
Maintaining alternative values in
constraint-based configuration

Caroline Becker and Hélène Fargier 1

Abstract. Constraint programming techniques are widely
used to model and solve interactive decision problems, an es-
pecially configuration problems. In this type of application,
the configurable product is described by means of a set of con-
straint bearing on the configuration variables. The user then
interactively solves the CSP by assigning (and possibly, relax-
ing) the configuration variables according to her preferences.
The aim of the system is then to keep the domains of the other
variables consistent with these choices. Since maintaining of
the global inverse consistency is generally not tractable, the
domains are instead filtered according to some level of local
consistency, e.g. arc-consistency.

In the present work, we aim at offering a more convenient
interaction by providing the user with possible alternative val-
ues for each of the already assigned variables - i.e. the values
that could replace the current one without leading to the vio-
lation of some constraint. We thus present the new concept of
alternative domains in a (possibly) partially assigned CSP.
We propose a propagation algorithm that computes all the al-
ternative domains in a single step. Its worst case complexity
is comparable with the one of the naive algorithm that would
run a full propagation for each variable, but its experimental
efficiency is much better.

1 Introduction

The Constraint Satisfaction Problem (CSP) formalism offers
a powerful framework for representing a great variety of prob-
lems, e.g. routing problems, resource allocation, frequency
assignment, configuration problems, etc. The main task ad-
dressed by the algorithms is the determination of the consis-
tency of the CSP and/or the search for an (optimal) solution,
and this is a difficult task: determining whether a CSP is con-
sistent is an NP-complete request. In the CSP community,
the main research stream thus addresses this question, either
directly (looking for efficient complete algorithms) or getting
around (studying the polynomial subclasses or proposing in-
complete algorithms).

But these algorithms do not help solving decision support
problems that are interactive in essence. For such problems,
the user herself is in charge of the choice of values for the
variables and the role of the system is not to solve a CSP,
but to help the user in this task. Constraint-based product
configuration [14, 18, 12, 19, 20] is a typical example of such
problems: a configurable product is defined by a finite set of
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components, options, or more generally by a set of attributes,
the values of which have to be chosen by the user. These
values must satisfy a finite set of configuration constraints
that encode the feasibility of the product, the compatibility
between components, their availability, etc.

Several extensions of the CSP paradigm have been pro-
posed in order to handle the constraints-based definition of a
catalog or a range of products, and more specifically the def-
inition of configurable products. These extensions have been
motivated by difficulties and characteristics that are specific
to the modeling and the handling of catalogs of configurable
products. Dynamic CSPs [13], for instance suit the problems
where the existence of some optional variables depends on
the value of another variable. Other extensions proposed by
the CSP community include composite CSPs [17], interactive
CSPs [10], hypothesis CSPs [1], generative constraint satis-
faction [19, 7], etc.

In this article, we do not deal with such representation prob-
lems: we assume that the product range is specified by a clas-
sical CSP. Instead, our work focuses on the human-computer
interaction. When configuring a product, the user specifies her
requirements by interactively giving values to variables. Each
time a new choice is made, the domains of the variables must
be pruned so as to ensure that the values available for the fur-
ther variables can lead to a feasible product (i.e., a product
satisfying all the initial configuration constraints): the aim of
the system is to keep the domains of the other variables con-
sistent with these choices. Since the maintaining of the global
inverse consistency is generally not tractable, the domains are
rather filtered according to some level of local consistency, e.g.
arc-consistency. In the present paper, we propose to make this
interaction more user-friendly by showing not only (locally)
consistent domains, but also what we call the alternative do-
mains of the assigned variables, i.e. the values that could re-
place the one of the assigned variable without leading to the
violation of some constraint.

The structure of the present article is as follows: the prob-
lematics of alternative domains is described in the next Sec-
tion. Section 3 then develop the basis of our algorithm. Our
first experimental results are shown in Section 4. Proofs are
gathered in Appendix.

2 Background and Problematics

A CSP is classically defined by a triplet (X ,D, C) where X =
{x1, . . . , xm} is a finite set of m variables, each xi taking its
values in a finite domain D(xi), and a finite set of constraints



C. We note D =
∏n

j=1 D(xj). An assignment t of a set of
variable Y ⊆ X is an element of the cartesian product of the
domains of these variables; for any xj ∈ Y we denote by t[xj ]
the value assigned to xj in t.

A constraint C in C involves a set vars(C) ⊆ X and can be
viewed as a function from the set of assignments of vars(C)
to {>,⊥}: C(t) = > iff t satisfies the constraint; for any xj in
vars(C) and any v in its domain, we say that an assignment t
of vars(C) is a support of this value (more precisely, of (xj , v)
on C) iff t[xj ] = v and t satisfies C.

An assignment t of X is a solution of the CSP iff it satisfies
all the constraints. If such a solution exists, the CSP is said
to be consistent, otherwise it is inconsistent.

Formally, a configurable product is represented as a CSP
(X ,D, C) and the current choices of the user by a set of couples
(xi, v) where xi is a variable in X and v the value assigned to
this variable. Following [1], the problem can be represented
by an Assumption-based CSP (A-CSP).

Definition 1 (A-CSP) An A-CSP is a 4-uple (X ,D, C,H)
where (X ,D, C) is a CSP and H a finite set of constraints on
variables of X .

In configuration, H represents the set of current user
choices, i.e. assignments of the variables: we suppose in the
sequel of the paper that all the restrictions in H bear with dif-
ferent variables and restrict their domain to a unique value2;
we will denote by hi = (xi ← v) the restriction from H on xi,
if it exists.

After each choice, the system filters the variables’ do-
mains, ideally leaving only the values compatible with cur-
rent choices. Since such a computation is intractable in the
general case, a weaker level of consistency is ensured in real
applications, generally arc-consistency. Recall that a CSP is
said to be arc consistent in the general sense (GAC) iff, for
any variable xj ∈ X and any value v in its domain, for any
constraint C bearing on xj , there exists an assignment t of
the variables of C in their domains such that t is a support of
(xj , v). The role of an arc consistency algorithm is to remove
from the domains the values that do not have any support so
as to compute a CSP that is equivalent to the original one
(i.e. having the same set of solution) and that is arc consis-
tent; this problem is called the closure by arc consistency of
the original one.

Other, more powerful, levels of local consistency can be en-
sured, e.g. Path Inverse Consistency [4], Singleton Arc Con-
sistency [5], k-inverse consistency [8, 9]. In the following defi-
nitions, we do not make any assumption on the level of local
consistency that is ensured. We simply consider that, after
each choice, an algorithm is called that ensures some level l
of local consistency - i.e. that computes the closure by l con-
sistency of the original problem. We call the current domain
of a variable its domain in this closure.

Definition 2 (Current domain of a variable) Let l be a
level of local consistency and P = (X ,D, C,H) an A-CSP.
The current domain according to l of a variable xi is its

2 Actually, the definitions and results could be set in a more gen-
eral framework and capture any type of restriction; the meaning
of alternative value when the restrictions in H are not unary is
nevertheless questionable, hence our assumption.

domain in the closure by l-consistency of (X ,D, C ∪ H) .

We can now formally define the notion of alternative do-
main of an assigned variable as the current domain that it
would have if the user would take this assignment back:

Definition 3 (Alternative domain)
Let l be a level of local consistency and P = (X ,D, C,H)
an A-CSP. The alternative domain of a variable xi accord-
ing to l is its domain in the closure by l-consistency of the
CSP(X ,D, C ∪ H \ {hi}). We write it Dl

alt(xi).

A value v is thus an alternative value for xi either if it
belongs to the current domain of xi (it is in particular the case
when xi is assigned to v), or if (i) xi is assigned another value
than v and (ii) the single relaxation of this assignment would
make v l-consistent. For instance, if xi is the last assigned
variable, all the values that were in the domain of xi just
before its assignment are alternative values.

Example 1 Consider the CSP X = {x1, x2, x3}, D = D1×
D2 × D3 = {1, 2, 3, 4}3, C = {Alldiff(x1, x2, x3)} ; initially,
H = ∅ and the current domains of the three variables are
DC(x1) = DC(x2) = DC(x3) = {1, 2, 3, 4}. In this example,
we suppose that that arc consistency is maintained.
Let theuser first assign value 1 to x1. We get H = {(x1 = 1)}
; then DC(x1) = {1} and arc consistency removes value 1
from the current domains of x2 and x3: DC(x2) = DC(x3) =
{2, 3, 4}. At this step, x1 is the only assigned variable and has
three alternative values, 2, 3 and 4.
Suppose that the user then assigns value 4 to x2, i.e. H =
{(x1 = 1), (x2 = 4)} ; arc consistency, removes 4 from the
current domains of x2 and x3: DC(x2) = DC(x3) = {2, 3}
while DC(x1) = {1} and DC(x2) = {4} . x1 has only two
alternative values left : 2 and 3; 4 is not alternative anymore
since it does not belong to the closure by arc consistency of the
CSP < X = {x1, x2, x3},D = D1×D2×D3 = {1, 2, 3, 4}3, C =
{Alldiff(x1, x2, x3)∪{x2 = 4}} >. x2 has also two alternative
values, 2 and 3 (see Table 1).

1 2 3 4
x1 ? � � ×
x2 × � � ?
x3 × � � ×

Table 1. Assigned (?), forbidden (×) and alternative (�) values
for the A-CSP X = {x1, x2, x3}, D = D1×D2×D3 = {1, 2, 3, 4}3,

C = {Alldiff(x1, x2, x3)}, H = {(x1 ← 1), (x2 ← 4)}).

The notion of alternative domain is orthogonal to the no-
tion of removal’s explanation, such as proposed in PaLM [16]:
explanations are a way to explain the pruning of the domains
and aim at proposing a strategy of restoration of some value
for an unassigned variable by the relaxation of a (minimal)
subset of user’s choices. On the contrary, the alternative do-
main of a variable provides a way to change the value of an
assigned variable without any modification of the other user
choices.



The notion of alternative domain can be compared to the
concept of fault tolerant solution [21]. A fault tolerant solu-
tion is actually a solution such as all the variables have a
non-empty alternative domain: if one of the current value in
the assignment is made unavailable for any reason, a solution
can still be found by choosing a value from its alternative do-
main - this value is by definition compatible with the other
choices. The notion has been generalized by Hebrard et al.
[11] under the name ”super-solutions”. The main difference
between the notion of fault tolerant solutions and the notion
of alternative domains is that fault tolerant solutions deal
with complete assignments while alternative domains sug-
gests restoration values for partial assignments also. It should
also be noticed that the two notions target different practical
goals: when refereing to a super-solution, the one in looking
for some, but not all, robust (and complete ) solutions - there
is indeed a potentially exponential number of fault tolerant
solutions. When computing alternative domains, we are look-
ing for all the alternative values, and this even during the
search, when the assignments are partial.

3 Computing alternative domains

When n variables are assigned, a naive way of computing the
alternative domains of these variables is to make n + 1 copies
of the CSP: a reference CSP P0 (where all the n variables
are assigned), and n CSP Pi where each Pi has exactly the
same assignments than P0, with the exception of the assign-
ment of variable xi. Each Pi is filtered by l-consistency. The
alternative domain of variable xi is obviously the domain of
xi in the arc consistent closure of Pi. This method does not
require much space but does a lot of redundant computations.
It will be the reference point from our method, which follows
the opposite philosophy: memorizing information in order to
avoid a duplicate work.

3.1 Removals and sufficient justifications

The main idea of our approach is to maintain, for each value
removed by the filtering algorithm, a vector of boolean flags,
one flag for each hi ∈ H. The flag on hi must be true if and
only if the single relaxation of the user’s choice hi will lead
to have the value back in the domain of its variable. Let us
formalize:

Definition 4 (Removal, invalid tuple)
Let P = (X ,D, C,H) be an A-CSP and P l the closure of
(X ,D, C ∪ H) by some level of local consistency l.

A removal w.r.t. a level l of local consistency is a pair (xj , v),
xj ∈ X , v ∈ D(xj) such that v does not belong to the domain
of xj in P l

We write Rl the set of removals of P w.r.t. l.

Let C a constraint in C and t an assignment of vars(C)
satisfying C. t is said to be invalid w.r.t. l iff there exists
xj ∈ vars(C) such that t[xj ] does not belong to domain of xj

in P l; otherwise, it is said to be valid w.r.t. l.

To improve readability, a removal (xj , v) will often be written
(xj 6= v), and we will omit to mention level l to which the
removal refers when not ambiguous.

Definition 5 (Sufficient Justification of a removal)
Let P = (X ,D, C,H) be an A-CSP, l a level of local consis-
tency, and Rl the set of P ′s removal according to l.

An user choice hi ∈ H is said to be an l-sufficient justifica-
tion of a removal (xj 6= v) ∈ Rl if and only if v belongs to the
domain of xj in the l-consistent closure of (X ,D, C∪H\{hi}).

By extension, for any xj in X and any v in D(xj), hi ∈ H
is said to be an l-sufficient justification of v for xj if and only
if v belongs to the domain of xj in the l-consistent closure of
(X ,D, C ∪ H \ {hi}).

For instance, if the propagation of the last assignment leads
to the removal of the value v in the domain of x, this assign-
ment is a sufficient justification of x 6= v. By extension, any
hi is a sufficient justification of a value that does belongs to
the current domain of its variable.

Example 1 (cont’) If we go back to example 1, once x1

and x2 are assigned, H contains two assumptions: h1 = (x1 =
1) , and h2 = (x2 = 4).
All the values deleted from the domain of x1 (resp. x2), have
h1 (resp. h2) as a (sole) sufficient justification.
Arc consistency has removed values 1 and 4 from the domains
of x2 and x3. h1 is a sufficent justification for the removals
(x2 6= 1) and (x3 6= 1), and h2 a sufficient justification of
(x2 6= 4) and (x3 6= 4).
By convention, all the values that are still in the current do-
mains of their variables receive both h1 and h2 as a sufficient
justifications.

Example 2 A removal may have several sufficient justifica-
tions, as shown by the following example. Consider the CSP
X = {x1, x2, x3, x4}, D = D1 × D2 × D3 × D4 = {1, 2, 3}4,
C = {x1 6= x2, x3 6= x2, x4 6= x2)}. Value 2 for x1 has two
supports on x2 : 1 and 3. Suppose that the user has assigned
value 1 to x3 (h3) and value 3 to x4 (h4); in other terms,
H = {(x3 = 1), (x4 = 3)}. h3 forbidds the first support
of x1 = 2 and h4 forbids its second support ; value 2 is
thus removed by arc consistency from the current domain
of x1: DC(x1) = {1, 3} and this removal has two sufficient
justifications: h3 and h4.

Of course, a value belongs v to the alternative domain of
an assigned variable xi iff hi is a sufficient justification of the
removal (xi 6= v):

Proposition 6 Let P = (X ,D, C,H) be an A-CSP, l a level
of local consistency.

For any xi ∈ X , any v ∈ D(xi), v belongs to the alternative
domain of xi iff either v belongs to the domain of xi in the
closure by l consistency of P = (X ,D, C∪H) or (xi 6= v) ∈ Rl

and hi is a sufficient justification of (xi 6= v).

The notion of sufficient justification is extended to tuples
as follows:



supports of (x = v)

removals justification vector of each removal t1 t2 t3 t4
x1 6= v1 {h1, h2} ? ?

x2 6= v2 {h1, h3} ? ?

x3 6= v3 {h2, h4} ? ? ?

justification vector {h1, h2, h4} {h1} {h2} {h2, h4} ∅

Table 2. Computation of the vector of justifications of the removal (x 6= v) on a given constraint C; the ti are the supports of x = v. A
? in cell (ti, xj 6= vj) means that ti invalid when xj 6= vj

Definition 7 (Sufficient justification of a tuple)
Let P = (X ,D, C,H) be an A-CSP, l a level of local consis-
tency, C a constraint in C and t an assignment of vars(C)
satisfying C.

An user choice hi ∈ H is said to be an l- sufficient justifi-
cation for t if and only if, for each xj ∈ vars(t), t[xj ] belongs
to the domain of xj in the closure by l consistency of the CSP
(X ,D, C ∪ H \ {hi}).

Example 1 (cont’) If we go back to example 1, once
x1 and x2 have been assigned, tupple (3, 2, 4) is not valid
anymore and has one sufficient justification, h1 (it is enough
to relax x1 = 1 to make this tupple valid again); remark
that tupple (4, 2, 1), that is also invalid, has no sufficient
justification (the relaxation of the two choices is necessary to
make it valid again).

Our algorithm is based on the fact that an assignment hi

is an l-sufficient justification for the tuple t if and only if, for
each xj involved by the tuple, either t[xj ] is in the current
domain of xj or hi is a sufficient justification of the removal
(xj 6= t[xj ]). Formally, let us call the conflict set of t the set
of removals that make it invalid:

Definition 8 (Conflict set)
The conflict set of a tuple t w.r.t. some level of l consis-
tency is the subset of Rl defined by: CS(t) = {(xi 6= v) ∈
Rl s. t. t[xi] = v}.

Of course, a tuple is invalid if and only if it has a non-empty
conflict set.

Proposition 9 hi is an l-sufficient justification of a tuple
t if and only it is an l-sufficient justification of each of the
removals in its conflict set w.r.t. l.

Finally, it can easily be shown that, when the level local
consistency to maintain is generalized arc consistency:

Proposition 10 hi is a sufficient justification w.r.t. Arc con-
sistency (GAC) for a removal (x 6= v) iff, for each constraint
C bearing on x, there exists a tuple t support of (x = v) on C
such that hi is GAC-sufficient justification of t.

Similar properties can be established for other levels of local
consistency based on the notion of support, typically for k
inverse consistency [8]3

3 A CSP is (1, k) consistent iff, for each variable x and each value
v in D(x), for each set V of k additional variables, x = v has a
support on V, i.e. there exists an assignment t of {x} ∪ V such
that for any C ∈ C with vars(C) ⊆ {x} ∪ V, t satisfies C

Proposition 11

hi ∈ H is a (1, k)-sufficient justification of (x 6= v) ∈ R(1,k)

iff, for each set V of k variables there exists a support t of
x = v on V such as hi is a (1, k)-sufficient justification of t.

3.2 An algorithm of maintenance of the
alternative domains w.r.t. Arc
Consistency

In our application, interactive configuration, the constraint
to be taken into account are mostly table constraints and the
level of consistency referred to is Generalized Arc Consistency.
We thus propose to maintain the alternative domain upon
the assignment of a variable using an extension of GAC4 [15].
Our algorithm propagates not only value removals, but also
justifications: for each removal (xi 6= v), we maintain a vector
f(xi 6=v) of n boolean flags, one for each choice in H, such that
f(x 6=v)(hi) = True if and only if hi is a sufficient justification
of (xi 6= v). According to Proposition 10, f(x 6=v) depends on
the justifications of the tuples that support (x, v). Hence, we
keep, for each tuple t, a bit vector ft such as, for each hi,
ft[hi] is true iff hi is a sufficient justification of t. Intuitively
(see Table 2 for an example), for the user choice hi to be
a sufficient justification for a removal (x 6= v) provoked by
constraint C, it is needed that the relaxation of hi makes at
least one support t of (x = v) on C valid again, i.e. that all
the elements in the conflict set of t have hi as a sufficient
justification (this is the meaning of Proposition 9). In other
words, ft is the intersection of the f(xj 6=w) flags of all the
removals (xj 6= w) in the conflict set of t. Formally:

Proposition 12

f(x6=v) =
∧

C|x∈vars(C)

(
∨

t∈Support(x,v,C)

(
∧

r∈CS(t)

fr))

where Support(x, v, C) is the set of assignments of vars(C)
that support (x, v).

We propose here a GAC4 like algorithm, the initialization
and main propagation of which are depicted by algorithms 1
and 2. We use the following notations:

• (X ,D, C) is the original CSP, that is supposed arc consis-
tent;

• for any constraint C ∈ C, Table(c) is the set of assignments
of vars(c) that satisfy it. We moreover the tuples involved
in the tables are valid (i.e. Table(c) is a subset of the carte-
sian product of the domains of the variables its bears on.



• Dc(xi) is the current domain of xi

• Sxi,v,C is the set of supports of (xi, v) on C and
Cpt(xi, v, C) is the number of supports of (xi, v) on C.

• for any tuple t, ft is its vector of justifications; for any
removal (xi 6= v) f(xi 6=v) is its vector of justifications; for
any removal (xi 6= v) and any constraint C bearing on xi,
f(xi 6=v,C) is the vector of justification of (xi 6= v) on C.

The difference with GAC4 is that a removal (x 6= v) must
be propagated non only when it is created, but for each change
in its vector of justifications. Since the updating of the vectors
of justification is monotonic (a hi might go from being suf-
ficient to not, but not the other way around), the algorithm
terminates. More precisely, instead of entering just once in
Q, each removal can enter in the queue n times at most (n
being the number of hi in H), i.e.as much as the number of
possible changes in a vector of justifications. The worst case
complexity is thus bounded by O(nedk) with e the number of
constraints, m the number of variables, n the maximal num-
ber of assumptions (typically, n = m), d the maximum size
of the domains and k the maximum arity of constraints. It is
thus the same complexity as the GAC-4 based naive method:
n.O(e.dk). With the important difference that in the naive
method, GAC-4 is called exactly n times while n is a worst
case bound for justification-based algorithm.

Concerning space complexity, GAC4 memorizes the sup-
port Si,v,C for each xi , each value v in its domain and each
constraint C bearing on xi; Let say that this structure is in
O(T ) ( T is actually proportional to the space taken by valid
tuples in constraint tables). Our algorithm also maintains, for
each tuple t, a vector of n flags, meaning a O(T.n) space. For
each removal and each constraint bearing on the variable of
the removal, we also keep a vector of n boolean flags. Since
the number of removals is bounded by the number of vari-
able/value pairs (xi, v) in the problem, the algorithm involves
in the worst case as many boolean vectors as the number of
Si,v,C sets used by GAC4; Hence a global a spatial consump-
tion bounded by O(n.T ).

Procedure Initialize((X ,D, C):CSP; n: integer)
/* (X ,D, C) is the original CSP assumed to be arc consistent */

/* All the tuples are supposed to be valid */

/* n is the maximal number of assumptions to be considered */

begin
foreach C ∈ C do

foreach xi ∈ vars(C), v ∈ D(xi) do
Cpt(xi, v, C) := 0;
Si,v,C = ∅

end
foreach t ∈ Table(C) do

ft = Truen;
valid(t) = True;
CS(t) = Falsen;
foreach xi ∈ vars(C) do

Cpt(xi, t[xi], C) + +;
Add t to Si,t[xi],C

end

end

end
end

Algorithm 1: Initialization

Procedure Propagate( (xk, w): assumption; (X ,D, C): the
initial CSP; H: the past assumptions; Dc: the current
domains);
Add (xk, w) to H;
Q := ∅;
/* The removal of the other values in the current domain of xk is

due to hk */

foreach u 6= w ∈ Dc(xk) do
f(xk 6=u) ← Falsem;
f(xk 6=u)[hk]← True;

end
Add (xk 6= u) to Q;
while Q 6= ∅ do

Choose and remove a (xi 6= v) from Q;
if v ∈ Dc(xi) then

Remove v from Dc(xi);
end
foreach C s.t. xi ∈ vars(C) and each tuple t in
Si,v,C do

Mem← ft;
ft ← ft ∧ f(xi 6=v);
if valid(t) then

foreach xj ∈ vars(t) s.t. j 6= i do
Cpt(xj , t[xj ], C)−−;
if Cpt(xj , t[xj ], C) == 0 then

f(xj 6=t[xj ]),C ← Falsem
/* init; will be

computed later */ ;
Add (xj 6= t[xj ]) to Q;
if t[xj ] ∈ Dc(xj) then

f(xj 6=t[xj ]) ← Truem
/* init */ ;

end

end

end
valid(t) = false;

end
if Mem! = ft /* A justif. of t is not sufficient

anymore */ then
foreach xj ∈ vars(t) s.t. j 6= i do

mem′ = f(xj 6=t[xj ]);
f(xj 6=t[xj ]),C = f(xj 6=t[xj ]),C ∨ ft;
fxj 6=t[xj ] = fxj 6=t[xj ] ∧ fxj 6=t[xj ],C ;

if mem′ 6= f(xj 6=t[xj ]) then
Add (xj 6= t[xj ]) to Q;

end

end

end

end

end
foreach hi ∈ H do

Dalt(xi) = ∅; foreach v ∈ Dxi do
if f(xi 6= v)[hi] then

Add v to Dalt(xi)
end

end

end
Algorithm 2: Propagation of decision hk = (xk ← w)



4 First experimental results

We have tested this algorithm on an industrial prob-
lem of configuration. It involves 32 variables of domain
of size 2 to 10, 35 binary constraints. The product to
configure is a blowing machine, which blows bottles for
different matters. The benchark can be found at url
ftp://ftp.irit.fr/pub/IRIT/ADRIA/PapersFargier/Config/souffleuse.xml.

The protocol simulates 1000 sessions of configurations as
follows. First, a sample of 1000 consistent complete assign-
ments is randomly fired. For each of then, the corresponding
session is simulated by assigning the variables following a ran-
dom (uniform) order. After each assignment, we measure the
cpu time needed to make the current problem arc-consistent
and to compute the alternative domains of all the already
assigned variables are computed. The whole protocol is ap-
plied by both the justification-based algorithm described in
the previous Section and the naive method (that works on as
may copies of the original CSP as the number of user choices
in H, as decribed in introduction of Section 3 ) ; for the shake
of rigor, the two algorithms play on the same assignments and
the same assignment orders.

Figure 1 presents the result of these experiments. On the
x-axis is the number of the assignment in the sequence; the
y-axis is logarithmic and indicates the mean cpu time need
for the naive method (plain line, with rounds) and for the
justification-based algorithm dotted line, with squares.

Figure 1. Computation time required by both the naive
method and the justification-based algorithm (logarithmic scale).

The results are quite good: our algorithm is faster as soon
as more than 5 variables are assigned, i.e.when more than
5 alternative domains are to be computed. As expected, the
time required by the naive algorithm grows linearly with the
number of variables, while our algorithm has stable computa-
tion time. These first results have obviously to be confirmed
by more experiments on bigger configuration problems.

5 Conclusion

In this work, we have coined the new concept of the alternative
domain of a variable with respect to a local consistency level
and proposed an extension of GAC4 algorithm as a way to
compute the alternative domains when maintaining General
Arc Consistency on problems involving table constraints.

Contrarily to the naive method that applies the propaga-
tion algorithm as many times as the number of alternative

domains to be computed, our approach keeps limited justifi-
cations of the removals. Tested on two industrial benchmarks,
this method quickly outperforms the naive method.

The main limitation of our method is obviously its space
consumption; the extra space consumption depends directly
of the number of variables for which we want to compute
the alternative domain. This being said, it should be kept in
mind that for practical purposes the system is not asked to
display all the alternative domains; the human user has with
a limited mental capacity and it is not obvious that she can or
even wants to see a lot of alternative domains at a glance. In a
configuration application for instance, the user looks at only
a small number of variable simultaneously, typically the ones
involved in the subcomponent currently being configured.

The concepts we have coined are close to the notion of value
restoration. In the current work, we focused on the computa-
tion of alternative domains; an alternative value is a forbidden
value that can be restored by the sole relaxation of the assign-
ment of its variable. But more generally any value having at
least one sufficient justification can be restored by the relax-
ation of only one assignment. For each value in the domain of
an assigned variable, the user knows whether she can change
her choice to this value without modifying the other choices -
this is the notion alternative domain. But the user also knows
something about the values that have been filtered from the
domains of the unassigned variables: the justification vector
of such a value provides her with the set of , previous choices
(on other variables) she could relax in order to make the value
available again. Hence the potential use of the algorithm pro-
posed by this paper to provide the user with alternative values
in a wider sense, and more generally to support the task of
interactive relaxation by providing easily restorable values.

This work has a huge potential for developments and per-
spectives. Firstly, our algorithm obviously needs to be im-
proved, for instance with a lazy implementation, and our
experiments must be completed. Secondly, we should think
about the extension of the maintenance of alternative domain
in CSP with general constraints, and not just in table con-
straints ; such an algorithm is not too difficult to conceive for
CSPs involving binary constraints only, but the task seems
much more tricky for general constraints. Finally, we should
be able to consider the whole interaction; for the moment, we
only considered the assignment of a value to a variable: we
need to study the relaxation of choices also. This adaptation
might mean an hybridizing with the maintenance algorithms
of propagation/depropagation in dynamic CSP[2, 3, 6].
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A Proofs

[Proof of Proposition 9]
Of course, the proposition holds when t is valid (it has an
empty conflict set). Let us examine the case of an invalid
tuple.

⇒ Let hi be l-sufficient justification of an invalid tuple
t and suppose that there exists a removal (x 6= v) in the
conflict set of t such that hi is not a sufficient justification of
(x 6= v).
We write P l

i the l-consistent closure of (X ,D, C ∪ H \ {hi}).
Since hi is an l-sufficient justification of t, by definition, t is
valid in P l

i . Since hi is also not a sufficient justification of
(x 6= v), v is not in the domain of x in P l

i ; t is thus invalid in

P l
i , which is a contradiction.

⇐ Reciprocally, let hi be an l-sufficient justification of
all the removals in the conflict set of t. For each of these
(xj 6= vj), vj is by definition in the domain of xj in P l

i .
Thus, t is a valid tuple in P l

i - by definition of the notion of
justification, hi is thus an l-sufficient justification of t. 2

[Proof of Proposition 10]
⇒ Let hi be a GAC sufficient justification of a removal

(x 6= v) . Suppose that there exits a constraint C bearing on
x such that none of the supports of x = v on C admits hi

as a sufficient justification. This means that these tuples are
not valid in the arc consistent closure of (X ,D, C ∪ H \ {hi})
(denoted P GAC

i ). Thus v has no support on C in P GAC
i : it

does not belongs to the domain of x in P GAC
i ; hi is thus not

a sufficient justification of (x 6= v) .

⇐ Reciprocally, consider an assumption hi and suppose
that ∀C bearing x, ∃t support of x = v such that hi is a
GAC sufficient justification of t . This means that, for any
constraint bearing on x there exists a support t of x = v valid
in P GAC

i ; v thus belongs to the domain of x in P GAC
i - by

definition, this meant that hi is a GAC-sufficient justification
of (x 6= v). 2

[Proof of Proposition 11]
∀(x1, ..., xk), ∃(v1, ..., vk) a support of x = v such that hi is a
(1, k)-sufficient justification of (v1, ..., vk)

⇔ ∀(x1, ..., xk),∃(v1, ..., vk) support of x = v such that any
of the vj belongs to the domain of its variable in the closure
by (1, k)-consistency of (X ,D, C ∪ H \ {hi})

⇔ v belongs to the domain of x the closure by (1, k)-
consistency of (X ,D, C ∪ H \ {hi}) (definition of the 1, k
consistency)
⇔ hi is a justification (1, k)-sufficient of x 6= v. 2

[Proof of Proposition 12]
According to Proposition 10, when GAC is ensured

f(x 6=v)[hi] =
∧

C,x∈vars(C)

∨
t∈Support(x,v,C)

ft[hi]

For any hi, any x ∈ X and any v ∈ Dx. I.e.:

f(x 6=v) =
∧

C,x=vars(C)

∨
t∈Support(x,v,C)

ft

Yet, according to Proposition 9, the GAC-sufficient justifica-
tions set of a tuple is the intersection of GAC-sufficient justifi-
cations of the removals from its conflict set: ft =

∧
r∈CS(t) fr.

Hence the result. 2


