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Abstract. This paper is a case study on generating BDDs (binary
decision diagrams) for propositional encodings of industrial configu-
ration problems. As a testbed we use product configuration formulas
arising in the automotive industry. Our main contribution is the in-
troduction of a new improved constraint ordering heuristics incorpo-
rating structure-specific knowledge of the problem at hand. With the
help of this constraint ordering, we were able to compile all formu-
las of our testbed to BDDs which was not possible with an arbitrary
constraint order.

1 INTRODUCTION

Since the early 80s, product configuration systems have been among
the most prominent and successful applications of Al methods in
practice [15]. As a result computer aided configuration systems have
been used in managing complex software, hardware or network set-
tings. Another application area of these configuration systems is the
automotive industry. Here they helped to realize the transition from
the mass production paradigm to present-day mass customization.

Besides CSP encodings [1] also propositional encodings [10] of
configuration problems proved to be a viable alternative in the auto-
motive industry. Specific queries to the configuration base can then
be answered by a decision procedure for propositional logic, e.g.
in many cases SAT solvers. Although modern SAT solvers prove
to be very efficient in answering such queries, there are two major
drawbacks: (1) Since decidability of a propositional formula is NP-
hard, SAT solvers cannot guarantee certain runtime requirements re-
quired in online configuration applications; (2) there are some types
of queries that cannot be handled by a SAT solver efficiently, e.g.
restriction, model enumeration, or model counting. One approach to
circumvent these limitations is the use of knowledge compilation.

The basic idea of knowledge compilation is to distinguish two
phases: (1) an offline phase in which a given formula is compiled into
the respective compilation format and (2) an online phase in which
we query the compilation. Usually the offline phase is still NP-hard,
but once compiled, there are a number of interesting polynomial time
operations on the compilation. Well-known knowledge compilation
formats for propositional logic are e.g. BDDs [3] or DNNFs [5].

For this paper we chose BDD as compilation format. Its use in
configuration problems is well-studied [7, 11]. Hadzic et al. [7] fo-
cus on minimizing the final BDD for shorter response times; Nar-
odytska et al. [11] try to establish a good static variable ordering
for BDD compilation of configuration problems. They also present
a constraint ordering based on the constraint graph. In contrast, in
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this paper we present an ordering of the constraints based on some
structure knowledge of the problem which is not always deducible
from the constraint graph. In most cases our test instances could only
be compiled into BDDs with this new constraint ordering. With an
arbitrary ordering we exceeded space or time limits.

In section 2 we will introduce propositional configuration prob-
lems and present the reader an overview of binary decision diagrams
and some important properties. Section 3 shortly describes our test
instances from the automotive industry. Our main contribution lies in
section 4. We present an ordering of the constraints of the configura-
tion problem with the help of which we could compile all formulas
to BDDs.

2 PRELIMINARIES
2.1 Configuration problems
2.1.1 Propositional configuration problems

We use the definition of a configuration problem as given in [7, Def-
inition 1]: a configuration problem is a triple (V, D, ¥) where V is
a set of variables x1,x2,...,x,, D is a set of their finite domains
D1,Ds,..., D, and ¥ = {t1,%2,...,%m} is a set of proposi-
tional formulas (constraints) over atomic propositions x; = v where
v € Dy, specifying conditions that the variable assignments have to
satisfy. A valid configuration is an assignment o with dom(a) =V
such that o [= A\, 9. i.€. all constraints hold.

In this paper we consider the special case where we have only
propositional variables in V and hence D; = {1,0} forall 1 < <
n. The set O is the finite set of all configuration options for a product.
Each variable x, € V represents a configuration option o € O. The
variable x, is assigned to 1 if the option o is chosen, otherwise it is
assigned to 0. Following this course, the resulting formulas ¢ € ¥
are propositional formulas and hence p = A pew Y is apropositional
formula describing all valid configurations. We will also refer to ¢
as product overview formula (POF) [10].

Remark. The restriction of the variables x € V to propositional
variables does not limit the expressiveness of our problem descrip-
tion. Since the domains D; are finite and we only allow atomic
propositions of the form x = v, we can use a reduction [4] from
equality logic to propositional logic.

2.1.2  Structure of configuration problems

In many application domains (including the automative product con-
figuration), we can divide the set of constraints W in three parts:

Unit Constraints Uy constraints concerning only a single variable.
These constraints enforce or forbid the selection of a single option.



Cardinality Constraints Wcc Constraints enforcing the selection
of a certain number of options. In most cases the selection of ex-
actly one option or at most one option is enforced.

Dependencies ¥ p Constraints describing the dependencies be-
tween two or more options. These constraints are used to describe
complex domain specific configuration knowledge.

Example. In the automotive industry we have the following exam-
ples for the aforementioned constraint sets:

e Wy Necessary or forbidden options in a production series of cars.
E.g. ’EPS must be chosen in this series’ or ’automatic transmis-
sion is not available for this series’.

e Vot Enforcement that only one option from a certain option-
family can be chosen at the same time. E.g. "only one steering
wheel in a car’, or ’at most one navigation system’.

e W p: Description of complex dependencies in a car. E.g. "naviga-
tion system enforces also board computer and forbids radio’.

2.2 Ordered binary decision diagrams

A binary decision diagram [3] is a directed acyclic graph which rep-
resents a propositional formula. Each inner node is labeled with a
propositional variable and has two outgoing edges for negative and
positive assignment of the respective variable. The leaves are labeled
with 1 and O representing true and false. An assignment is repre-
sented by a path from the root node to a leaf and its evaluation is
the respective value of the leaf. Therefore all paths to a 1-leaf are
valid models for the formula. Ordered reduced BDDs (ROBDDs) are
a subset with additional restrictions for the BDDs. Ordering guaran-
tees the same variable ordering on all paths through the BDD; Reduc-
tion guarantees that equivalent subtrees of the BDD are compactified
and redundant nodes are deleted. A ROBDD is a canonical represen-
tation of a propositional formula wrt. to a variable ordering, meaning
the ROBDD of a formula is unique. From now on we will refer to
ROBDDs simply as BDDs. Figure 1 presents the BDD for the for-
mula (z1 <> x2) V x3 with the variable ordering z1 < z2 < 3.
Solid edges represent the positive assignment, dashed edges the neg-
ative assignment.

Figure 1. BDD for (z1 <> z2) V a3 with ordering 1 < 2 < z3

Once compiled, BDDs allow a large number of polynomial time
operations on the represented formula. Among them are: satisfiabil-
ity, general entailment, restriction or equivalence. Since satisfiability
is a polynomial time operation on BDDs, it is obvious, that it is NP-
hard to transform a given Boolean formula into a BDD. The size
(number of nodes) of a BDD is strongly dependent on the variable
ordering. There are many examples where bad orderings produce ex-
ponential size BDDs, whereas a good ordering produces a linear size
BDD. So finding a good variable ordering is a crucial task in the

compilation phase. Finding an optimal variable ordering is an NP-
complete problem [2]. Different reordering heuristics for BDDs will
be reviewed in section 2.2.1.

Since our input formulas are in CNF, the usual procedure of com-
piling the BDD is to generate BDDs for each clause and conjoin
them. Here, the order in which the clauses are conjoined plays an
important role. We will discuss the impact of this clause/constraint
ordering in section 2.2.2.

2.2.1 Reordering heuristics

As already mentioned, finding the optimal variable order for a BDD
is NP-complete. Modern BDD compilers use different heuristics to
find a good variable ordering while compiling. We will present some
of these heuristics which proved to be of interest for our real world
applications.

The sifting algorithm by Rudell [14] is the foundation of various
reordering heuristics. It is based on finding an optimum for each vari-
able assuming all other variables remain fixed. Each variable is con-
sidered in sequence, beginning with the variable with most occur-
rences. The currently selected variable is sifted (moved) sequentially
to both ends of the variable ordering and is finally fixed to the opti-
mum position wrt. the size of the BDD. All variable movement can
be done by a series of adjacent variable swaps. Swapping a variable
with its direct predecessor or successor does not affect levels other
than those of these two variables and therefore depends only propor-
tionally on the size of the respective levels. This sifting process is
repeated for each variable, in order of their occurrences. It is notable
that the BDD size can increase heavily during sifting.

The sifting algorithm can be extended to a symmetric sifting [13],
where symmetric variables (variables, that can be interchanged with-
out changing the Boolean function) are kept close together. Sym-
metric sifting again can be generalized to group sifting [12]. Here,
symmetry situations that go beyond the symmetry of two variables
can be treated specially.

A different approach was suggested by Fujita et al. [6] and Ishiura
et al. [8]. Instead of searching the optimal position of a variable in the
whole variable ordering, the search space is restricted to a small win-
dow. Each variable is considered in sequence and permuted inside a
window of size k. If x; is considered and window size is 3, x;, Ti+1
and z ;42 have to be permuted. All k! possibilities of arranging vari-
ables are exhaustively searched. After testing all permutations, the
best one wrt. BDD size is used. The process is repeated for each vari-
able. Due to the rapid growth of the faculty function, this approach is
only practical for window sizes up to 5. Generally it performs better
than sifting, but may not be able to overcome local minima.

For further comparison two random based algorithms have been
used. The random variant randomly selects pairs of variables and
transposes them with adjacent swaps. The best position wrt. BDD
size is used. This step is repeated n times for n variables. The ran-
dom pivot takes the same approach but requires that the first variable
selected has a smaller index than a pivot element. This pivot element
is the variable with most nodes in the BDD. Accordingly the second
selected variable has to have a larger index than the pivot element.

2.2.2 Clause orderings

Given a CNF as input formula for the BDD compilation, the order in
which clauses are added to the BDD is crucial. Consider a formula
1 Ax A~z where 1 is an arbitrary satisfiable CNF. If first all clauses
of ¢ are added to the BDD, the resulting BDD can be of large size



(depending on 2). If then at the end « and —z are added, the formula
turns unsatisfiable and the BDD degenerates to the O-leaf. If on the
other hand = and —x are added to the BDD as first two clauses, all
other clauses will have no more impact on the BDD. Obviously the
second approach would perform much better in this case for a large
1. In general we can not determine such a ’good’ clause ordering
but in our application we have specific structure knowledge which
we can utilize. Since clauses in our application stem from various
constraints, we will refer to this also as constraint ordering.

3 TEST CASES

As a testbed we used product configuration formulas for a series of
cars of a major German car manufacturer. The series consists of 25
different car models, each with about 300 customer-selectable op-
tions in O and between 300 and 400 constraints in . Looking at the
distinction in section 2.1.2 we have the following numbers:

e between 20 and 30 unit constraints in Wy;
e between 40 and 60 cardinality constrains in ¥ o
e about 300 dependencies in ¥ p

The corresponding CNF translations of these formulas range be-
tween 200 and 350 variables and 500 and 3000 clauses.

We distinguish two different flavors of formulas: the first set rep-
resents a restriction of the formula to technical aspects, meaning only
options are considered, which are really choosable by the customer;
the second set models the full configuration space including some
steering codes in the set of options which are used to guide certain
processes during the manufacturing of the car. Table 1 presents an
overview over all instances.

Table 1. Automotive product configuration instances

technical full configuration space

# variables  # clauses # variables # clauses

1A1 270 979 352 2796
1A2 262 895 344 2712
1A3 268 942 350 2759
1A4 262 898 344 2715
1B1 242 704 322 2519
1B2 236 667 316 2482
IC1 251 768 331 2583
1C2 242 704 322 2519
1C3 220 594 240 638
IC4 267 952 349 2769
IC5 257 853 339 2670
D1 246 760 325 2575
D2 237 696 317 2511
1D3 216 597 236 641
D4 246 765 326 2580
D5 238 669 318 2514
1D6 216 597 236 641
1IE1 240 700 319 2514
1E2 236 662 315 2476
1E3 247 745 327 2560
1E4 241 695 321 2510
1ES 246 736 326 2551
1E6 241 697 321 2512
1E7 267 946 349 2763
1E8 257 859 339 2676

4 RESULTS

A framework for automated testing and evaluating of both static and
dynamic variable orderings has been implemented. We used CUDD 2
as a foundation of our implementation. The framework can han-
dle Dimacs CNF files and produces BDDs with different reordering
heuristics and also a static variable ordering. It then evaluates the
resulting BDDs wrt. compilation time and BDD size and generates
comparison graphs for the different heuristics.

For the static variable ordering we solved the formula with a state-
of-the-art SAT solver and used its assignment stack as ordering.

4.1 The impact of the constraint ordering

As mentioned in section 2.2.2 the clause/constraint ordering can play
an important role in the compilation phase. In the first tests most of
our instances could not be compiled into BDDs with an arbitrary
constraint ordering. We can observe this effect in the first diagram of
figure 2 for a test instance (IB2). Without structuring the constraints,
we reached > 50 million internal nodes after adding 100 clauses.
Due to memory restrictions (4 GB) we could not add more than 200
clauses.
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Figure 2. Impact of clause orderings (IB2)

To bypass this problem, we grouped our set of constraints accord-
ing to section 2.1.2 in ¥y, Yce and Wp and used the constraint
ordering ¥y < Yoo < VUp, meaning first we add all the unit con-
straints, then we add all the cardinality constraints, and at last we
add the dependencies. We will now take a closer look at the resulting
BDD.

The conjoin of all the constraints in Wy represents exactly one
satisfying assignment. Therefore the resulting BDD is—independent
of the variable ordering—a chain of n nodes for n constraints in U¢;.
For each variable representing a necessary option, the negative edge
goes to the 0-leaf and the positive edge goes to the next variable, and

2 ftp://vlsi.colorado.edu/pub/cudd-2.5.0.tar.gz



vice versa for each variable representing a forbidden option. Figure 3
illustrates the BDD after adding all unit constraints for necessary op-
tions n1, ..., ny and forbidden options f1, ..., fi.

Figure 3. BDD after adding all unit constraints

Next we add all the cardinality constraints. In our context we only
have to deal with ’exactly one’ and ’at most one’ constraints. The
propositional translation of *at most one option of z1, . ..,y is cho-

sen’ is

i€{1,en} jELi+1,. 0}

(_\ZCZ'\/_\.IT]'). (1)
For the encoding of ’exactly one variable of x1, ...,z is chosen’
we simply conjoin (Vie{l,m,n} xz) to (1). The resulting BDD has
(independent of the variable ordering) 2n — 1 nodes for an ’exactly
one of n’ constraint and 2n — 2 nodes for an ’at most one of n’
constraint. Figure 4 illustrates such a BDD for an ’exactly one of
Z1,...,%y constraint. In our application domain all constraints in
Ve have disjoint variable sets (an option can only belong to one
option-family). Therefore compiling all cardinality constraints to a
BDD results in a chain of sub-BDDs as represented in figure 4. If
one of the options in a cardinality constraint was also present in the
unit constraints, the reduction property of the BDD guarantees im-
mediate simplification. After adding the cardinality constraints and
the unit constraints, the BDD size is still linear in the number of unit
constraints and cardinality constraints and their respective variables.

S

Figure 4. BDD for an ’exactly one’ constraint

As a last step, the dependencies between the options ¥ p are con-
joined to the BDD. This step can enlarge the BDD significantly (ex-
ponential size in the worst-case). But our experiments show, that the

knowledge already present due to the translation of the unit con-
straints and the cardinality constraints helps to a great extent to sim-
plify the remaining constraints.

In the second diagram of figure 2 we can observe this effect:
Adding the clauses representing unit and cardinality constraints (the
first 500 clauses) goes smoothly and the resulting BDD is very small.
First on adding the dependencies, the BDD size grows faster. But
taking into account that we could not compile over 200 clauses with
an arbitrary constraint ordering, this is a large improvement. With
the help of this new constraint ordering, we were able for the first
time, to compile all our industrial instances into BDDs with under
two minutes per instance (most of them taking only a few seconds to
compile).

4.2 Comparison of the reordering heuristics

We compared all reordering heuristics wrt. compilation time (exe-
cution time in user mode) and BDD size (total number of nodes).
Our test system was a 64-Bit Linux running on an AMD Athlon 64
X2 Dual Core 4600+ with 4 GB of RAM. For each instance all 16
heuristics were tested. The results are denoted as follows:

var: static variable ordering (assignment stack of SAT solver)
none: ascending variable order zi ... xy

sifting: basic sifting algorithm

symsift: symmetric sifting

gsift: group sifting

windowX: window permutation with window size X
random: random selection algorithm

rpivot: random selection with pivot element

A ‘-¢’ identifies the convergent variant of a heuristics, which means
it is applied until no further improvement can be observed.

Figure 5 presents an evaluation for one test instance as automati-
cally produced by our tool. Here you can observe a typical pattern we
identified: the static variable ordering often has a short compilation
time, but produces large BDDs. The windowing algorithms perform
better than the sifting-based algorithms in most cases. The sifting
algorithms yield by far the smallest BDDs.
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Figure 5. Heuristics comparison for ID5 (full configuration space)



Table 2 presents an overview what algorithm yielded the smallest
BDD size for each test instance and what algorithm had the best com-
pilation time. Times are noted in seconds. The table presents only
instances of the full configuration space. The instances reduced to
technical aspects showed similar results and are omitted here.

Table 2. Comparison of reordering algorithms (full configuration space)

nodes  winner time (ins)  winner
1A1 6133 gsift-c 3641 none
1A2 3837  symsift-c 62.2  symsift
IA3 1974 symsift-c 28.3  window3-c
1A4 12016  gsift-c 48.61  window3-c
IB1 1820  gsift-c 337  var
1B2 2878  gsift-c 1.03  var
IC1 2539 symsift 7.6 window3-c
IC2 1411 gsiftc 8.17  var
1C3 844  symsift 099  var
IC4 4229  symsift-c 4546  window3-c
IC5 2883  symsift-c 33.35  gsift
ID1 1781  symsift-c 18.18  window3-c
D2 2702 gsift-c 10.87  var
ID3 1345  symsift-c 0.58  var
1D4 1343 symsift-c 3.54  var
ID5 2407  gsift 9.01  var
ID6 1345  symsift-c 0.6  var
IE1 1165  gsift-c 2.59  var
1IE2 1313 symsift 093  var
1E3 3587  sifting-c 13.15  window3-c
IE4 2029  gsift 3.08 var
1ES 1853  symsift-c 10.89  var
IE6 1898  symsift-c 6.15  var
1IE7 2308  symsift-c 3791  window3-c
1E8 2233 gsiftc 34.66  window3-c

These results are summarized in table 3°. Here we show how many
times (out of 50 instances—full and technical configuration space)
each algorithm yielded the best result wrt. to size and time respec-
tively. The aforementioned observations are justified: a static vari-
able ordering or reordering algorithms based on windowing (espe-
cially with window size 3) have often the best compilation times at
the expense of large BDD sizes. The various reorderings based on
sifting, especially the convergent symmetric sifting variant, produce
the smallest BDDs. Since performance in the offline phase is not too
critical in knowledge compilation, sifting seems to be a viable choice
for a reordering heuristics for our test instances in order to compile
small BDDs with good query times.

5 CONCLUSION

In this paper we introduced a new constraint ordering for BDD com-
pilation of industrial configuration instances. This constraint order-
ing uses structure-specific knowledge of the constraints at hand in or-
der to optimize compilation time. With this ordering we were able for
the first time to compile all configuration instances of our testbed—
product configuration data of a major German car manufacturer—
into BDDs. Most of these BDDs could be compiled in a few seconds
and have surprisingly small representations (850 - 12.000 nodes).
These results look very promising. There are some interesting ques-
tions like counting all constructible variants of a single car [9] or enu-
merating a certain number of cars with special features, that could be
solved efficiently once we have a BDD representation.

3 Complete benchmark results can be found at http://
www-sr.informatik.uni-tuebingen.de/research/

confws2012-results.pdf

Table 3. Summary of the winning heuristics
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