 - DT
Regression RMSE<0.2:11/24,

0.22≤RMSE≤0.244:
3/11, Best RMSE=0.136
±0.010 : 4/24

- k-NN
RMSE=0.2

Evaluation 15/24 2/24 10-fold X-Val
Advertisement Data

Clean Missing Values 17/24 1/24 fill
Feature Selection no no no
Classification acc>96%:13/24,

86%≤acc<96%:6/24,
Best Acc=97.32%:1/24

- DT,
Acc=96.34%±
0.65

Evaluation 5/24 7/24 10-fold X-Val

Figure 10: Features of the designed solutions by students and IDA

Both datasets had missing values which could be ignored (−), the
attribute could be all dropped or all filled or depending on the amount
of missing values individually dropped & filled. Here, both students
and IDA did a good job. The ”Communities and Crime” data had
key-like attributes (many valued nominals) which are likely to dis-
turb the DM results and should be dropped or marked as (to be) ig-
nore(d). Here, only around half of the students handled it correctly.
Numerical attributes with different scales cause unwanted weight-
ing of attributes in distance based similarity computation. Therefore,
they should be normalized22. There are several clustering methods
in RapidMiner. The best way to solve the clustering task is by us-
ing hierarchical top-down 2-means (k-means with k = 2) clustering
till the grouping is fine enough. Only one student used this approach.
The rest of the students and the IDA used k-means with different val-
ues for k (k<20 is successful, larger values make the prediction very
difficult).The IDA sets k = 2 and there is no way to specify the goal
of a ”fine clustering”. This can be solved by opening the returned
workflow and changing the parameter (re-running it is not much ef-
fort). We manually choose k = 10 as we had the next task in mind
and knew it is difficult to predict a nominal with too many different
values23, but many students chose a too fine k and failed the cluster
description task (using different methods like Naive Bayes (NB), De-
cision Tree (DT) or jRIP), most only build bad models using the not
dropped key-like attributes). For the ”ViolentCrimesPerPop”, most
students used linear regression (linReg). The probabilistic ranking
of the IDA preferred k-nearest neighbor. Common mistakes for this
task were: regression applied on the wrong attribute, converting nu-
meric data to nominal and applying NaiveBayes (bad accuracy), or
converting it to binary: no crime (3 examples), crime (595 exam-
ples) the resulting model of course predicted crime everywhere. The
DM step should have used a 10-fold cross validation, but some stu-
dents delivered a training/test set split (maybe to save execution time,
maybe because that was used in the group exercise). ”Internet Adver-
tisement” data has many attributes, so Feature Selection would have

22 In fact the initial data is 0-1 range normalized, so the students did not do
that step, but preprocessing operations like filling missing values change
the column statistics. The planner cannot predict the results very well for
column groups, so it ensures normalization of the data at the end of pre-
processing.

23 The meta-data analysis returns categorial for ≤ 10 different values and
nominal otherwise. Prediction requires a categorial target (or numeric) tar-
get, i.e. the IDA refuses to build a plan to predict a target with more than
10 nominal values.

been an option, but no one did it, also the IDA had none in the top
5 ranked plans. The task was a simple binary prediction, non-ads are
much more frequent (2820 non-ad, 459 ad), solved by all students
by different methods. One balanced the data, but that worsened the
results. One learned a decision tree but did not do an evaluation of
the results. Some students even failed to produce a model or plot the
data incorrectly (20:80).

This user evaluation provides a strong indication about the
strength of the IDA. Note that the students are an optimal user-group
for the IDA, as they have limited DM experience but understand the
principles of DM.

4.3 Performance of the generated workflows

The performance of the generated workflows depends strongly on
the ranking. The baseline strategy is to rank the workflows simply
based on the popularity of the operators. RapidMiner automatically
collects operator usage-frequencies from all the users who accept to
submit it. A workflow is ranked better, if it contains more frequently
used operators. This already produces workflows comparable to user-
designed workflows and was used in the speedup-experiments. Our
e-LICO project partners24 used the planner to systematically generate
workflows, executed them to get the performance data, and applied
meta-learning to these experiments [11].

In [10] they evaluated the meta-mining module and the resulting
plan ranking on 65 biological datasets. These datasets are high di-
mensional with few instances/samples. For their experiments they
cross-validated all performance by holding out a dataset. The re-
sulting meta-model was then used to rank the IDA-generated work-
flows. They found that the meta-learned rankings significantly out-
performed the default, frequency-based strategy. Hence, their ranker
was able to improve on our ranking to find DM workflows that max-
imize predictive performance.

5 Conclusion

We presented our Intelligent Discovery Assistant (eIDA and ePro-
Plan) for planning KDD workflows. eIDA can be easily integrated
into existing DM-suites or workflow engines. eProPlan is a user-
friendly environment for modeling DM operators and defining the
HTN grammar for guiding the planning process. Furthermore, it is
able to plan attribute-wise operations. The main scientific contribu-
tion of the IDA is the ability to build complex workflows out of a
much larger set of operations than all previous systems. The demo
presents how planning-based KDD workflow design can significantly
help KDD practitioners to make their daily work more efficient.
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