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Abstract. On the Web, it is possible for anyone to publish linked open
data as RDF. Whilst this has huge potential to benefit data integration
efforts, it highlights challenges of assessing data quality and trust. Nanop-
ublication is an approach to data and knowledge publication in which
assertions are individually encoded in RDF along with details about
provenance, context and attribution. Collectively these details form a
body of evidence for (or against) an assertion, which can be used as
quality and trust criteria during data integration. In this position paper,
we highlight the features of the Nanopublication specification that can
be used as quality and trust criteria for life science data. We introduce
the concept of cardinal assertions; assertions that are derived from the
aggregation of multiple nanopublications to give an evidence value. We
also identify a role for cardinal assertions in the evolution of evidence
over time, supporting the re-evaluation of data and hypotheses.

1 Introduction

As the corpus of life science knowledge grows, along with the increasing amount
of structured and unstructured life science data available on the Web, one of
the challenges faced by life science researchers is the evaluation of evidence for
biological assertions [1, 2]. Even simple prerequisite tasks of compiling sets of, for
example, functional annotations of genes, protein-protein interactions or drug-
target associations remain technically challenging, with relevant data often being
distributed over different databases. Some of the overhead of life science data
integration is being reduced by the increasing use and coverage of bio-ontologies
that provide common terms, semantic types and properties for data annota-
tion, classification and linking [3]. Semantic Web standards and Linked Data
approaches can reduce the technical overhead of data publishing and integration,
though there are still many unresolved issues [4]. Many life science datasets have
been converted to an RDF representation, with several warehouses of linked life
science datasets available [5, 6]. Efforts aimed at RDF data warehousing of life



science data are showing signs of becoming more targeted to specific research
questions, as shown by LODD [7] and SLAP [8].

Data integration is not only technically challenging, but the result is also
subjective, as data sources are curated to different standards and integrators
have different motivations. In a scientific context, where quality and trust are
paramount [9], it is important to be able to discover what has been integrated,
and why. Annotations of assertions, and the methods used to derive them, are
important factors in deciding their scientific quality. In many databases, bib-
liographic references are associated with assertions, which gives a researcher a
broad indication of where they can find out more about their provenance. The
importance of increasing the resolution of evidence for an assertion is apparent
in the use of evidence codes by curated databases, such as those used for Gene
Ontology annotations [10] or by the BioGRID Interaction Database [11].

In this position paper we consider how evidence is currently used to support
scientific assertions in the life sciences, and the potential impact that the struc-
tured provenance for assertions provided by the Nanopublication specification
might have on the way research data is published, used and integrated.

2 Nanopublications and Life Science Data

A lack of fundamental information about biological assertions, such as their
source and the date that they were last updated, can make it difficult to assess
their quality [12]. Nanopublications 4 have been proposed as a way to encode
and publish individual assertions using Semantic Web and Linked Data principles
[13, 14, 15]. Authorship and timestamp metadata are mandatory components of
Nanopublications, ensuring a basic level of trust for any Nanopublication. Each
Nanopublication contains exactly one assertion, which may be encoded as one or
more RDF triples in a named graph; the assertion graph. Further provenance of
the assertion is specified as annotations of the assertion graph in a second named
graph; the provenance graph. Figure 1 shows components of a Nanopublication
that might be published by a database containing protein-protein interactions
5. In this case a reference to a publication and a laboratory technique, elements
that are commonly found as supporting evidence, are encoded as provenance.
Other types of assertion such as functional annotations of genes or drug-target
associations can be represented just as easily in the Nanopublication framework.
With the structure of Nanopublications, it is possible to list the evidence for an
assertion by querying for the provenance of the assertion across known Nanopub-
lications. Simply listing all of the associated evidence is a lightweight approach,
but it can be used to make an assessment of the level of evidence available. Like
with evidence codes, researchers and application developers will be able to make
broad but valuable distinctions between assertions that have no evidence, are

4 Fine details of Nanopublication structure and content are yet to go through a full
standardization process, so we only highlight broadly agreed principles here.

5 The example is adapted from an entry in the BioGRID database



Fig. 1. A partial Nanopublication that might be
published in the namespace of a protein-protein
interaction database (ppi). The assertion graph
(top right) contains the assertion that the pro-
teins ACOX1 and SLC2A4 interact. The provenance
graph contains statements that the assertion is de-
rived from a paper, and that the type of evidence
is affinity capture mass spectrometry. Attribution
statements are not shown. It is assumed that extra
protein information, such as species, is specified else-
where in the database and is accessible for querying.

Fig. 2. Structure of an agge-
gate nanopublication contain-
ing a cardinal assertion. Black
arrow indicates the creation of
summary evidence by collaps-
ing information from aggre-
gated nanopublications. The
dotted lines indicate the pos-
sibility to access the support-
ing information of the original
nanopublications.

predictions, author statements, and assertions that have been derived experi-
mentally. In the context of RDF warehouses, the consistent representation of
evidence in provenance graphs enables researchers to include queries that reveal
the level of support for interesting connections.

3 Cardinal Assertions

So far we have considered how Nanopublications can provide a means to collect
and integrate assertions published on the Web. Beyond integration, evidence is
also often aggregated computationally such that one value of overall confidence
is produced for an assertion. An example of evidence aggregation is provided
by StringDB [16], which contains data about associations between proteins. For
each type of evidence, a probabilistic score indicates how likely a functional as-
sociation is considered to be. In terms of Nanopublications, these associations
could be published as assertions that are supported by the type of evidence
and confidence score as part of the provenance graph. In addition, a combined
score is calculated that takes all of the evidence into account. This kind of
combination and evaluation of evidence from different sources is not unique to
StringDB. Another example of aggregation comes from neXtProt [17], where
evidence is assigned manually by a Gold, Silver or Bronze rating. These prac-
tices have prompted us to consider how such aggregated evidence fits into the
Nanopublication framework.



Here we define a cardinal assertion. Cardinal assertions are the result of ag-
gregating the evidence associated with identical assertions to produce a new
measure that represents a consensus of that evidence (Figure 2). A cardinal
assertion comes with two specific criteria: 1) it links to the Nanopublications
containing the source assertions 2) the method of generating the overall confi-
dence score should be clearly defined and linked to. The links should be encoded
in a provenance graph and published in the Nanopublication format. These crite-
ria ensure that the component assertions and their provenance can be identified
at a later date, and that the aggregation method can be evaluated and repeated.
As cardinal assertions use the Nanopublication approach, they also inherit the
ability to be published as citable entities for which the aggregator can get di-
rect attribution when they are used or referenced. A set of cardinal assertions
represents the judgement of a data aggregator as to what available evidence
should contribute to the state of the art of knowledge and by how much. For
instance, StringDB could aggregate evidence from Nanopublications about inter-
actions and expose its combined evidence scores as Cardinal assertions in RDF.
Through the creation of a set of cardinal assertions, a data aggregator removes
the need to repeatedly evaluate all of the Nanopublications in a set.

4 Future Perspective I: Curation of Cardinal Assertions

With open access to Nanopublications, researchers have the opportunity to col-
lect and aggregate them into Cardinal assertions to summarize evidence. An
authoritative collection of cardinal assertions could represent a valuable, struc-
tured interpretation of the state-of-the-art of knowledge in a particular domain
of the life sciences. Such data sources could form the foundation of a new level
of trust and quality of data used to form new hypotheses and analyze data that
is more in line with that expected from the scientific method. Here we consider
some of the aspects of managing Nanopublications and cardinal assertions that
an authoritative data provider might need to consider.

A data aggregator will be able to curate nanopublications as trustworthy and
reject others based on their provenance, for example where provenance is insuf-
ficiently described, or indicates that an assertion is derived from a methodology
that has later been identified as unreliable. Different aggregators may have differ-
ent parameters for what constitutes trustworthy evidence, for example, whether
text-mining predictions are included. The ability to make these decisions is pro-
vided by the content of the Nanopublication provenance graph.

If a data aggregator chooses not to include a particular (type of) Nanop-
ublication in their dataset, they also have the opportunity to publish this fact
as further data so that 1) others can see that a particular Nanopublication has
been rejected or not considered by them and 2) the reason for its absence is
clear. Similarly, accepting a particular Nanopublication during the curation pro-
cess represents an endorsement of its quality. For consumers of the data it is
important to be able to establish which nanopublications were or were not ac-
cepted by the data provider, and why, so this should be a queryable part of the



structured data. From this management perspective, we are working on a system
that can keep track of which nanopublications have been accepted and which
have not. We intend to integrate this functionality with an RDF triplestore to
transparently add metadata about this process.

5 Future Perspective II: Cardinal Assertions and the
Evolution of Knowledge

Life science knowledge is constantly evolving as new experiments are performed,
new data are produced and our ability to more accurately describe existing
knowledge improves. This evolution is increasingly characterized by evidence de-
rived from high-throughput experimentation and bioinformatics methods [18].
For example, it is reported that some ninety-eight percent of all Gene Ontology
annotations are uncurated and inferred through in silico processes [2]. Interest-
ingly the same study reports that the quality of these is higher than generally
perceived, though this varies with the methods used and the type of assertion.
This insight may change the evidence value of automated annotations and could
cause aggregators to re-evaluate their trust of these assertions, which may pre-
viously have been rejected because of their evidence code [19].

A second example of knowledge evolution comes from the interpretation of
high-dimensional datasets. For example, in 1998 Spellman et al. claimed to have
elucidated the set of cell-cycle regulated genes of the yeast Saccharomyces cere-
visiae in a landmark gene expression paper [20]. Alternative transcriptomic ex-
periments have subsequently implicated different, but overlapping sets of genes.
In addition, different data analysis methods produce different sets of genes from
the same experimental data [21] leading to uncertainty about the meaning of
the data [22].

If assertions like those described above were published as Nanopublications
over time, a data aggregator can use the provenance information to recalculate
the evidence values for their assertions and then publish them as Cardinal as-
sertions. As evidence values change over time, it will influence the interpretation
and use of those of cardinal assertions, which can be very significant if they were
used in a computational analysis pipeline e.g. [23].

Nanopublications themselves have been proposed as immutable things; once
they are published their content should not change. This is also true for cardinal
assertions, in that as new evidence is taken into consideration, new editions of
cardinal assertions should be generated. This will create a chain of assertions
that represent the state of the overall evidence for a cardinal assertion over
time. To be able to compare between editions through querying it is important
that each can be accessed or reconstructed, and that the nanopublications that
affected the evidence value are clear.



6 Discussion

As life science datasets are often curated to different standards, and descriptions
of quality are sparse, integrators and users of integrated RDF datasets would
have trouble measuring the quality of assertions in an aggregated dataset. Sub-
sequently it would be difficult to query or inference over them with any degree
of trust for hypothesis generation or data analysis. Poorly supported, erroneous
or obsolete assertions would be difficult to identify. The Nanopublication spec-
ification was in part designed with this issue in mind, enabling trust through
clear provenance statements for assertions. By introducing Cardinal assertions
we hope to extend the functionality of Nanopublications for data providers and
consumers who want to generate and use combined evidence. We acknowledge
that Nanopublications are only a piece of a solution as the evaluation of scientific
assertions can require deep insights into data provenance that may not be en-
coded with recognized standards by producers and providers of data. However,
in this position paper we have shown potential applications of Nanopublications
and Cardinal assertions to reinforce quality and trust aspects of shared life sci-
ence data.
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