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Abstract.1  This communication deals with mass customization 
and the association of the product configuration task with the 
planning of its production process while trying to minimize cost 
and cycle time. We consider a two steps approach that first permit 
to interactively (with the customer) achieve a first product 
configuration and first process plan (thanks to non-negotiable 
requirements) and then optimize both of them (with remaining 
negotiable requirements). The communication concerns the second 
optimization step. Our goal is to evaluate a recent evolutionary 
algorithm (EA). As both problems are considered as constraints 
satisfaction problems, the optimization problem is constrained. 
Therefore the considered EA was selected and adapted to fit the 
problem. The experimentations will compare the EA with a 
conventional branch and bound according to the problem size and 
the density of constraints. The hypervolume metric is used for 
comparison.. 

1 INTRODUCTION 

This paper deals with mass customization and more accurately with 
aiding the two activities, product configuration and production 
planning, achieved in a concurrent way. According to the 
preferences of each customer, the customer requirements 
(concerning either the product or its production) can be either non-
negotiable or negotiable. This situation allows considering a two-
step process that aims to associate the two conflicting expectations, 
interactivity and optimality. The first interactive step, that 
sequentially processes each non-negotiable requirement, 
corresponds with a first configuration and planning process that 
reduces the solution space. This process is present in many 
commercial web sites using configuration techniques like 
automotive industry for example. Then, a second process optimizes 
the solution with respect to the remaining negotiable requirements. 
As the solution space can quickly become very large, the 
optimization problem can become hard. Thus, this behavior is not 
frequent in commercial web sites. Meanwhile some scientific 
works have been published on this subject (see for example [1] or 
[2]) and the focus of this article is on the optimization problem. In 
some previous conferences we proposed an interesting adapted 
evolutionary algorithm for this problem [3]. However, the 
presentation was rather descriptive and experimentations were not 
significant. Therefore, the goal of this paper is to compare this 
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algorithm with a classical branch and bound. This initial section 
introduces the problem and the organization of the paper.   

1.1 Concurrent configuration and planning 
processes as a CSP 

Deriving the definition of a specific or customized product 
(through a set of properties, sub-assemblies or bill of materials, 
etc…) from a generic product or a product family, while taking 
into account specific customer requirements, can define product 
configuration [4]. In a similar way, deriving a specific production 
plan (operations, resources to be used, etc...) from some kind of 
generic process plan while respecting product characteristics and 
customer requirements, can define production planning [5]. As 
many configuration and planning studies (see for example [6] or 
[5]) have shown that each problem could be successfully 
considered as a constraint satisfaction problem (CSP), we have 
proposed to associate them in a single CSP in order to process 
them concurrently.  
This concurrent process and the supporting constraint framework 
present three main interests. First they allow considering constraint 
that links configuration and planning in both directions (for 
example: a luxury product finish requires additional manufacturing 
time or a given assembly duration forbids the use of a particular 
kind of component). Secondly they allow processing in any order 
product and planning requirements, and therefore avoid the 
traditional sequence: configure product then plan its production [7]. 
Thirdly, CSP fit very well on one side, interactive process thanks to 
constraint filtering techniques, and on the other side, optimization 
thanks to various problem-solving techniques. However, we 
assume infinite capacity planning and consider that production is 
launched according to each customer order and production capacity 
is adapted accordingly. 
In order to illustrate the addressed problem we consider a very 
simple example dealing with the configuration and planning of a 
small plane. The constraint model is shown in figure 1. The plane 
is defined by two product variables: number of seats (Seats, 
possible values 4 or 6) and flight range (Range, possible values 600 
or 900 kms). A constraint Cc1 forbids a plane with 4 seats and a 
range of 600 kms. The production process contains two operations: 
sourcing and assembling. (noted Sourc and Assem). Each operation 
is described by two process variables: resource and duration: for 
sourcing, the resource (R-Sourc, possible resources “Fast-S” and 
“Slow-S”) and duration (D-Sourc, possible values 2, 3, 4, 6 weeks), 
for assembling, the resource (R-Assem, possible resources “Quic-
A” and “Norm-A”) and duration (D-Assem, possible values 4, 5, 6, 
7 weeks). Two constraints linking product and process variables 



modulate configuration and planning possibilities: one linking seats 
with sourcing, Cp1 (Seat, R-Sourc, D-Sourc), and a second one 
linking range with the assembling, Cp2 (Range, R-Assem, D-
Assem). The allowed combinations of each constraint are shown in 
the 3 tables of figure 1. Without taking constraints into account, 
this model shows a combinatory of 4 for the product (2x2) and 64 
for the production process (2x4) x (2x4) providing a combinatory 
of 256 (4 x 64) for the whole problem. Considering constraints lead 
to 12 solutions for both product and production process. 

 
 
 
 
 
 
 
 
 
 

 

Figure 1 Concurrent configuration and planning CSP model 

1.2 Optimizing configuration and planning 
concurrently 

Given previous problem, various criteria can characterize a 
solution: on the product configuration side, performance and 
product cost, and on the production planning side, cycle time and 
process cost. In this paper we only consider cycle time and cost. 
The cycle time matches the ending date of the last production 
operation of the configured product. Cost is the sum of the product 
cost and process cost. We are consequently dealing with a multi-
criteria optimization problem. As these criteria are in conflict, it is 
better for decision aiding to offer the customer a set of possible 
compromises in the form of Pareto Front. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 Concurrent configuration and planning model to optimize 
 

In order to complete our example, we add a cost and cycle time 
criteria as represented in figure 2. For cost, each product variable 
and each process operation is associated with a cost parameter and 
a relevant cost constraint: (C-Seats, Cs1), (C-Range, Cs2), (C-
Sourc, Cs3) and (C-Assem, cs4) detailed in the tables of figure 2. 
The total cost is obtained with a numerical constraint and the cycle 
time, sum of the two operation durations, is also obtained with a 
numerical constraint as follow: 
Total cost = C-Seats + C-Range + C-Sourc + C-Assem.                                         
Cycle time = D-Sourc + D-Assem 

 
The twelve previous solutions are shown on the figure 3 with the 
Pareto front gathering the optimal ones. In this figure, all solutions 
are present. When non-negotiable requirements are processed 
during interactive configuration and planning, some of these 
solutions will be removed. Once all these requirements are 
processed, the identification of the Pareto front can be launched in 
order to propose the customer a set of optimal solutions. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Optimal solutions on the Pareto Front  
 
A strong specificity of this kind of problems is that the solution 
space is large. It is reported in [8] that a configuration solution 
space of more than 1.4* 1012  is required for a car configuration 
problem. When planning is added, the combinatorial structure can 
become huge. Specificity lies in the fact that the shape of the 
solution space is not continuous and in most cases shows many 
singularities. Furthermore, the multi-criteria aspect and the need 
for Pareto optimal results are also strong problem expectations. 
These points explain why most of the articles published on this 
subject (as for example [9]) consider genetic or evolutionary 
approaches to deal with this problem. However classic 
evolutionary algorithms have to be adapted in order to take into 
account the constraints of the problem as explained in [10]. Among 
these adaptations, the one we have proposed in [3] is an 
evolutionary algorithm with a specific constrained evolutionary 
operators and our goal is to compare it with a classical branch and 
bound approach. 

 
In the following section we characterize the optimization problem 
and briefly recall the optimization techniques. Then 
experimentation results are presented and discussed in the last 
section. 



2 OPTIMIZATION PROBLEM AND 
OPTIMIZATION TECHNIQUES 

2.1 Optimization problem 

The problem of figure 2 is generalized as the one shown in figure 
4. The optimization problem is defined by the quadruplet <V, D, C, 
f > where V is the set of decision variables, D the set of domains 
linked to the variables of V, C the set of constraints on variables of 
V and f the multi-valuated fitness function. Here, the aim is to 
minimize both cost and cycle time. The set V gathers: the product 
descriptive variables and the resource variables. The set C gathers 
constraints (Cc and Cp). Cost variables and operation durations are 
deduced from the variables of the set V thanks to the remaining 
constraints.  
 
 

 
 
 
 
 
 
 
 

 
 

Figure 4 Constrained optimization problem  
 
Experimentations will consider different problem sizes: different 
numbers of product variables, different number of production 
operations and different number of possible values for these 
variables. Different constraint densities (percentage of excluded 
combinations of values) will be also considered. 

2.2 Optimization techniques 

 
The proposed evolutionary algorithm is based on SPEA2 [11] with 
an added constraints filtering process that avoids infeasible 
individuals (or solutions) in the archive. This provides the six steps 
following approach: 
1. Initialization of individual set that respect the constraints 

(thanks to filtering), 
2. Fitness assignment (balance of Pareto dominance and solution 

density) 
3. Individuals selection and archive update 
4. Stopping criterion test 
5. Individuals selection for crossover and mutation operators 

(binary tournaments) 
6. Individuals crossover and mutation that respect constraints 

(thanks to filtering) 
7. Return to step 2. 

 
For initialization, crossover and mutation operators, each time an 
individual is created or modified, every gene (decision variable of 
V) is randomly instantiated into its current domain. To avoid the 
generation of unfeasible individuals, the domain of every 

remaining gene is updated by constraint filtering. As filtering is not 
full proof, inconsistent individuals can be generated. In this case a 
limited backtrack process is launched to solve the problem. For full 
details please see [3]. 
 
The key idea of the Branch and Bound algorithm is to explore a 
search tree but using a cutting procedure that stops exploration of a 
branch when a better branch has already been found. The first tool 
is a splitting procedure that corresponds to the selection of one 
variable of the problem and to the instantiation of this variable with 
each possible value. The second tool is a node-bound evaluation 
procedure. The filtering process is used to achieve this task with a 
partial instantiation and is able to evaluate if the partial 
instantiation is consistent with the constraints of the problem, and, 
if this is the case, to provide the lower bound of each criterion 
cycle time and cost. When the search reaches a leaf of the search 
tree, or complete instantiation, the filtering system gives the exact 
evaluation of the solution. Thus, the values of leaf solutions can be 
used to compute the current Pareto front and then to cut remaining 
unexplored branches that are dominated by any aspect of the Pareto 
front solution (e.g. the upper bounds of the leaf solution dominate 
the minimal bounds of the branch to cut). 

3  EXPERIMENTATIONS 

The optimization algorithms were implemented in C++ 
programming language and interacted with a filtering system coded 
in Perl language. All tests were done using a laptop computer 
powered by an Intel core i5 CPU (2.27 Ghz, only one CPU core is 
used) and using 2.8 Go of ram. These tests compared the behavior 
of our constrained EA algorithm with the exact branch-and-bound 
algorithm. 

3.1 First experimentation: problem size and 
constraint densities 

An initial first model, named "full model" is considered. It can be 
consulted and interactively used at http://cofiade.enstimac.fr/cgi-
bin/cofiade.pl select model ‘Aircraft-CSP-EA-10’. It gathers five 
product variables with a domain size between 4 and 6, six 
production operations with a number of possible resources between 
3 and 25. Without constraints consideration, the solution space of 
the product model is 5,184, and the planning model is 96,000. The 
size of the global problem model is 497,664,000. A second model, 
named “small model”, has been derived from the previous one with 
the suppression of a high combinatory task and a reduction of one 
domain size. This reduces the planning problem size to 12,000 and 
global model 6,220,800. 
 
In order to evaluate the impact of constraints density, two versions 
of each model were produced: one with a "weak density" of 
constraints (20% of possible combinations are excluded in each 
constraint Cc and Cp) and the other with a "high density" of 
constraints (50% excluded). These values are frequently met in 
industrial configuration situations. This provides four models 
characteristics in table 1. 



 
Table. 1 Problems characteristics 
 
 
 

 
For the small models, evolutionary settings are tuned to: population 
size: 50; archive size: 40; Pmut: 0.4; Pcross: 0.8. The ending criterion 
used is a time limit of half an hour. For the full models, we adapt 
settings for a wider search: population size: 150; archive size: 100; 
Pmut: 0.4; Pcross: 0.8. The ending criterion used is a time required by 
the BB algorithm. In order to analyze the two optimization 
approaches, we compare the hypervolume evolution during 
optimization process. Hypervolum metric has been defined in [12]. 
It measures the hypervolume of space dominated by a set of 
solutions and is illustrated in Figure 5.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Hypervolume linked to a Pareto front  

In our two criteria case, it is the upper right area of figure 5. It thus 
allows evaluation of both convergence and diversity properties 
because the fittest and most diversified set of solutions is the one 
that maximizes the hypervolume.  
 
Results are presented in figure 6 where EA curves are average 
results for 30 executions. Both algorithms start with a lapse of time 
where performance is null. For the BB algorithm, this corresponds 
to the time needed to reach a first leaf on the search tree, while for 
the EA; it corresponds to the time consumed to constitute the initial 
population.  

 
For the small models (first two curves), the BB algorithm reaches 
the optimal Pareto front much faster compared with EA 
performance. On the other hand, the EA is logically better than the 
BB algorithm on the full model. For example, on the low-
constrained model, the BB algorithm took 20 times longer to reach 
a good set of solutions (less than 0.5% of the optimal 
hypervolume). 

 
The impact of constraints density could also be discussed. As it can 
be seen, the BB algorithm performance is improved when the 
density of constraints is high. This is because the filtering allows 
more branches to be cut on the search tree, in such way that the 
algorithm reaches leaf solutions and, consequently, optimal 
solutions more quickly. The EA performance moves in the 
opposite way. The more the model is constrained, the more the 
random crossover operation will have to backtrack to find feasible 
solutions, and thus the time needed by the algorithm will be 
consequent. 

Solution quantity Without constraints Low density High density
Small model 6 220 800 595 000 153 000
Full model 497 664 000 47 600 000 12 288 000

Figure 6 First experimentation results  
 



3.2 Experimentations on problem size  

In order to try to identify the problem size where EA is more 
suitable than BB, we have modified the low constrained model as 
follows. We consider now a model gathering six product variables 
and six production operations with three possible values for each, 
and sequentially add either a product variable and or an operation. 
The range of study is between 12 and 16 decision variables with 
three possible values for each. Relevant solution spaces without 
constraint vary between 1.6*106 and 43*106.  

 
The results are shown in the left part figure 7. The vertical axis 
corresponds with the computation time and the horizontal one with 
the number of decision variables. For BB curves, it shows the time 
to reach the optimal solution. For the EA curve it shows the time 
required for nine EA runs over ten to reach the optimal solution. 
Order of magnitude are close for both around 13 or 14 variables 
corresponding with a solution space around 2*106  to 5*106 
comparable with our previous small model size. 

 
As we already mention, industrial models are frequently larger than 
that. We therefore try our EA approach with a low constrained 
model with 30 variables and a solution space around  1016. The 
stopping criterion is "2 hours without improvement". The right part 

of Figure 7 shows that the optimization process has stopped after 
48 hours. It can be noticed that 90% of the final score was obtained 
after 3 hours and 99% in 10 hours. This allows underlining the 
good performance of our approach when facing large low 
constrained problems. Of course the idea is to use BB, if the first 
interactive configuration step has led to a rather small problem, less 
than 13 or 14 variables in our case, and EA otherwise. 

 
Finally we also try to break optimization in two steps. The idea is: 
(i) compute quickly a low quality Pareto, (ii) select the area that 
interest the customer (iii) compute a Pareto on the restricted area. 
The restricted area is obtained by constraining the two criteria total 
cost and cycle time (or interesting area) and filtering these 
reductions on the whole problem. The search space is greatly 
reduced and the second optimization much faster. This is shown in 
figure 8 where the left part shows the single step process with 10 
and 60 minutes Pareto and the right part shows the restricted area 
with the two previous curve and the one corresponding with a 10 
minutes Pareto launched on the restricted area. It shows that the 
sequence of two optimization steps of 10 minutes provide a result 
equivalent to a 60 minutes optimization process. 

Figure 7 Experimentation results dealing with problem size 
 

Figure 8 Experimentations with a two steps optimization process 
 



 

4 CONCLUSIONS 

The goal of this communication was to propose a first evaluation of 
an adapted evolutionary algorithm that deals with concurrent 
product configuration and production planning. The problem was 
recalled and the two optimization approaches (Evolutionary 
algorithm and branch and bound) where briefly presented. Various 
experimentations have been presented. A first result is that: (i) the 
proposed EA works fine when the size of the problem gets large 
compare to the BB, (ii) when problem tends to be more constrained 
the tendency goes to the opposite. When problem is low 
constrained (90% of excluded solutions) with 13-14 decision 
variables with 3 values each, they perform equally. When the 
problem gets larger, BB cannot be considered and EA can provide 
good quality results for the same problem with up to 30 variables 
(around 1016 solutions - 90% rejected). Finally some ideas about a 
two steps optimization process have shown that the proposed 
approach is quite promising for large problems. These are first 
experimentation results and we are now working on comparing our 
proposed EA with some penalty function approaches.  
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