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Abstract.
For more than 30 years, knowledge-based product configu-

ration systems have been successfully applied in many indus-
trial domains. Correspondingly, a large number of advanced
techniques and algorithms have been developed in academia
and industry to support different aspects of configuration rea-
soning. While traditional research in the field focused on the
configuration of physical artefacts, recognition of the business
value of customizable software products led to the emergence
of software product line engineering. Despite the significant
overlap in research interests, the two fields mainly evolved in
isolation. Only limited attempts were made at combining the
approaches developed in the different fields. In this paper, we
first aim to give an overview of commonalities and differences
between software product line engineering and product config-
uration. We then identify opportunities for cross-fertilization
between these fields and finally develop a research agenda to
combine their respective techniques. Ultimately, this should
lead to a unified configuration approach.

1 Introduction

Customizable products are an integral part of most B2B and
B2C markets. Mass-customization strategies have been ap-
plied to tangible products (e.g., cars and mobile phones) as
well as intangible products like software (e.g., operating sys-
tems and ERPs) and services (e.g., insurance). To this end,
companies use software configurators that provide automated
support to tailor products to the requirements of specific cus-
tomers or market segments.
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Compared to the long history of computer-supported
configuration of products, research on the configuration of
parametrizable software is rather new. Product configuration
(PC) is the umbrella activity of assembling and customizing
physical artefacts (e.g. technical equipment, cars or muesli)
or services. Historically, PC has been a subfield of artificial
intelligence (AI), focusing on knowledge representation and
reasoning techniques to support configuration. Mostly inde-
pendent of PC, the field of software product line engineer-
ing (SPLE) emerged in the software engineering community.
SPLE deals with the design and implementation of software
components that can be adapted and parametrized accord-
ing to customer requirements and business or technical con-
straints [47]. As in PC approaches, the goal is to save costs
by assembling individualized systems from reusable compo-
nents [41]. Typical application domains for SPLE include em-
bedded systems, device drivers, and operating systems.

Interestingly, research in these two fields has been car-
ried out so far mostly independently. Except in rare cases
(e.g. [28, 5]), researchers in both fields are often unaware of
approaches that have been developed in the other commu-
nity. Further, even though a lot of PC work has focused on
configuring technical equipment, such equipment increasingly
contains software. At the same time, SPLE increasingly tar-
gets software-intensive systems that also include computing
and other types of equipment. Based on these observations,
our hypothesis is that both the PC and SPLE communities
have produced results that are applicable in the other domain.

The remainder of this paper explores further the opportu-
nity for cross-fertilization (Section 2) and proposes a research
roadmap (Section 3) to systematically compare the two do-
mains and foster efforts towards unifying both fields. In par-
ticular, we hope to find innovative approaches to questions
that are largely open in one or the other community such
as the reconfiguration of deployed systems, better interactive
configuration support (e.g., in case of unsatisfiable require-
ments), methods for full lifecycle support and the evolution
of models and knowledge bases. For this last question, we
will also explore how techniques from software configuration
management (CM) can be integrated.

2 Motivation

Questions of knowledge acquisition, knowledge representation
as well as different types of reasoning support have been in-



vestigated for many years in PC and SPLE. We highlight
some key results in both fields to show their commonalities
and differences. These preliminary observations motivate our
endeavour to study, compare, and eventually unify research
on configuration. We split the introduction of our motivations
along five dimensions. For each dimension, we also formulate
the research questions whose answers should expose opportu-
nities for cross-fertilization.

2.1 Knowledge acquisition and modelling

Research on PC has used a wide range of knowledge modeling
approaches (based, e.g., on UML [22] or description logic [40]),
involving different types of logics and constraints. While a few
SPLE approaches also used UML to capture aspects of config-
uration knowledge (e.g. [60, 25]), most results build upon the
seminal work on feature-oriented domain analysis (FODA)
initiated in 1990 by Kang et al. [37], which today is converg-
ing with decision models [17]. The cornerstone of FODA are
feature models (FMs), a graphical notation to capture and ex-
press the commonalities and variabilities of a product family.
FMs are menu-like hierarchies of mandatory, optional, and
alternative features, with cross-hierarchy relationships to ex-
press dependencies and incompatibilities. This initial FM no-
tation has been gradually extended to support, for example,
multiple instances [18, 44] or the configuration process [29].

Compared to configuration modelling ontologies used in PC
(e.g., [22] or [53]), the expressiveness of FMs (even extended
ones) appears too limited compared to more complex PC on-
tologies. Examples of advanced PC problems include connect-
ing components via ports (i.e., inferring complex topologies),
finding optimal or at least good configurations, integrating
iteratively new components, and distributing knowledge over
different agents or business entities [32]. Some work exists in
SPLE on component connection and integration (e.g. [5]) and
optimization (e.g. [58]). This motivated the creation of more
expressive languages (e.g., [8]). PC appears to offer a richer
body of work in this area, though.

Opportunities for cross-fertilization: Some authors
have already acknowledged the bond between configuration in
PC and in SPLE through feature-based configuration. Günter
et al. [27] recognize concept hierarchies (similar to FMs) as
a fundamental concept in their survey of knowledge-based
configuration methods. According to Junker’s classification
of known configuration problems [34], feature-based configu-
ration falls in the option selection or shopping list problems.
To systematically identify such synergies, our research agenda
should answer the following questions:

RQ1 What classes of configuration problems exist?
RQ2 How are these problems modelled?

2.2 Automated reasoning

Generally, with respect to modeling and knowledge represen-
tation, the AI-rooted PC community is usually interested in
“executable” models that can be directly translated into a
representation processable by a reasoning engine. The for-
mal basis of most knowledge modelling languages lays the
foundation for advanced configuration reasoning techniques
(e.g., checking for consistency of configurations, completing

partial configurations, or supporting interactive configuration
processes). In contrast, the SPLE community only started re-
cently to develop a formal foundation of FMs (e.g. [9, 49])
and their analyses (e.g. [5, 43, 33, 59]). Based on precise
formal problem characterizations, additional automations for
SPLE become feasible. An example is the automated analysis
of FMs; see [10] for an overview. Furthermore, Benavides et
al. [11] propose to translate FMs into a Constraint Satisfac-
tion Problem (CSP) and apply Reiter’s model-based diagno-
sis (MBD) approach to detect problems in the models. Xiong
et al. [59] combine MBD and Satisfiability Modulo Theory
(SMT) solvers to generate range fixes in software configura-
tion. Mendonca et al. [43] report on experiments with a SAT-
encoding of FMs. Finally, Bagheri et al. [7], support hard and
soft requirements in the configuration process.

The SPLE community sometimes reinvents techniques
which have been developed previously in PC. Encoding config-
uration problems in some logic or as CSPs has a long history
in the AI community [34]. The PC community was also the
first to apply SAT solvers to configuration problems [51]. New
CSP representations such as Dynamic, Composite or Genera-
tive CSPs [45, 48, 54, 32] as well as logics [26, 4] were partially
inspired by the challenges observed in PC. This latter pool of
techniques addresses the problem of conditionally including
multiple instances of a certain component type. The PC com-
munity was also first to use MBD for configuration, e.g., for
detecting problems in configuration knowledge bases [23]. Re-
garding soft constraints and preferences, there is abundant lit-
erature in constraint programming (e.g. [36, 46]). Finally, bi-
nary decision diagrams (BDDs) have also been used for build-
ing fast interactive configurators (trading time vs space from
a complexity point of view) [3]. That latter approach has been
explored in SPLE as well (e.g. [42]), but it turned intractable
on large FMs.

Opportunities for cross-fertilization: In contrast to
physical components, software components are represented
completely as computer artifacts. While physical components
need to be specified explicitly in the computer to check cross-
component compatibility, software configuration can analyze
variability models and the actual configurable artifacts at the
same time. This opens up new possibilities for configuration,
where the compatibility of components can be checked on
the fly during configuration without going back to the de-
sign phase and modifying configuration knowledge. To iden-
tify overlaps and differences between SPLE and PC, we in-
clude the questions:

RQ3 What automated tasks are supported (e.g., completion,
repair, and optimization of configurations)?

RQ4 How are these automated tasks implemented?

2.3 Complexity

The computational complexity is an indicator of the amount
of resources needed to solve a given problem. In PC, reason-
ing is usually achieved by encoding the problem in formalisms
such as CSP, SAT, answer set programming or description
logics, all of which are being supported by mature reason-
ers. Both SAT and CSP are well-known to be NP complete
[15, 38]. Some extensions of CSPs (dynamic, composite) poly-
nomially reduce to classical CSP [56] whereas the decidability



of Generative CSP has yet to be established. Ground answer
set programs are NP complete (Σp

2 complete in the case of op-
timization); if programs contain uninstantiated variables we
obtain NEXPTIME completeness [50, 19]. Description log-
ics are typically decidable fragments of first order logic [6];
the DLs used in PC range from polynomial over PSPACE
complete to undecidable [35, 40, 12]. Let us emphasize that
the aforementioned complexity results are only upper bounds:
Precise complexity results for classes of configuration prob-
lems are still too rare (e.g., [52]).

The same symptom can be observed in SPLE where only a
tiny fraction of the papers study complexity aspects (e.g. [49]).
While some experimental results exist, e.g., [43], theoretical
results are largely missing.

Opportunities for cross-fertilization. Although to a
different extent, both PC and SPLE do not fully cover ques-
tions related to the complexity of the automated tasks they
support for different classes of configuration problems. To fol-
low up on RQ1 and RQ3, we propose these new questions
that study their complexities:

RQ5 What is the complexity of automated tasks for relevant
classes of configuration problems?

RQ6 What reasoning frameworks can be used to build scal-
able tools for each class of configuration problems?

2.4 Life cycle coverage

SPLE suffers from a certain lack of homogeneity across the
modelling artefacts used throughout the engineering life cy-
cle. From requirements engineering down to code generation,
a myriad of alternative techniques exist which are used and
combined differently depending on the application domain
and project context. Therefore, there is no standard view
on how they should be integrated. As for PC, configuration
tasks can range from bill-of-material configuration over ce-
ment factory design to t-shirt customization. These tasks call
for very different methods and techniques whose applications
have been insufficiently studied. Additionally, the creation of
feedback loops from productive use back to variability de-
sign decisions is rather explored in the more business- or
management-centric literature without transfer to PC.

Configurator engineering is a more mature discipline in PC
than in SPLE, aiming at the co-design of the configurator and
the configurable artefact. According to Hvam et al. [30], the
creation, implementation and operation of a configurator is
a seven-phase procedure. The first phase identifies the prod-
uct specification process, used for analyzing customer needs,
creating a customized product, and prescribing other related
activities, such as purchasing, delivery, servicing, and recy-
cling. The specification process also defines the configuration
system that supports the activities composing it. The sec-
ond phase deals with the definition of the product portfolio.
Phases three to six deal with the modelling and implementa-
tion of the configuration system. The seventh phase focuses
on maintenance.

Finally, the commercial side of configuration is also impor-
tant. PC has to deal typically with sales, consumer goods,
and engineers, wheras SPLE is more geared towards software
engineers and other technical experts. Although stakeholder
profiles vary from one case to the other, some configuration
tasks overlap and techniques could be shared.

Opportunities for cross-fertilization. To better pin-
point overlaps, we split the problem into three questions:

RQ7 What are the configuration tasks?
RQ8 How is a configurable product engineered?
RQ9 How is a configurator engineered?

2.5 Knowledge evolution

The main concern of the software configuration management
(CM) discipline is controlling and tracking the evolution of
products in response to changes. To do so, it introduces the
concept of versions that represent instances of products and
its parts over time. In CM, there are two main types of
versions [14]: revisions and variants. Revisions are versions
that supersede other versions due to bug fixes or addition of
new functionalities. Variants are versions intended to coexist
through time to satisfy different user or platform needs. Vari-
ants are well known in the PC and SPLE fields. However, the
management of revisions and the interaction of both is still
a weakness of PC and SPLE, especially when the product
and its parts evolve frequently. The need to deploy change
management techniques in SPLE is recognized [13, 47], and
some researchers have started working in this direction (e.g.
[2, 57]). Although promising, these results are still incomplete,
and need to be extended and consolidated.

Problems related to the evolution of the configuration
knowledge and system (e.g. knowledge base, database, and
product instances) are also known in PC [21]. PC research
has addressed some of these evolution-related aspects in the
context of reconfiguration problems (e.g. [55, 24]), which con-
sist in changing an already existing or deployed configuration
to accommodate new or changed customer requirements or
constraints in the knowledge base. Männistö et al. [39] dis-
cuss the issue of the evolution of configuration knowledge and
instances, proposing a framework to address it. The key idea
is to accept the independence of these evolutions, capture the
evolution in the models, and then do reconfiguration. Prob-
lems similar to reconfiguration have been addressed in the
software domain: given a component-based software installa-
tion (e.g. Linux, Eclipse), the component dependencies and
an (un-)install request, compute a best new installation [1].

Another practical challenge both in PC and SPLE is the
constantly growing number of components that can be part
of a configuration, be they semi-conductors, switches, or soft-
ware plug-ins. The corresponding knowledge bases soon be-
come hard to manage because they describe how older compo-
nents have to be replaced by newer ones or which component
versions are compatible.

In CM, some have tried to provide a unified model for soft-
ware CM and product data management (e.g. [20, 16]). Those
models stop at the conceptual level without providing opera-
tional solutions, however.

Opportunities for cross-fertilization. Since the 1970s,
research in CM focused on change management. Mature so-
lutions are now available and could be applicable to PC. Fur-
thermore, researchers in SPLE and PC could join forces to de-
velop scalable techniques to address the explosion of the num-
ber of components and their evolution. Those results could
then be contributed back to CM. The resulting questions are:

RQ10 How can CM techniques be applied to PC and SPLE?



RQ11 How to scale up with growing revision knowledge?

3 Research Roadmap

The first step of our project was the composition of an hetero-
geneous panel of experts from the different communities and
the creation of a knowledge exchange portal. Once populated
with our initial results, our intention is to open this shared
portal to a wider community and invite collaborations. Our
research roadmap has five phases.

1. Literature survey. The first phase focuses on a litera-
ture survey that should answer RQ1-9. The part of the
survey related to RQ1-4 is already underway. The body
of knowledge gathered during this initial phase will be the
foundation upon which the panel will start its unification
endeavour.

2. Domain understanding and classification. The sec-
ond phase paves the road toward a unified theory of config-
uration. Its objective is to analyze the material collected in
the first phase, to classify the application domains, study
their differences and commonalities, and to identify the pos-
sible bridges between these domains.

3. Unified theory definition. The foundation for this the-
ory will be a mathematical model of the classes of con-
figuration problems and their properties. These classes of
configuration problems will be characterized by the expres-
siveness needed to solve the problems. Analogous to the
classification of description logics [6], this will enable the
study of the theoretical complexity of the associated com-
putational problems. Problem frames [31] could be used as
the macro-structure for this classification.

4. Unified theory operationalization. Upon this defini-
tion, we will build two layers: modelling languages and rea-
soning techniques. In the modelling layer, we will first sort
existing languages according to the configuration problems
they address. We will then work toward their unification,
possibly by mapping into a common core language. The
reasoning layer will gather the configuration tasks (e.g.,
consistency check, repair, and completion) identified in the
previous phases. For each task and a class of configuration
problems captured by a language, we will study alterna-
tive reasoning techniques and assess their applicability (see
next phase). Finally, we will investigate how version man-
agement techniques from CM can be adapted to support
configuration evolution. Based on these elements, we will
answer RQ6, 10 and 11.

5. Unified theory validation. Configuration can be ap-
plied in a myriad of application domains to support many
different usage scenarios. Each situation will need its own
benchmarks and analyses. The objective of the panel will
be to validate the results of the theory operationalization
on a few industry-size models. In particular, it will seek
to better understand the respective merits and limitations
of the various reasoning techniques. Benchmarks will be
needed to assess their applicability and tractability on var-
ious classes of problems. This pilot validation will be a first
step in setting up a framework in which parallel efforts of
the community could commence.

This roadmap is not intended to be executed in a waterfall
fashion: we expect several iterations through phases 2-5.

4 Conclusion

Configuration, both of software and other types of products,
continues to be a timely business strategy as customers consis-
tently strive for affordable tailor-made products. Yet, research
in product and software configuration progresses on different
and rarely intersecting paths. This paper (1) motivated the
need for bridging the current gap between these two domains,
and (2) presented a roadmap to build such a bridge and set
cross-fertilization in motion.

Our initial observations show that the contribution of the
research in product configuration to software product config-
uration is rather glaring. The inverse is, however, less obvi-
ous. As possible contributions, we see methodological aspects
as well as modelling techniques. Once laid upon more for-
mal foundations, some of these models could further improve
product configuration.

Finally, the evolution problem is still under-explored in
both software and product configuration. They both have a
lot to gain from the techniques promoted in configuration
management. Conversely, the formal treatment of configura-
tion problems and automated reasoning could enhance exist-
ing work in configuration management.
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