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Abstract. A class of Kripke frames is called modally definable if there
is a set of modal formulas such that the class consists exactly of frames
on which every formula from that set is valid, i. e. globally true under
any valuation. Here, existential definability of Kripke frame classes is
defined analogously, by demanding that each formula from a defining set
is satisfiable under any valuation. This is equivalent to the definability by
the existential fragment of modal language enriched with the universal
modality. A model theoretic characterization of this type of definability
is given.
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1 Introduction

Some questions about the power of modal logic to express properties of relational
structures are addressed in this paper. For the sake of notational simplicity, only the
basic propositional modal language (BML) is considered in this paper. Let Φ be a set
of propositional variables. The syntax of BML is given by

ϕ ::= p | ⊥ |ϕ1 ∨ ϕ2 | ¬ϕ |✸ϕ,

where p ∈ Φ. We define other connectives and ✷ as usual. Namely, ✷ϕ := ¬✸¬ϕ.
Only the Kripke semantics is considered in this paper. The basic notions and results

are only briefly recalled here (see [1] for details if needed). A Kripke frame for the basic
modal language is a relational structure F = (W,R), where W 6= ∅ and R ⊆W ×W . A
Kripke model based on a frame F is M = (W,R, V ), where V : Φ → 2W is a mapping
called valuation. For w ∈W , we call (M, w) a pointed model.

The truth of a formula is defined locally and inductively as usual, and denoted
M, w  ϕ. Namely, a formula of a form ✸ϕ is true at w ∈ W if M, u  ϕ for some
u such that Rwu. A valuation is naturally extended to all modal formulas by putting
V (ϕ) = {w ∈W : M, w  ϕ}.

We say that a formula is globally true on M if it is true at every w ∈ W , and we
denote this by M  ϕ. On the other hand, a formula is called satisfiable in M if it is
true at some w ∈W .

If a formula ϕ is true at w under any valuation on a frame F, we write F, w  ϕ.
We say that a formula is valid on a frame F if we have M  ϕ for any model M based
on F. This is denoted F  ϕ. A class K of Kripke frames is modally definable if there
is a set Σ of formulas such that K consists exactly of frames on which every formula
from Σ is valid, i. e. K = {F : F  Σ}. If this is the case, we say that K is defined by
Σ and denote K = Fr(Σ).
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Model theoretic closure conditions that are necessary and sufficient for an elemen-
tary class of frames (i. e. first-order definable property of relational structures) to be
modally definable are given by the famous Goldblatt-Thomason Theorem.

Theorem (Goldblatt-Thomason [3]). An elementary class K of frames is definable
by a set of modal formulas if and only if K is closed under surjective bounded mor-
phisms, disjoint unions and generated subframes, and reflects ultrafilter extensions.

All of the frame constructions used in the theorem – bounded morphisms, disjoint
unions, generated subframes and ultrafilter extensions – are presented in detail in [1]
(the same notation is used in this paper). Just to be clear, we say that a class K reflects
a construction if its complement K

c, that is the class of all Kripke frames not in K, is
closed under that construction.

Now, an alternative notion of definability is proposed here as follows.

Definition. A class K of Kripke frames is called modally ∃-definable if there is a set
Σ of modal formulas such that for any Kripke frame F we have: F ∈ K if and only if
each ϕ ∈ Σ is satisfiable in M, for any model M based on F. If this is the case, we
denote K = Fr∃(Σ).

The definition does not require that all formulas of Σ are satisfied at the same
point – it suffices that each formula of Σ is satisfied at some point.

In the sequel, a notation Mod(F ) is used for a class of structures defined by a
first-order formula F . Similarly, if Σ = {ϕ} is a singleton set of modal formulas, we
write Fr∃(ϕ) instead of Fr∃({ϕ}).

Example 1. It is well-known that the formula p → ✸p defines reflexivity, i. e. Fr(p →
✸p) = Mod(∀xRxx). Now, it is easy to see that Fr∃(p→ ✸p) is the class of all frames
such that R 6= ∅, that is Fr∃(p → ✸p) = Mod(∃x∃yRxy). This class is not modally
definable in the usual sense, since it is clearly not closed under generated subframes.
Note that the condition R 6= ∅ is ∃-definable also by a simpler formula ✸⊤.

The main result of this paper is the following characterization.

Theorem 1. Let K be an elementary class of Kripke frames. Then K is modally ∃-
definable if and only if it is closed under surjective bounded morphisms and reflects
generated subframes and ultrafilter extensions.

This is an analogue of a similar characterization of existentially definable Kripke
model classes, given in [6].

2 First and second-order standard translations

The starting point of correspondence between first-order and modal logic is the standard
translation, a mapping that translates each modal formula ϕ to the first-order formula
STx(ϕ), as follows:

STx(p) = Px, for each p ∈ Φ,
STx(⊥) = ⊥,
STx(¬ϕ) = ¬STx(ϕ),
STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ),
STx(✸ϕ) = ∃y(Rxy ∧ STy(ϕ)).
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Clearly, we have M, w  ϕ if and only if M |= STx(ϕ)[w], and M  ϕ if and only
if M |= ∀xSTx(ϕ). But, validity of a formula on a frame generally is not first-order
expressible, since we need to quantify over valuations. We have a second-order standard
translation, that is, F  ϕ if and only if F |= ∀P1 . . . ∀Pn∀xSTx(ϕ), where P1, . . . , Pn

are monadic second-order variables, one for each propositional variable occurring in ϕ.
So, the notion of modal definability is equivalent to the definability by a set of second-
order formulas of the form ∀P1 . . . ∀Pn∀xSTx(ϕ). However, in many cases a formula
of this type is equivalent to a first-order formula. Namely, this holds for any Sahlqvist
formula (the definition is omitted here – see [7] or [1]), for which a first-order frame
correspondent is effectively computable. On the other hand, the Goldblatt-Thomason
Theorem characterizes those first-order properties that are modally definable.

Now, ∃-definability is clearly also equivalent to the definability by a type of second-
order formulas – those of the form ∀P1 . . . ∀Pn∃xSTx(ϕ). Consider another example of
a modally ∃-definable class.

Example 2. The condition F = ∃x∀y(Rxy → ∃zRyz) is not modally definable, since it
is not closed under generated subframes, but it is modally ∃-definable by the formula
ϕ = p→ ✷✸p.

To prove this, we need to show Fr∃(ϕ) = Mod(F ). But F = (W,R) ∈ Fr∃(ϕ) if
and only if F |= ∀P∃x(Px → ∀y(Rxy → ∃z(Ryz ∧ Pz))). So in particular, under
the assignment which assigns the entire W to the second-order variable P , we get
F |= ∃x∀y(Rxy → ∃zRyz), thus F ∈ Mod(F ). The reverse inclusion is proved similarly.

Other changes of quantifiers or the order of first and second-order quantifiers would
result in other types of definability, perhaps also worthy of exploring. In fact, this has
already been done by Venema [9] and Hollenberg [5], who consider negative definabil-
ity, which corresponds to second-order formulas of the form ∀x∃P1 . . . ∃PnSTx(¬ϕ). A
class of frames negatively defined by Σ is denoted Fr−(Σ). A general characterization
of negative definability has not been obtained, and neither has a characterization of
elementary classes which are negatively definable – it even remains unknown if all neg-
atively definable classes are in fact elementary. But, to digress a little from the main
point of this paper, we easily get the following fairly broad result.

Proposition 1. Let ϕ be a modal formula which has a first-order local correspondent,
i. e. there is a first-order formula F (x) such that for any frame F = (W,R) and any
w ∈W we have F, w  ϕ if and only if F |= F (x)[w]. (In particular, this holds for any
Sahlqvist formula.)

Then we have Fr−(ϕ) = Mod(∀x¬F (x)).

Proof. We have F ∈ Fr−(ϕ) if and only if F |= ∀x∃P1 . . . ∃PnSTx(¬ϕ) if and only if
F 6|= ∃x∀P1 . . . ∀PnSTx(ϕ). But this means that there is no w ∈ W such that F |=
∀P1 . . . ∀PnSTx(ϕ)[w]. The latter holds if and only if F, w  ϕ, which is by assumption
equivalent to F |= F (x)[w]. The fact that such w does not exist, is equivalent to
F ∈ Mod(∀x¬F (x)). ⊓⊔

So for example, since p → ✸p locally corresponds to Rxx, we have that p → ✸p
negatively defines irreflexivity, which is not modally definable property, since it is not
preserved under surjective bounded morphisms.
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3 Model-theoretic constructions

This section can be used, if needed, for a quick reference of the basic facts about
constructions used in the main theorem. Otherwise it can be omitted.

A bisimulation between Kripke models M = (W,R, V ) and M
′ = (W ′, R′, V ′) is a

relation Z ⊆W ×W ′ such that:
(at) if wZw′ then we have: w ∈ V (p) if and only if w′ ∈ V ′(p), for all p ∈ Φ,
(forth) if wZw′ and Rwv, then there is v′ such that vZv′ and R′w′v′,
(back) if wZw′ and R′w′v′, then there is v such that vZv′ and Rwv.
The basic property of bisimulations is that (at) extends to all formulas: if wZw′ then

M, w  ϕ if and only if M′, w′
 ϕ, i. e. (M, w) and (M′, w′) are modally equivalent.

We get the definition of bisimulation between frames by omitting the condition (at).
A bounded morphism from a frame F = (W,R) to F

′ = (W ′, R′) is a function
f : W →W ′ such that:

(forth) Rwv implies R′f(w)f(v),
(back) if R′f(w)v′, then there is v such that v′ = f(v) and Rwv.
Clearly, a bounded morphism is a bisimulation that is also a function.
A generated subframe of F = (W,R) is a frame F

′ = (W ′, R′) where W ′ ⊆W such
that w ∈W ′ and Rwv implies v ∈W ′, and R′ = R∩ (W ′×W ′). A generated submodel
of M = (W,R, V ) is a model based on a generated subframe, with the valuation
V ′(p) = V (p) ∩W ′, for all p ∈ Φ. It is easy to see that the global truth of a modal
formula is preserved on a generated submodel.

To define the ultraproducts and ultrafilter extensions, we need the notion of ultra-
filters. An ultrafilter over a set I 6= ∅ is a family U ⊆ P(I) such that:

(1) I ∈ U ,
(2) if A,B ∈ U , then A ∩B ∈ U ,
(3) if A ∈ U and A ⊆ B ⊆ I, then B ∈ U ,
(4) for all A ⊆ I we have: A ∈ U if and only if I \A /∈ U .
The existence of ultrafilters is provided by a fact that any family of subsets which

has the finite intersection property (that is, each finite intersection is non-empty) can
be extended to an ultrafilter (see e. g. [2]).

Let {Mi = (Wi, Ri, Vi) : i ∈ I} be a family of Kripke models and let U be an ultra-
filter over I. The ultraproduct of this family over U is the model

∏
U Mi = (W,R, V )

such that:
(1) W is the set of equivalence classes fU of the following relation defined on the

Cartesian product of the family: f ∼ g if and only if {i ∈ I : f(i) = g(i)} ∈ U ,
(2) fURgU if and only if {i ∈ I : f(i)Rig(i)} ∈ U ,
(3) fU ∈ V (p) if and only if {i ∈ I : f(i) ∈ Vi(p)} ∈ U , for all p.
The basic property of ultraproducts is that (3) extends to all formulas.

Proposition 2. Let {Mi : i ∈ I} be a family of Kripke models and let U be an
ultrafilter over I.

Then we have
∏

U Mi, f
U

 ϕ if and only if {i ∈ I : Mi, f(i)  ϕ} ∈ U , for any
fU . Furthermore, we have

∏
U Mi  ϕ if and only if {i ∈ I : Mi  ϕ} ∈ U .

This is an analogue of the  Loś Fundamental Theorem on ultraproducts from the
first-order model theory (see [2] for this, and [1] for the proof of the modal analogue).
The  Loś Theorem also implies that an elementary class of models is closed under
ultraproducts.

An ultraproduct such that Mi = M for all i ∈ I is called an ultrapower of M and
denoted

∏
U M. From the  Loś Theorem it follows that any ultrapower of a model is
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elementarily equivalent to the model, that is, the same first-order sentences are true
on M and

∏
U M. Definition of an ultraproduct of a family of frames is obtained by

omitting the clause regarding valuation.

Another notion needed in the proof of the main theorem is modal saturation, the
modal analogue of ω-saturation from the classical model theory. The definition of satu-
ration is omitted here, since we only need some facts which it implies. Most importantly,
saturation implies a converse of the basic property of bisimulations, which generally
does not hold. In fact, modal equivalence between points of modally saturated mod-
els is a bisimulation. Also, we use the fact that any ω-saturated Kripke model is also
modally saturated (see [1] for proofs of these facts).

Finally, the ultrafilter extension of a model M = (W,R, V ) is the model ueM =
(Uf(W ), Rue, V ue), where Uf(W ) is the set of all ultrafilters over W , Rueuv holds if
and only if A ∈ v implies m✸(A) ∈ u, where m✸(A) denotes the set of all w ∈ W
such that Rwa for some a ∈ A, and u ∈ V ue(p) if and only if V (p) ∈ u. The basic
property is that this extends to any modal formula, i. e. we have u ∈ V ue(ϕ) if and
only if V (ϕ) ∈ u (see [1]). From this it easily follows that the global truth of a modal
formula is preserved on the ultrafilter extension. Another important fact is that the
ultrafilter extension of a model is modally saturated (see [1]).

The ultrafilter extension of a frame F = (W,R) is ueF = (Uf(W ), Rue).

4 Proof of the main theorem

In this section Theorem 1 is proved in detail. Arguments and techniques used in the
proof are similar to the ones used in the proof of Goldblatt-Thomason theorem as
presented in [1], so the reader might find it interesting to compare these proofs to note
analogies and differences.

Proof (of Theorem 1). Let K = Fr∃(Σ). Let F = (W,R) ∈ K and let f be a surjective
bounded morphism from F to some F

′ = (W ′, R′). Take any ϕ ∈ Σ and any model
M

′ = (W ′, R′, V ′) based on F
′. Put V (p) = {w ∈W : f(w) ∈ V ′(p)}. Then V is a well

defined valuation on F. Put M = (W,R, V ). Since F ∈ K, there exists w ∈ W such
that M, w  ϕ. But then M

′, f(w)  ϕ. This proves that K is closed under surjective
bounded morphisms.

To prove that K reflects generated subframes and ultrafilter extensions, let F =
(W,R) /∈ K. This means that there is ϕ ∈ Σ and a model M = (W,R, V ) based
on F such that M  ¬ϕ. Let F

′ = (W ′, R′) be a generated subframe of F. Define
V ′(p) = V (p)∩W ′, for all p. Then we have M

′
 ¬ϕ, which proves F

′ /∈ K, as desired.
Also, ueM is a model based on the ultrafilter extension ueF and we have ueM  ¬ϕ,
which proves ueF /∈ K.

For the converse, let K be an elementary class of frames that is closed under surjec-
tive bounded morphisms and reflects generated subframes and ultrafilter extensions.
Denote by Σ the set of all formulas that are satisfiable in all models based on all frames
in K. Then K ⊆ Fr∃(Σ) and it remains to prove the reverse inclusion.

Let F = (W,R) ∈ Fr∃(Σ). Let Φ be a set of propositional variables that contains a
propositional variable pA for each A ⊆ W . Let M = (W,R, V ), where V (pA) = A for
all A ⊆ W . Denote by ∆ the set of all modal formulas over Φ which are globally true
on M. Now, for any finite δ ⊆ ∆ there is Fδ ∈ K and a model Mδ based on Fδ such
that Mδ  δ. Otherwise, since ∆ is closed under conjunctions, there is ϕ ∈ ∆ such that
¬ϕ ∈ Σ, thus ¬ϕ is satisfiable in M, which contradicts M  ∆.
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Now, let I be the family of all finite subsets of ∆. For each ϕ ∈ ∆, put ϕ̂ = {δ ∈ I :
ϕ ∈ δ}. The family {ϕ̂ : ϕ ∈ ∆} clearly has the finite intersection property, so it can be
extended to an ultrafilter U over I. But for all ϕ ∈ ∆ we have {δ ∈ I : Mδ  ϕ} ⊇ ϕ̂
and ϕ̂ ∈ U , thus {δ ∈ I : Mδ  ϕ} ∈ U , so the Proposition 2 implies

∏
U Mδ  ϕ. The

model
∏

U Mδ is based on the frame
∏

U Fδ. Since K is elementary, it is also closed
under ultraproducts, so

∏
U Fδ ∈ K. It remains to prove that there is a surjective

bounded morphism from some ultrapower of
∏

U Fδ to a generated subframe of ueF.
Then the assumed properties of K imply that F ∈ K, as desired.

The classical model theory provides that there is an ω-saturated ultrapower of∏
U Mδ (cf. [2]). Let M∆ be such an ultrapower. We have that M∆ is modally saturated.

Also, it is elementarily equivalent to
∏

U Mδ, so using standard translation we obtain
M∆  ∆. The model M∆ is based on a frame F∆, which is an ultrapower of

∏
U Fδ.

Now define a mapping from F∆ to ueF by putting f(w) = {A ⊆W : M∆, w  pA}.
First we need to prove that f is well-defined, i. e. that f(w) is indeed an ultrafilter

over W .
(1) We easily obtain W ∈ f(w), since pW ∈ ∆ by the definition of V .
(2) If A,B ∈ f(w), then M∆, w  pA ∧ pB . Clearly, M  pA ∧ pB ↔ pA∩B . Thus

M∆  pA ∧ pB ↔ pA∩B , so M∆, w  pA∩B , i. e. A ∩B ∈ f(w).
(3) If A ∈ f(w) and A ⊆ B ⊆ W , then from the definition of V it follows M 

pA → pB . But then also M∆  pA → pB , hence M∆, w  pB , so B ∈ f(w).
(4) For all A ⊆ W we have M  pA ↔ ¬pW\A, which similarly as in the previous

points implies A ∈ f(w) if and only if W \A /∈ f(w), as desired.
Assume for the moment that we have: u = f(w) if and only if (ueM, u) and (M∆, w)

are modally equivalent. Since ueM and M∆ are modally saturated, the modal equiv-
alence between their points is a bisimulation. So f is a bisimulation, but it is also a
function, which means that it is a bounded morphism from F∆ to ueF. But then the
corestriction of f to its image is a surjective bounded morphism from an ultrapower of∏

U Fδ to a generated subframe of ueF, which we needed.
So to conclude the proof, it remains to show that u = f(w) holds if and only if

(ueM, u) and (M∆, w) are modally equivalent. Let u = f(w). Then we have ueM, u  ϕ
if and only if V (ϕ) ∈ u, which is by the definition of f equivalent to M∆, w  pV (ϕ).
But the definition of V clearly implies M  ϕ ↔ pV (ϕ), so also M∆  ϕ ↔ pV (ϕ),
which provides the needed modal equivalence.

For the converse, the assumption implies that we have ueM, u  pA if and only if
M∆, w  pA, for all A ⊆W . This means that V (pA) = A ∈ u if and only if A ∈ f(w),
i. e. u = f(w).

⊓⊔

5 Conclusion: link to the universal modality

Although the approach of this paper is to define ∃-definability as a metalingual notion,
it should be noted that it can be included in the language itself. That is, the satisfiability
of a modal formula under any valuation on a frame can be expressed by a formula of
the modal language enriched with the universal modality (BMLU). The syntax is an
extension of the basic modal language by new modal operator Aϕ, and we can also
define its dual Eϕ := ¬A¬ϕ. We call A the universal modality, and E the existential
modality. The semantics of the new operators is standard modal semantics, with respect
to the universal binary relation W ×W on a frame F = (W,R). This means that the
standard translation of universal and existential operators is as follows (cf. [4] and [8]):
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STx(Eϕ) = ∃ySTy(ϕ),
STx(Aϕ) = ∀ySTy(ϕ).
Now, let K be a class of Kripke frames. Clearly, K is modally ∃-definable if and

only if it is definable by a set of formulas of the existential fragment of BMLU, i. e.
by a set of formulas of the form Eϕ, where ϕ is a formula of BML. This immediately
follows from the clear fact that for any frame F and any ϕ we have F  Eϕ if and only
if F |= ∀P1 . . . ∀Pn∃ySTy(ϕ), where P1, . . . , Pn correspond to propositional variables
that occur in ϕ, and the letter holds if and only if ϕ is satisfiable under any valuation
on F.

Goranko and Passy [4] gave a characterization that an elementary class is modally
definable in BMLU if and only if it is closed under surjective bounded morphisms
and reflects ultrafilter extension. So, from the main theorem of this paper we conclude
that reflecting generated subframes, not surprisingly, is what distinguishes existential
fragment within this language, at least with respect to elementary classes. Also, the
usual notion of modal definability clearly coincides with the universal fragment of
BMLU, hence the Goldblatt-Thomason Theorem tells us that closure under generated
subframes and disjoint unions is essential for this fragment.

As for some further questions that might be worth exploring, for example, similarly
to the notion of ±-definability from [5], we can say that a class of frames is modally
∀∃-definable if there is a pair (Σ1, Σ2) of sets of formulas such that a class consists
exactly of frames on which every formula from Σ1 is valid and every formula from Σ2

is satisfiable under any valuation, and try to obtain a characterization theorem. This
also coincides with a fragment of BMLU, and generalizes both usual modal definability
and ∃-definability. Furthermore, we may be able to obtain general characterization
theorems for these fragments, without the assumption of the first-order definability.

On the other hand, a question to be addressed is which modally ∃-definable classes
are elementary, and is there an effective procedure analogous to the one for Sahlqvist
formulas, to obtain a first-order formula equivalent to a second-order translation
∀P1 . . . ∀Pn∃xSTx(ϕ) for some sufficiently large and interesting class of modal formulas.
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