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Abstract. The term ‘hypothesis’ is part of the Linked Science Core Vo-
cabulary (LSC) as one of the core elements for making scientific assets
explicit and linked in the web of data. Hypotheses are generally under-
stood as propositions for explaining observed phenomena, but eliciting
and linking hypotheses can be a challenge. In this paper, we elaborate
on a semantic view on hypotheses and their linkage, by striving for mini-
mal ontological commitments. We address the engineering of hypotheses
as linked data, and build upon LSC by extending it in order to accom-
modate terms necessary in model-based sciences such as Computational
Science. Then we instantiate the extended LSC by eliciting and linking
hypotheses from a published research in Computational Hemodynamics.
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1 Introduction
Data-intensive science has large-scale data management as a key technology for
enabling the scientific practice. Nevertheless, there is still significant challenges
w.r.t. real-world semantics (meaning) for humans as cognitive agents to be able to
browse the data deluge [4]. In this sense, Linked Science emerges as a promising
program [11]. It has the potential to enable a semantic-sensitive linkage between
scientific assets, providing support to both humans and machines.

Scientists need to access data still in order to formulate and evaluate hy-
potheses [4]. The term ‘hypothesis’ is part of the Linked Science Core Vocabulary
(LSC) as one of the core elements for linking science [11]. Nevertheless, eliciting
and linking hypotheses can be a challenge. Scientific hypotheses are falsifiable
statements [19], which are proposed to explain a phenomenon.1 Let us consider
a well-known Einstein’s hypothesis to refer as an example. It is identified in
Wikipedia as (i) the mass-energy equivalence, and presented together with (ii)
the famous mathematical equation E = mc2. There can be variations in the for-
mulation of this mathematical expression, yet referring to the same hypothesis.
Wikipedia’s article2 is introduced with the sentence “In physics, mass-energy

1 http://en.wikipedia.org/wiki/Hypothesis.
2 http://en.wikipedia.org/wiki/Mass-energy_equivalence. Access on 7/31/2012.
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equivalence is the concept that the mass of a body is a measure of its energy
content.” This hypothesis is strongly supported by experiments, and explains the
transfer of energy and mass as a general phenomenon (cf. Wikipedia’s article).

That example illustrates a semantic view on scientific hypotheses that draws
on their existence apart from a particular statement formulation in some math-
ematical framework. The mathematical equation is not enough to identify the
hypothesis, first because it must be physically interpreted, second because there
can be many ways to formulate the same hypothesis. The link to a mathematical
expression, however, brings to the reified hypothesis concept (Wikipedia’s entry)
higher semantic precision. Another link, in addition, to an explicit description of
the explained phenomenon (emphasizing its “physical interpretation”) can then
(reasonably) succeed in bringing forth the intended meaning.

In this paper, we elaborate on a semantic view on scientific hypotheses and
their linkage, by striving for minimal ontological commitments [7]. We address
the engineering of hypotheses as linked data, and build upon LSC [11] by extend-
ing it in order to accommodate terms necessary in model-based sciences such as
Computational Science. We focus on this powerful new scientific discipline [21],
where scientific hypotheses are assumptions that constrain the interpretation of
observed phenomena for computer simulation. Then we instantiate the extended
LSC by eliciting and linking hypotheses in a published research in Computational
Hemodynamics [1]. This paper points out the important role hypotheses are to
play as conceptual entities in Linked Science [11] and theory-driven eScience [2].

The paper is organized as follows. In Section 2 we comment on a related
work background, and in Section 3 we introduce hypotheses in Computational
Hemodynamics. In Section 4 we present our semantic view on hypotheses and its
engineering in Linked Science by extending LSC. This section is fully illustrated
with examples from Computational Hemodynamics. In Section 5 we instantiate
the extended LSC in a published research on the modeling and simulation of the
human cardiovascular system. Finally, in Section 6 we conclude the paper.

2 Related Work
The HyBrow (Hypothesis Browser) conceptual framework [20] addresses hypoth-
esis modeling in Bioinformatics. It aims at providing biologists with a unified
eScience infrastructure for hypothesis formulation and evaluation against ob-
served data. HyBrow is based on an OWL ontology and application-level rules
to contradict or validate hypothetical statements. As an upgrade of HyBrow,
the HyQue [3] framework adopts linked data technologies and employs Bio2RDF
to add to HyBrow semantic interoperability capabilities. HyBrow/HyQue’s hy-
potheses are domain-specific statements that correlate biological processes (seen
as events) in First-Order Logic (FOL) with free quantifiers. Hypothesis formula-
tion in HyBrow/HyQue is constrained to a FOL-based model-theoretic semantics
in favor of hypothesis evaluation. Our point, nevertheless, is that such require-
ment could also be met without hardwiring hypothesis modeling and encoding
(cf. [13]). In our work, we strive for eliciting and linking hypotheses as conceptual
entities and capitalize on the co-existance of different formulations (possibly in
different languages) of the same hypothesis on the web.
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LSC provides core terms for making scientific assets explicit and linked in
the web of data.3 In [11, p. 12], Kauppinen et al. instantiate LSC to a research in
Environmental Conservation that investigates “the notion that hazards to Ama-
zonian forests have declined over the last decade” [16] (the emphasis is ours). In
fact, by dealing with that hypothesis as a conceptual entity, the scientists make
it possible to change its statement formulation or even to assert a semantic
mapping to another incarnation of the hypothesis in case someone else reformu-
lates it. The preservation of the hypothesis conceptual identity is particularly
interesting in that case, since it can then be tracked in public affairs.

Brodaric et al.’s Science Knowledge Infrastructure ontology (SKIo) [2] is a
foundational work to leverage data-driven eScience to a theory-driven paradigm.
SKIo extends the top-level ontology DOLCE [17], following a top-down approach
to characterize concepts of the scientific method. SKIo aims at providing ontolog-
ical distinctions of terms like ‘theory’, ‘law’, ‘problem’, which can appear in dif-
ferent contexts with subtle different meanings. This qualifies SKIo as a reference
ontology (in the sense of Guarino [8, p. 5], also called foundational [17, p. 3])
for scientific knowledge representation. On the one hand, a well-founded, fine-
grained ontology such as SKIo can be used to support meaning negotiation in
science, enabling the semantic interoperability of scientific assets. On the other
hand, SKIo’s top-down ontology engineering approach requires from scientists
(as independent knowledge engineers) to subscribe to abstract ontological com-
mitments [10]. This justifies the need for a lightweight ontology [17, p. 2], a second
kind of ontology, like LSC, to serve as a shareable, minimally laden vocabulary
that fits the needs of a community (cf. [7]). One can take benefits of both arti-
facts by instantiating the lightweight ontology, yet by referring to the reference
one as an interlingua. This is sought for in our work, which considers SKIo as a
reference ontology and LSC as a lightweight ontology for Linked Science. In this
paper we concentrate on extending and instantiating LSC for realizing Linked
Science in a research. An alignment of the extended LSC to SKIo can be ad-
dressed in future work for the semantic interoperability of scientific assets in
different researches. Then the technique for hypothesis linkage introduced here
(see Section 4.3) shall be extended to map hypotheses in different researches, in
support of the (decentralized) growth of scientific knowledge on the web.

Next section introduces hypotheses in Computational Hemodynamics. In
Computational Science, state-of-the-art models are the vehicle of several en-
tangled hypotheses about a studied phenomenon [21]. The terms ‘hypothesis’
and (modeling) ‘assumption’ are used interchangeably in that field. We then
stick to LSC’s minimal commitment in the definition of lsc:Hypothesis as “any
kind of hypothesis” [11], and do not distinguish assumptions from (say) laws,
empirical regularities, (under-)theories—for such distinctions, refer to SKIo [2].

3 Hypotheses in Computational Hemodynamics
Among plenty of natural phenomena that are addressed by research groups from
our institution, we have chosen to work in this paper with Hemodynamics. The

3 Version 11/29/2011. Available at http://linkedscience.org/lsc/ns-20111129.



4 B. Gonçalves, F. Porto, A. M. C. Moura

reason is that the sheer complexity of the human cardiovascular system (CVS)
stresses the nature and role of hypotheses in the formulation of a complex math-
ematical model. The computational modeling of blood flow in vascular vessels
can support investigations about the development of pathologies [5]. A model
used to simulate such a phenomenon has to be simple enough to allow for a nu-
merical treatment at reasonable computational costs. Yet, it has to provide all
the information that is essential for their comprehension. A relevant feature of
the phenomena of in CVS is their “multiscale” nature both with respect to time
and space variables. Blood vessels in different regions of CVS vary significantly
in terms of their diameter, wall thickness, elasticity, etc. As of time scales, the
long-term formation of atherosclerotic plaques can be a response of the vascular
tissue to specific stresses induced by the blood during heart beats (≈ 0.8 s). A
plaque developed, e.g., in the carotid artery, could affect the blood flow rate to
the brain and change the overall circulation in CVS.

The challenge of CVS modeling with multiscale techniques is addressed in the
literature by several groups, one of which leading the HemoLab project at our
institution.4 In their published research papers, an implicit complex hypothesis
is typically formulated as a sophisticated mathematical model, with the implicit
meaning that the model is fit in simulating the phenomenon of interest. That
final, synthesized hypothesis formulated as an effective model can be used to
make predictions. For this reason we shall refer to it henceforth as a hypothetico-
deductive (H–D) system [9] whenever is relevant to distinguish it as such.

Nonetheless, it is worth highlighting that a H–D system is only the scientist’s
finished work [9] and can hardly be grasped (neither is it described) at once.
Instead, it is worked out in modeling steps as the scientist goes back and forth
by assuming and revising simpler hypotheses and assembling them together. This
is something important to be considered for the sake of reproducibility. We shall
refer from now on to hypotheses in Computational Hemodynamics throughout
this paper to illustrate our semantic engineering of hypotheses as linked data.

4 Semantic Engineering of Scientific Hypotheses

A scientific hypothesis is a falsifiable statement [19]. That is, it must be prone
to be either supported or refuted by observation and experimentation. Another
point to note is that in model-based sciences, a formal language with some
notation constitutes the technical manner to express hypotheses as models, while
non-formal expressions like image sketches or natural language itself are used as
more flexible alternatives to convey meaning in papers, books, conversations.

4.1 A Semantic View on Hypotheses

In a careful examination on what a scientific hypothesis is, we note that (i) its
falsifiability grounds it in the observable world, while (ii) its statement formu-
lation allows to be assigned for it truth values. An additional feature we should
add still is that (iii) it comprises the scientist’s interpretation of the observed
phenomenon [9], and this third feature brings forth the hypothesis’ conceptual

4 http://macc.lncc.br.
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Fig. 1. Ogden and Richards’ meaning (or semiotic) triangle (from [12] apud. [18]).

nature which is important for semantic interoperability. This hypothesis three-
fold notion can be compared to Ogden and Richards’ meaning (or semiotic) trian-
gle (see Fig. 1) [18], if we consider the hypothesis conceptual identity (thought or
reference), its statement formulation as a model that can be evaluated (symbol),
and its reference to a phenomenon that can be observed or measured (referent).

Ogden and Richards’ meaning triangle has been adopted by Kuhn in his
characterization of concept for the purpose of semantic engineering [12], which
fits well to this semantic view on scientific hypotheses. In Linked Science, as we
commented on the Einstein’s hypothesis example, all of those three corners of
the triangle are relevant to be made explicit. In next section we elaborate on the
design of this semantic view on hypotheses in the framework of Linked Data.

4.2 Hypotheses as Linked Data

We design our semantic view on scientific hypotheses as a Model–Hypothesis–
Phenomenon triad and call it the hypothesis triangle (see Fig. 2). Data and
phenomenon-related entities (viz., Region, Time, and Observable) ground the hy-
pothesis triangle in the observable world. All of those entities are RDF resources
by design.

With the hypothesis triangle, scientists are able to express themselves in mul-
tiple co-existing forms on each of its three corners. This is captured by assigning
to them RDF properties. For a prompt example, let us consider a hypothesis in
Computational Hemodynamics (see Fig. 3). In the current state-of-the-art [1, 5],
the blood flow in the microvascularity (say) of the hands is assumed to behave
analogously to an electrical circuit: a resistor-capacitor connection in parallel
(standing for the flow in the arterioles), in series with another resistor (stand-
ing for the flow in the capillaries). The rationale is that the blood flows like an
electrical current. The arterioles’ wall tissue absorbs (“dissipates”) it, while still
stretching itself (locally accumulating blood) in response to a blood pressure gra-
dient (“voltage”). The capillaries in turn have a very small diameter, for which
deformation is neglectable w.r.t. the resistance to the flow. In this illustration
(Fig. 3), we are using known terms such as rdfs:label, rdf:value, dc:description
and foaf:depiction as RDF properties. These, once arranged together, can all be
worth as expressions of hypotheses, models, and phenomena. The convention of
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Fig. 2. A triadic notion of lsc:Hypothesis (thought or reference), which explains a Phe-
nomenon (referent) and is formulated as a Model (symbol). Terms with a namespace
as prefix come from LSC (version 11/29/2011) or from its imported vocabularies. The
others are proposed here to account for hypotheses in model-based sciences with no
loss in generality.

proper RDF properties for the RDF resource Model can benefit further from
ontologies for representing mathematics on the semantic web [15].

The conceptualization shown in Fig. 2 extends LSC by striving for mini-
mal ontological commitments.5 Three terms are new, namely, Phenomenon, Ob-
servable and Model. They come with five additional relational terms: explains,
formulates, represents, hasAspect and realizes; all of them are potentially n × n.
The hypothesis triangle relations explains, formulates, represents turn out to be
functional in the scientist’s final decision in adopting a particular model m1 to
formulate a hypothesis h1, which is meant to explain phenomenon p1. To an-
ticipate next section, all that lies within the scope of a research, where such
instances are to be made semantically explicit. The represents link is dashed
to point out that its instances do not have to be asserted, since they can be
inferred by a rule, namely, for all 〈m,h, p〉 ∈ M × H × P , if formulates(m, h)
and explains(h, p), then represents(m, p); where M , H and P are sets of models,
hypotheses and phenomena, respectively. In model-based sciences, it is such a
triple 〈m,h, p〉 that can afford to convey a scientific hypothesis unambiguously.

A Phenomenon, as originally defined by Kant, is “any observable occurrence,”
which is distinguished from ‘noumenon’ (thing-in-itself, not directly accessible to
observation).6 A Phenomenon isAboutRegion and isAboutTime, and it hasAspect
Observable. We adopt the term Observable, differing to (say) ‘physical quantity’,
in order to refer to the quantifiable observable world but still cover non-quantities
such as genes and astronomical objects.7 The term Data appears as a core ele-
ment in LSC. We then add the link realizes to Observable in order to tie up the

5 In particular, we have strived to make it possible for computational scientists to
promptly recognize and instantiate this extended LSC in their research.

6 http://en.wikipedia.org/wiki/Phenomenon.
7 Although in this paper we focus on Computational Science, we have strived not to

restrict this conceptualization to that discipline.
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Fig. 3. On the left, an illustration of the CVS emphasizing the multiscale modeling for
different regions of the system. On the right, a hypothesis explaining the blood flow in
the microvascularity of peripheral beds as an instance of the hypothesis triangle.

hypothesis triangle according to its grounding in the measurements of observ-
ables. Refutation can be considered a function ρ : H → [0, 1], as a measure of
the distance between data produced (model output, or, conceptually, hypothesis
predictions) and data used (model input, or, conceptually, phenomenon observa-
tions). This metrics can be designed as an RDF datatype property refutation to
be assigned by the scientist users in order to explicitly assess the quality of their
hypotheses (models) in explaining (representing) their observed phenomena.

4.3 Linking Hypotheses in a Local Research

To make only a final hypothesis (a H–D system [9]) explicit may not provide
much conceptual traceability about a research (ibid.). This issue can be ad-
dressed, however, by eliciting simpler hypotheses and linking them properly in
the derivation of more complex ones. While complex hypotheses are formed by
combining two or more hypotheses already assumed, atomic hypotheses consti-
tute for the scientist a single unit of thought either because it has been borrowed
from another research or because it has been assumed at once from scratch.

Nevertheless, hypotheses (e.g., in Mathematical Modeling) are entangled in
such a way that the primitive can no longer be identified in the resulting one.
Therefore, we do not attempt to prescribe any logical structure for hypoth-
esis combination. Rather, we borrow prov:wasDerivedFrom8 as a semantically
lightweight relation under a notion of provenance and consider that a complex
hypothesis is a blend of others. We use prov:wasDerivedFrom as an ordering re-
lation to make up a data structure for hypothesis linkage as follows.

8 From the PROV Ontology, available at http://www.w3.org/TR/prov-o/.
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Fig. 4. On the lower right, the atomic/complex hypothesis distinction, and
prov:wasDerivedFrom for hypothesis linkage. A hypothesis lattice is formed by con-
sidering a set of hypotheses equipped with prov:wasDerivedFrom as a strict order <
(from the bottom to the top). Hypotheses directly derived from exactly one hypothesis
are atomic, while those directly derived from at least two hypotheses are complex.

Def. 1 Let H be the set of hypotheses in a local research, and < be a strict order
(asymmetric and transitive). For all h1, h2 ∈ H, we write h1 < h2 if h1 was
derived from h2. More specifically, if h1 < h2 and for no h ∈ H, h1 < h < h2,
then we write h1 ≺ h2 and say that h1 was directly derived from h2.

Def. 2 We call h ∈ H an atomic hypothesis if there exists exactly one h1 ∈ H
such that h ≺ h1. Otherwise, we call h ∈ H a complex hypothesis if there exists
at least two hypotheses h1, h2 ∈ H such that h ≺ h1 and h ≺ h2.

Def. 3 There is a special hypothesis h0 ∈ H, such that for all h ∈ H \ {h0},
h < h0. We call h0 H’s top hypothesis. (trivially, h0 assumes nothing).

Our design approach for hypothesis linkage turns out to form a lattice data
structure [22], but both its formalization and the semantics of hypothesis blend-
ing fall outside the scope of this paper. Fig. 4 shows the hypothesis lattice which
comprises the H–D system (h17) of our application case in Computational Hemo-
dynamics (cf. Section 5). Symbol ‘>’ is used as a label for the top hypothesis
h0. The hypothesis shown in Fig. 3 is h14 in this hypothesis lattice.

4.4 Links of the Hypothesis Triangle as Morphisms

From the design solutions presented in the two previous sections, we obtain an
interesting framework for linking scientific assets in a research. For example,
Fig. 5 shows a complex hypothesis h8 for explaining a general phenomenon of
fluid behavior (p8) which is present in our application case (where the fluid
is human blood). This hypothesis, as a H–D system for explaining p8, is the
bottom element of the hypothesis lattice shown on the top center in Fig. 5. The
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Fig. 5. Hypothesis lattice unfolded into model and phenomenon isomorphic lattices.
Model m1 formulates hypothesis h1, which explains phenomenon p1. Similarly, m2
formulates h2, which explains p2, and so on.

hypothesis lattice is unfolded into model and phenomena isomorphic lattices
according to the hypothesis triangle (Fig. 2).9 The lattices are isomorphic if one
takes subsets of M , H and P such that formulates, explains and represents are
both one-to-one and onto mappings (i.e., bijections), seen as structure-preserving
mappings (morphisms). This turns out to be the case in published research
papers where scientists propose exactly one hypothesis to explain exactly one
phenomenon of interest, and formulate the former in exactly one way.

We are eliciting in Fig. 5, for example, the hypotheses underlying the so-
called continuity equation (m1) and the Navier-Stokes equations (m7). These
are standard models in the study of fluid mechanics [14] and they are applied
in our case in Computational Hemodynamics. The hypothesis lattice shown in
Fig. 5 (on the top center) is a sublattice of the hypothesis lattice shown in Fig. 4.
Deductions from h8 as a H–D system can be too coarse for predicting conditions
of blood flow in vascular vessels, for which predictions from h17 can be adequate.

5 Instantiation of the Extended LSC

In this section we present a published research in Computational Hemodynamics
as an instantiation of the extended LSC proposed here. The research we instan-
tiate is reported in the article “On the potentialities of 3D-1D coupled models in
hemodynamics simulations” by Blanco et al. [1] from our institution. The article
elaborates on the potential of such coupled models (introduced preliminarily by
Formaggia et al. [5]) for predicting two hemodynamics conditions: (i) the sen-
sitivity of local blood flow in the carotid artery to the heart inflow condition,
and (ii) the sensitivity of the cardiac pulse to the presence of an aneurysm. A

9 We are using symbol ‘>’ to denote a top hypothesis, and abusing this notation
slightly to mean the same (isomorphically) for the model and phenomenon lattices.
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representative account of the extended LSC instantiation on that research is de-
scribed in Table 1. The scientific assets presented in Table 1 are linked according
to the conceptualization shown in Fig. 2.

In particular, Table 1 includes the final complex hypothesis h17 which is
Blanco et al.’s H–D system as shown in Fig. 4. With the extended LSC, we can
provide scientists with interesting querying functionalities on the web. SPARQL
queries can select, e.g., all the atomic hypotheses built into h17, or all the model-
hypothesis-phenomenon triples in a research. We present below a SPARQL query
Q1 selecting a particular triple 〈m,h, p〉 ∈ M ×H × P , namely, the one shown
in Fig. 3. It exemplifies a scientist interested in Blanco et al.’s research.

Q1. Find in Blanco et al.’s research a hypothesis (if any) explaining phenomena
of blood flow in microvascular vessels and show which model formulates it.
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX lsc: <http://linkedscience.org/lsc/ns#>
SELECT ?hypothesis_name ?model_name
WHERE {
?h rdfs:label ?hypothesis_name . ?m rdfs:label ?model_name .
?h a lsc:Hypothesis . ?p a lsc:Phenomenon . ?m a lsc:Model .
?h lsc:explains ?p . ?m lsc:formulates ?h .
?p dc:description ?d .
FILTER regex(?d, "blood flow", "i") . FILTER regex(?d, "microvascular", "i")
}
----------------------------------------------------------------------------------------
| hypothesis_name | model_name |
========================================================================================
| "Electrical circuit terminal analog" | "Lumped windkessel terminal" |-----------------

It is worth now to draw attention to our initial motivation w.r.t. the semantic
engineering of hypotheses in the context of data-intensive science. The datasets
in Table 1 are linked to model m17, which is in turn linked to hypothesis h17.
The latter can be an interpretation key to the research, and to those datasets in
particular. This can be an interesting line of thought to be investigated further
by developing querying patterns that bind hypotheses to data.

Recall that hypothesis evaluation is not addressed in this paper. But as we
discuss elsewhere [6], state-of-the-art scientific workflow systems can be extended
to manage hypotheses and models. The numerical methods which are necessary
for computing model m17 find their place under the term lsc:Method. To cope
with them, however, is another challenge and it falls out the scope of this paper.
The Linked Science program provides a proper framework for overcoming such
a limitation under the partial knowledge view of Linked Data. It allows the level
of detail of a published research to be improved in a stepwise manner.

6 Conclusions
In this paper we have elaborated on a semantic view on scientific hypotheses
and their linkage, by striving for minimal ontological commitments. We have
addressed the engineering of hypotheses as linked data by extending LSC and
instantiating it in a research in Computational Hemodynamics.10

10 This extension has been proposed to LSC’s authors and is under consideration to be
incorporated into a next version of it (the current one dates to 11/29/2011) to be
available at http://linkedscience.org/lsc/ns/.
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Table 1. Representative set of scientific assets of a research in Computational Hemo-
dynamics as an instantiation of the extended LSC.

rdfs:Class rdf:Resource → rdf:Literal

lsc:Researcher authors1
rdf:value−−−−→ “P.J. Blanco, M.R. Pivello, S.A. Urquiza, and R.A. Feijóo.”

lsc:Research research1
dc:description−−−−−−−→ “Simulation of hemodynamic conditions in the carotid artery.”

lsc:Publication pub1
dc:title−−−→ “On the potentialities of 3D–1D coupled models in hemody-

namics simulations.”

lsc:Data dataset1
dc:description−−−−−−−→ “Flow rate of 5.0 l/min as an inflow boundary condition at the

aortic root, in observation of Avolio (1980) and others.”

lsc:Data dataset2
dc:description−−−−−−−→ “1D mechanical and geometric data from Avolio (1980).”

lsc:Data dataset3
dc:description−−−−−−−→ “MRI images processed for reconstructing the 3D geometry of

both the left femoral and the carotid arteries.”

Phenomenon p17
dc:description−−−−−−−→ “Blood flow in the carotid artery.”

tisc:Region region1
dc:description−−−−−−−→ “The carotid artery, a part of the human CVS.”

owl:IntervalEvent beat1
dc:description−−−−−−−→ “A heart beat with period T = 0.8 s.”

Observable ob1
dc:description−−−−−−−→ “Blood flow rate.”

Observable ob2
dc:description−−−−−−−→ “Blood pressure.”

lsc:Hypothesis h17
rdfs:label−−−−−→ “blend(h13, h15, h16)”

Model m17
dc:description−−−−−−−→ “3D-1D coupled model with lumped windkessel terminals.”

lsc:Data dataset4
dc:description−−−−−−−→ “Plots of hemodynamic observables in the left femoral artery

produced to validate the hypothesis.”

lsc:Data dataset5
dc:description−−−−−−−→ “Plots of hemodynamic observables in the carotid artery.”

lsc:Data dataset6
dc:description−−−−−−−→ “Scientific visualization of hemodynamic observables in the left

femoral artery produced to validate the hypothesis.”

lsc:Data dataset7
dc:description−−−−−−−→ “Scientific visualization of hemodynamic observables in the

carotid artery both with and without aneurism.”

lsc:Prediction predict1
rdf:value−−−−→ “Sensitivity of local blood flow in the carotid artery to the heart

aortic inflow condition.”

lsc:Prediction predict2
rdf:value−−−−→ “Sensitivity of the cardiac pulse to the presence of an aneurysm

in the carotid.”

lsc:Conclusion conclusion1
rdf:value−−−−→ “3D-1D coupled models allow to perform quantitative and qual-

itative studies about how local and global phenomena are re-
lated, which is relevant in hemodynamics.”

In our work we have taken a direction tailored not to reduce hypotheses to a
rigid logical structure, but to seek for them proper forms of expression as linked
data. In this way, our approach allows for the co-existance of hypotheses and their
formulations over multiple scientific domains and formalisms. The very problem
of hemodynamics multiscale modeling is an astonishing example of hypotheses
co-existance across multiple scales and the boundaries of disciplines.

We have shown that an effort in eliciting and linking of hypotheses can be
rewarded with interesting functionalities in terms of conceptual traceability. The
hypothesis lattice (see Fig. 4) is a data structure meant for the management of
hypothesis evolution, as the scientist user operates over it by reflecting her cogni-
tive operations on the scientific problem at hand. We aim at providing scientists
with such a tool. We are developing an algebraic specification of abstract data
types such as model, hypothesis and phenomenon for scientists to operate over
on the web—e.g., by assuming, borrowing and revising hypotheses.

Significant effort still has to be carried on until we have sophisticated com-
putational models reproducible online. This work is a step towards conceptual
traceability, which might open some seaways for sailing on the big data [4].
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