
Comparing Performance of Algorithms for
Generating the Duquenne–Guigues Basis

Konstantin Bazhanov and Sergei Obiedkov

Higher School of Economics, Moscow, Russia,
kostyabazhanov@mail.ru, sergei.obj@gmail.com

Abstract. In this paper, we take a look at algorithms involved in the
computation of the Duquenne–Guigues basis of implications. The most
widely used algorithm for constructing the basis is Ganter’s Next Clo-
sure, designed for generating closed sets of an arbitrary closure system.
We show that, for the purpose of generating the basis, the algorithm can
be optimized. We compare the performance of the original algorithm
and its optimized version in a series of experiments using artificially
generated and real-life datasets. An important computationally expen-
sive subroutine of the algorithm generates the closure of an attribute
set with respect to a set of implications. We compare the performance
of three algorithms for this task on their own, as well as in conjunction
with each of the two versions of Next Closure.

1 Introduction

Implications are among the most important tools of formal concept analysis
(FCA) [9]. The set of all attribute implications valid in a formal context defines
a closure operator mapping attribute sets to concept intents of the context (this
mapping is surjective). The following two algorithmic problems arise with respect
to implications:

1. Given a set L of implications and an attribute set A, compute the closure
L(A).

2. Given a formal context K, compute a set of implications equivalent to the
set of all implications valid in K, i.e., the cover of valid implications.

The first of these problems has received considerable attention in the database
literature in application to functional dependencies [14]. Although functional
dependencies are interpreted differently than implications, the two are in many
ways similar: in particular, they share the notion of semantic consequence and
the syntactic inference mechanism (Armstrong rules [1]). A linear-time algo-
rithm, LinClosure, has been proposed for computing the closure of a set with
respect to a set of functional dependencies (or implications) [3], i.e., for solving
the first of the two problems stated above. However, the asymptotic complexity
estimates may not always be good indicators for relative performance of algo-
rithms in practical situations. In Sect. 3, we compare LinClosure with two

other algorithms—a “näıve” algorithm, Closure [14], and the algorithm pro-
posed in [20]—both of which are non-linear. We analyze their performance in
several particular cases and compare them experimentally on several datasets.

For the second problem, an obvious choice of the cover is the Duquenne–
Guigues, or canonical, basis of implications, which is the smallest set equivalent
to the set of valid implications [11]. Unlike for the other frequently occurring
FCA algorithmic task, the computation of all formal concepts of a formal con-
text [12], only few algorithms have been proposed for the calculation of the
canonical basis. The most widely-used algorithm was proposed by Ganter in
[10]. Another, attribute-incremental, algorithm for the same problem was de-
scribed in [17]. It is claimed to be much faster than Ganter’s algorithm for most
practical situations. The Concept Explorer software system [21] uses this algo-
rithm to generate the Duquenne–Guigues basis of a formal context. However,
we do not discuss it here, for we choose to concentrate on the computation of
implications in the lectic order (see Sect. 4). The lectic order is important in the
interactive knowledge-acquisition procedure of attribute exploration [8], where
implications are output one by one and the user is requested to confirm or reject
(by providing a counterexample) each implication.

Ganter’s algorithm repeatedly computes the closure of an attribute set with
respect to a set of implications; therefore, it relies heavily on a subprocedure
implementing a solution to the first problem. In Sect. 4, we describe possible
optimizations of Ganter’s algorithm and experimentally compare the original
and optimized versions in conjunction with each of the three algorithms for
solving the first problem. A systematic comparison with the algorithm from [17]
is left for further work.

2 The Duquenne–Guigues Basis of Implications

Before proceeding, we quickly recall the definition of the Duquenne–Guigues
basis and related notions.

Given a (formal) context K = (G, M, I), where G is called a set of objects, M
is called a set of attributes, and the binary relation I ⊆ G×M specifies which
objects have which attributes, the derivation operators (·)I are defined for A ⊆ G
and B ⊆M as follows:

A′ = {m ∈M | ∀g ∈ A : gIm} B′ = {g ∈ G | ∀m ∈ B : gIm}

In words, A′ is the set of attributes common to all objects of A and B′ is the set
of objects sharing all attributes of B. The double application of (·)′ is a closure
operator, i.e., (·)′′ is extensive, idempotent, and monotonous. Therefore, sets A′′

and B′′ are said to be closed. Closed object sets are called concept extents and
closed attribute sets are called concept intents of the formal context K.

In discussing the algorithms later in the paper, we assume that the sets G
and M are finite.

An implication over M is an expression A → B, where A, B ⊆ M are at-
tribute subsets. It holds in the context if A′ ⊆ B′, i.e., every object of the context
that has all attributes from A also has all attributes from B.

An attribute subset X ⊆M respects (or is a model of) an implication A→ B
if A 6⊆ X or B ⊆ X. Obviously, an implication holds in a context (G, M, I) if
and only if {g}′ respects the implication for all g ∈ G.

A set L of implications over M defines the closure operator X 7→ L(X) that
maps X ⊆M to the smallest set respecting all the implications in L:

L(X) =
⋂
{Y | X ⊆ Y ⊆M,∀(A→ B) ∈ L : A 6⊆ Y or B ⊆ Y }.

We discuss algorithms for computing L(X) in Sect. 3. Note that, if L is the
set of all valid implications of a formal context, then L(X) = X ′′ for all X ⊆M .

Two implication sets over M are equivalent if they are respected by exactly
the same subsets of M . Equivalent implication sets define the same closure op-
erator. A minimum cover of an implication set L is a set of minimal size among
all implication sets equivalent to L. One particular minimum cover described in
[11] is defined using the notion of a pseudo-closed set, which we introduce next.

A set P ⊆M is called pseudo-closed (with respect to a closure operator (·)′′)
if P 6= P ′′ and Q′′ ⊂ P for every pseudo-closed Q ⊂ P .

In particular, all minimal non-closed sets are pseudo-closed. A pseudo-closed
attribute set of a formal context is also called a pseudo-intent.

The Duquenne–Guigues or canonical basis of implications (with respect to
a closure operator (·)′′) is the set of all implications of the form P → P ′′,
where P is pseudo-closed. This set of implications is of minimal size among
those defining the closure operator (·)′′. If (·)′′ is the closure operator associated
with a formal context, the Duquenne–Guigues basis is a minimum cover of valid
implications of this context. The computation of the Duquenne–Guigues basis
of a formal context is hard, since even recognizing pseudo-intents is a coNP-
complete problem [2], see also [13, 7]. We discuss algorithms for computing the
basis in Sect. 4.

3 Computing the Closure of an Attribute Set

In this section, we compare the performance of algorithms computing the closure
of an attribute set X with respect to a set L of implications. Algorithm 1 [14]
checks every implication A → B ∈ L and enlarges X with attributes from B
if A ⊆ X. The algorithm terminates when a fixed point is reached, that is,
when the set X cannot be enlarged any further (which always happens at some
moment, since both L and M are assumed finite).

The algorithm is obviously quadratic in the number of implications in L in
the worst case. The worst case happens when exactly one implication is applied
at each iteration (but the last one) of the repeat loop, resulting in |L|(|L|+1)/2
iterations of the for all loop, each requiring O(|M |) time.

Example 1. A simple example is when X = {1} and the implications in L =
{{i} → {i + 1} | i ∈ N, 0 < i < n} for some n are arranged in the descending
order of their one-element premises.

Algorithm 1 Closure(X,L)
Input: An attribute set X ⊆M and a set L of implications over M .
Output: The closure of X w.r.t. implications in L.

repeat
stable := true
for all A→ B ∈ L do

if A ⊆ X then
X := X ∪B
stable := false
L := L \ {A→ B}

until stable
return X

In [3], a linear-time algorithm, LinClosure, is proposed for the same prob-
lem. Algorithm 2 is identical to the version of LinClosure from [14] except for
one modification designed to allow implications with empty premises in L. Lin-
Closure associates a counter with each implication initializing it with the size
of the implication premise. Also, each attribute is linked to a list of implications
that have it in their premises. The algorithm then checks every attribute m of
X (the set whose closure must be computed) and decrements the counters for
all implications linked to m. If the counter of some implication A → B reaches
zero, attributes from B are added to X. Afterwards, they are used to decrement
counters along with the original attributes of X. When all attributes in X have
been checked in this way, the algorithm stops with X containing the closure of
the input attribute set.

It can be shown that the algorithm is linear in the length of the input as-
suming that each attribute in the premise or conclusion of any implication in L
requires a constant amount of memory [14].

Example 2. The worst case for LinClosure occurs, for instance, when X ⊂ N,
M = X ∪{1, 2, . . . , n} for some n such that X ∩{1, 2, . . . , n} = ∅ and L consists
of implications of the form

X ∪ {i | 0 < i < k} → {k}

for all k such that 1 ≤ k ≤ n. During each of the first |X| iterations of the
for all loop, the counters of all implications will have to be updated with only
the last iteration adding one attribute to X using the implication X → {1}. At
each of the subsequent n − 1 iterations, the counter for every so far “unused”
implication will be updated and one attribute will be added to X. The next,
(|X|+ n)th, iteration will terminate the algorithm.

Note that, if the implications in L are arranged in the superset-inclusion
order of their premises, this example will present the worst case for Algorithm 1
requiring n iterations of the main loop. However, if the implications are arranged
in the subset-inclusion order of their premises, one iteration will be sufficient.

Inspired by the mechanism used in LinClosure to obtain linear asymp-
totic complexity, but somewhat disappointed by the poor performance of the

Algorithm 2 LinClosure(X,L)
Input: An attribute set X ⊆M and a set L of implications over M.
Output: The closure of X w.r.t. implications in L.

for all A→ B ∈ L do
count[A→ B] := |A|
if |A| = 0 then

X := X ∪B
for all a ∈ A do

add A→ B to list[a]
update := X
while update 6= ∅ do

choose m ∈ update
update := update \ {m}
for all A→ B ∈ list[m] do

count[A→ B] = count[A→ B]− 1
if count[A→ B] = 0 then

add := B \X
X := X ∪ add
update := update ∪ add

return X

algorithm relative to Closure, which was revealed in his experiments, Wild
proposed a new algorithm in [20]. We present this algorithm (in a slightly more
compact form) as Algorithm 3. The idea is to maintain implication lists similar
to those used in LinClosure, but get rid of the counters. Instead, at each step,
the algorithm combines the implications in the lists associated with attributes
not occurring in X and “fires” the remaining implications (i.e., uses them to
enlarge X). When there is no implication to fire, the algorithm terminates with
X containing the desired result.

Wild claims that his algorithm is faster than both LinClosure and Clo-
sure, even though it has the same asymptotic complexity as the latter. The worst
case for Algorithm 3 is when L\L1 contains exactly one implication A→ B and
B \X contains exactly one attribute at each iteration of the repeat . . . until
loop. Example 1 presents the worst case for 3, but, unlike for Closure, the
order of implications in L is irrelevant. The worst case for LinClosure (see
Example 2) is also the worst case for Algorithm 3, but it deals with it, perhaps,
in a more efficient way using n iterations of the main loop compared to n + |X|
iterations of the main loop in LinClosure.

Experimental Comparison

We implemented the algorithms in C++ using Microsoft Visual Studio 2010. For
the implementation of attribute sets, as well as sets of implications in Algorithm
3, we used dynamic bit sets from the Boost library [6]. All the tests described in
the following sections were carried out on an Intel Core i5 2.67 GHz computer
with 4 Gb of memory running under Windows 7 Home Premium x64.

Algorithm 3 Wild’s Closure(X,L)
Input: An attribute set X ⊆M and a set L of implications over M.
Output: The closure of X w.r.t. implications in L.

for all m ∈M do
for all A→ B ∈ L do

if m ∈ A then
add A→ B to list[m]

repeat
stable := true
L1 :=

S
m∈M\X list[m]

for all A→ B ∈ L \ L1 do
X := X ∪B
stable := false

L := L1

until stable
return X

Figure 1 shows the performance of the three algorithms on Example 1. Algo-
rithm 2 is the fastest algorithm in this case: for a given n, it needs n iterations
of the outer loop—the same as the other two algorithms, but the inner loop of
Algorithm 2 checks exactly one implication at each iteration, whereas the inner
loop of Algorithm 1 checks n− i implications at the ith iteration. Although the
inner loop of Algorithm 3 checks only one implication at the ith iteration, it has
to compute the union of n− i lists in addition.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900

Ti
m

e
in

 se
c

fo
r 1

00
0

te
st

s

n

Closure

LinClosure

Wild's Closure

Fig. 1. The performance of Algorithms 1–3 for Example 1.

Figure 2 shows the performance of the algorithms on Example 2. Here, the
behavior of Algorithm 2 is similar to that of Algorithm 1, but Algorithm 2 takes
more time due to the complicated initialization step.

0

5

10

15

20

25

30

35

40

0 100 200 300 400 500 600 700 800 900

Ti
m

e
in

 se
c

fo
r 1

00
0

te
st

s

n

Closure

LinClosure

Wild's Closure

Fig. 2. The performance of Algorithms 1–3 for Example 2 with implications in L
arranged in the superset-inclusion order of their premises and |X| = 50.

Interestingly, Algorithm 1 works amost twice as fast on Example 2 as it does
on Example 1. This may seem surprising, since it is easy to see that the algorithm
performs essentially the same computations in both cases, the difference being
that the implications of Example 1 have single-element premises. However, this
turns out to be a source of inefficiency: at each iteration of the main loop, all
implications but the last fail to fire, but, for each of them, the algorithm checks
if their premises are included in the set X. Generally, when A 6⊆ X, this can
be established easier if A is large, for, in this case, A is likely to contain more
elements outside X. This effect is reinforced by the implementation of sets as
bit strings: roughly speaking, to verify that {i} 6⊆ {1}, it is necessary to check
all bits up {i}, whereas {i | 0 < i < k} 6⊆ {k + 1} can be established by checking
only one bit (assuming that bits are checked from left to right). Alternative
data structures for set implementation might have less dramatic consequences
for performance in this setting. On the other hand, the example shows that
performance may be affected by issues not so obviously related to the structure
of the algorithm, thus, suggesting additional paths to obtain an optimal behavior
(e.g., by rearranging attributes or otherwise preprocessing the input data).

We have experimented with computing closures using the Duquenne–Guigues
bases of formal contexts as input implication sets. Table 1 shows the results for
randomly generated contexts. The first two columns indicate the size of the at-
tribute set and the number of implications, respectively. The remaining three
columns record the time (in seconds) for computing the closures of 1000 ran-

domly generated subsets of M by each of the three algorithms. Table 3 presents
similar results for datasets taken from the UCI repository [5] and, if necessary,
transformed into formal contexts using FCA scaling [9].1 The contexts are de-
scribed in Table 2, where the last four columns correspond to the number of
objects, number of attributes, number of intents, and number of pseudo-intents
(i.e., the size of the canonical basis) of the context named in the first column.

Table 1. Performance on randomly generated tests (time in seconds per 1000 closures)

Algorithm
|M | |L| 1 2 3

30 557 0.0051 0.2593 0.0590
50 1115 0.0118 0.5926 0.1502

100 380 0.0055 0.2887 0.0900
100 546 0.0086 0.4229 0.1350
100 2269 0.0334 1.5742 0.5023
100 3893 0.0562 2.6186 0.8380
100 7994 0.1134 5.3768 1.7152
100 8136 0.1159 5.6611 1.8412

Table 2. Contexts obtained from UCI datasets

Context |G| |M | # intents # pseudo-intents

Zoo 101 28 379 141
Postoperative Patient 90 26 2378 619
Congressional Voting 435 18 10644 849

SPECT 267 23 21550 2169
Breast Cancer 286 43 9918 3354

Solar Flare 1389 49 28742 3382
Wisconsin Breast Cancer 699 91 9824 10666

In these experiments, Algorithm 1 was the fastest and Algorithm 2 was the
slowest, even though it has the best asymptotic complexity. This can be partly
explained by the large overhead of the initialization step (setting up counters
and implication lists). Therefore, these results can be used as a reference only
when the task is to compute one closure for a given set of implications. When

1 The breast cancer domain was obtained from the University Medical Centre, Insti-
tute of Oncology, Ljubljana, Yugoslavia (now, Slovenia). Thanks go to M. Zwitter
and M. Soklic for providing the data.

a large number of closures must be computed with respect to the same set of
implications, Algorithms 2 and 3 may be more appropriate.

Table 3. Performance on the canonical bases of contexts from Table 2 (time in seconds
per 1000 closures)

Algorithm
Context 1 2 3

Zoo 0.0036 0.0905 0.0182
Postoperative Patient 0.0054 0.2980 0.0722
Congressional Voting 0.0075 0.1505 0.0883

SPECT 0.0251 0.9848 0.2570
Breast Cancer 0.0361 1.7912 0.5028

Solar Flare 0.0370 2.1165 0.6317
Wisconsin Breast Cancer 0.1368 8.4984 2.4730

4 Computing the Basis in the Lectic Order

The best-known algorithm for computing the Duquenne–Guigues basis was de-
veloped by Ganter in [10]. The algorithm is based on the fact that intents and
pseudo-intents of a context taken together form a closure system. This makes it
possible to iteratively generate all intents and pseudo-intents using Next Clo-
sure (see Algorithm 4), a generic algorithm for enumerating closed sets of an
arbitrary closure operator (also proposed in [10]). For every generated pseudo-
intent P , an implication P → P ′′ is added to the basis. The intents, which are
also generated, are simply discarded.

Algorithm 4 Next Closure(A, M , L)
Input: A closure operator X 7→ L(X) on M and a subset A ⊆M .
Output: The lectically next closed set after A.

for all m ∈M in reverse order do
if m ∈ A then

A := A \ {m}
else

B := L(A ∪ {m})
if B \A contains no element < m then

return B
return ⊥

Next Closure takes a closed set as input and outputs the next closed set
according to a particular lectic order, which is a linear extension of the subset-

inclusion order. Assuming a linear order < on attributes in M , we say that a set
A ⊆M is lectically smaller than a set B ⊆M if

∃b ∈ B \A ∀a ∈ A(a < b⇒ a ∈ B).

In other words, the lectically largest among two sets is the one containing
the smallest element in which they differ.

Example 3. Let M = {a < b < c < d < e < f}, A = {a, c, e} and B = {a, b, f}.
Then, A is lectically smaller than B, since the first attribute in which they
differ, b, is in B. Note that if we represent sets by bit strings with smaller
attributes corresponding to higher-order bits (in our example, A = 101010 and
B = 110001), the lectic order will match the usual less-than order on binary
numbers.

To be able to use Next Closure for iterating over intents and pseudo-
intents, we need access to the corresponding closure operator. This operator,
which we denote by •, is defined via the Duquenne–Guigues basis L as follows.2

For a subset A ⊆M , put

A+ = A ∪
⋃
{P ′′ | P → P ′′ ∈ L, P ⊂ A}.

Then, A• = A++···+, where A•+ = A•; i.e., • is the transitive closure of +.
The problem is that L is not available when we start; in fact, this is precisely

what we want to generate. Fortunately, for computing a pseudo-closed set A, it is
sufficient to know only implications with premises that are proper subsets of A.
Generating pseudo-closed sets in the lectic order, which is compatible with the
subset-inclusion order, we ensure that, at each step, we have at hand the required
part of the basis. Therefore, we can use any of the three algorithms from Sect.
3 to compute A• (provided that the implication A• → A′′ has not been added
to L yet). Algorithm 5 uses Next Closure to generate the canonical basis. It
passes Next Closure the part of the basis computed so far; Next Closure
may call any of the Algorithms 1–3 to compute the closure, L(A ∪ {m}), with
respect to this set of implications.

After Next Closure computes A•, the implication A• → A′′ may be added
to the basis. Algorithm 5 will then pass A• as the input to Next Closure, but
there is some room for optimizations here. Let i be the maximal element of A
and j be the minimal element of A′′ \A. Consider the following two cases:

j < i: As long as m > i, the set L(A•∪{m}) will be rejected by Next Closure,
since it will contain j. Hence, it makes sense to skip all m > i and continue as
if A• had been rejected by Next Closure. This optimization has already
been proposed in [17].

i < j: It can be shown that, in this case, the lectically next intent or pseudo-
intent after A• is A′′. Hence, A′′ could be used at the next step instead of
A•.

Algorithm 6 takes these considerations into account.
2 We deliberately use the same letter L for an implication set and the closure operator

it defines.

Algorithm 5 Canonical Basis(M , ′′)
Input: A closure operator X 7→ X ′′ on M , e.g., given by a formal context (G, M, I).
Output: The canonical basis for the closure operator.
L := ∅
A := ∅
while A 6= M do

if A 6= A′′ then
L := L ∪ {A→ A′′}

A := Next Closure(A, M,L)
return L

Algorithm 6 Canonical Basis(M , ′′), an optimized version
Input: A closure operator X 7→ X ′′ on M , e.g., given by a formal context (G, M, I).
Output: The canonical basis for the closure operator.
L := ∅
A := ∅
i := the smallest element of M
while A 6= M do

if A 6= A′′ then
L := L ∪ {A→ A′′}

if A′′ \A contains no element < i then
A := A′′

i := the largest element of M
else

A := {m ∈ A | m ≤ i}
for all j ≤ i ∈M in reverse order do

if j ∈ A then
A := A \ {j}

else
B := L(A ∪ {j})
if B \A contains no element < j then

A := B
i := j
exit for

return L

Experimental Comparison

We used Algorithms 5 and 6 for constructing the canonical bases of the contexts
involved in testing the performance of the algorithms from Sect. 3, as well as
the context (M,M, 6=) with |M | = 18, which is special in that every subset of
M is closed (and hence there are no valid implications). Both algorithms have
been tested in conjunction with each of the three procedures for computing
closures (Algorithm 1–3). The results are presented in Table 4 and Fig. 3. It can
be seen that Algorithm 6 indeed improves on the performance of Algorithm 5.
Among the three algorithms computing the closure, the simpler Algorithm 1 is
generally more efficient, even though, in our implementation, we do not perform
the initialization step of Algorithms 2 and 3 from scratch each time we need
to compute a closure of a new set; instead, we reuse the previously constructed
counters and implication lists and update them incrementally with the addition
of each new implication. We prefer to treat these results as preliminary: it still
remains to see whether the asymptotic behavior of LinClosure will give it an
advantage over the other algorithms on larger contexts.

Table 4. Time (in seconds) for building the canonical bases of artificial contexts

Algorithm
Context # intents # pseudo-intents 5 + 1 5 + 2 5 + 3 6 + 1 6 + 2 6 + 3

100× 30, 4 307 557 0.0088 0.0145 0.0119 0.0044 0.0065 0.0059
10× 100, 25 129 380 0.0330 0.0365 0.0431 0.0073 0.0150 0.0169
100× 50, 4 251 1115 0.0442 0.0549 0.0617 0.0138 0.0152 0.0176

10× 100, 50 559 546 0.0542 0.1312 0.1506 0.0382 0.0932 0.0954
20× 100, 25 716 2269 0.3814 0.3920 0.7380 0.1219 0.1312 0.2504
50× 100, 10 420 3893 1.1354 0.7291 1.6456 0.1640 0.1003 0.2299
900× 100, 4 2472 7994 4.6313 2.7893 6.3140 1.5594 0.8980 2.0503
20× 100, 50 12394 8136 7.3097 8.1432 14.955 5.1091 6.0182 10.867

(M, M, 6=) 262144 0 0.1578 0.3698 0.1936 0.1333 0.2717 0.1656

5 Conclusion

In this paper, we compared the performance of several algorithms computing the
closure of an attribute set with respect to a set of implications. Each of these
algorithms can be used as a (frequently called) subroutine while computing the
Duquenne–Guigues basis of a formal context. We tested them in conjunction
with Ganter’s algorithm and its optimized version.

In our future work, we plan to extend the comparison to algorithms generat-
ing the Duquenne–Guigues basis in a different (non-lectic) order, in particular, to
incremental [17] and divide-and-conquer [19] approaches, probably, in conjunc-
tion with newer algorithms for computing the closure of a set [16]. In addition,

Fig. 3. Time (in seconds) for building the canonical bases of contexts from Table 2

0,00

0,02

0,04

0,06

0,08

0,10

0,12

0,14

0,16

0,18

Zoo Postoperative Patient Congressional Voting

5 + 1

5 + 2

5 + 3

6 + 1

6 + 2

6 + 3

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

SPECT Breast Cancer

5 + 1

5 + 2

5 + 3

6 + 1

6 + 2

6 + 3

0

2

4

6

8

10

12

14

16

Solar Flare Wisconsin Breast Cancer

5 + 1

5 + 2

5 + 3

6 + 1

6 + 2

6 + 3

we are going to consider algorithms that generate other implication covers: for
example, direct basis [15, 20, 4] or proper basis [18]. They can be used as an inter-
mediate step in the computation of the Duquenne–Guigues basis. If the number
of intents is much larger than the number of pseudo-intents, this two-step ap-
proach may be more efficient than direct generation of the Duquenne–Guigues
basis with Algorithms 5 or 6, which produce all intents as a side effect.

Acknowledgements

The second author was supported by the Academic Fund Program of the Higher
School of Economics (project 10-04-0017) and the Russian Foundation for Basic
Research (grant no. 08-07-92497-NTsNIL a).

References

1. Armstrong, W.: Dependency structure of data base ralationship. Proc. IFIP
Congress pp. 580–583 (1974)

2. Babin, M.A., Kuznetsov, S.O.: Recognizing pseudo-intents is coNP-complete. In:
Kryszkiewicz, M., Obiedkov, S. (eds.) Proceedings of the 7th International Con-
ference on Concept Lattices and Their Applications. pp. 294–301. University of
Sevilla, Spain (2010)

3. Beeri, C., Bernstein, P.: Computational problems related to the design of normal
form relational schemas. ACM TODS 4(1), 30–59 (March 1979)

4. Bertet, K., Monjardet, B.: The multiple facets of the canonical direct unit impli-
cational basis. Theor. Comput. Sci. 411(22-24), 2155–2166 (2010)

5. Blake, C., Merz, C.: UCI repository of machine learning databases (1998),
http://archive.ics.uci.edu/ml

6. Demming, R., Duffy, D.: Introduction to the Boost C++ Libraries. Datasim Edu-
cation Bv (2010), see http://www.boost.org

7. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete
Appl. Math. 159, 450–466 (March 2011)

8. Ganter, B.: Attribute exploration with background knowledge. Theor. Comput.
Sci. pp. 215–233 (1999)

9. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

10. Ganter, B.: Two basic algorithms in concept analysis. Preprint 831, Technische
Hochschule Darmstadt, Germany (1984)

11. Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives re-
sultant d’un tableau de donnees binaires. Math. Sci. Hum. 95(1), 5–18 (1986)

12. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating
concept lattices. Journal of Experimental and Theoretical Artificial Intelligence
14(2/3), 189–216 (2002)

13. Kuznetsov, S.O., Obiedkov, S.: Some decision and counting problems of the
Duquenne–Guigues basis of implications. Discrete Appl. Math. 156(11), 1994–2003
(2008)

14. Maier, D.: The theory of relational databases. Computer software engineering se-
ries, Computer Science Press (1983)

15. Mannila, H., Räihä, K.J.: The design of relational databases. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA (1992)

16. Mora, A., Aguilera, G., Enciso, M., Cordero, P., de Guzman, I.P.: A new closure
algorithm based in logic: SLFD-Closure versus classical closures. Inteligencia Ar-
tificial, Revista Iberoamericana de IA 10(31), 31–40 (2006)

17. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical
implication basis. Annals of Mathematics and Artificial Intelligence 49(1-4), 77–99
(April 2007)

18. Taouil, R., Bastide, Y.: Computing proper implications. In Proc. ICCS-2001 In-
ternational Workshop on Concept Lattices-Based Theory, Methods and Tools for
Knowledge Discovery in Databases pp. 290–303 (2001)

19. Valtchev, P., Duquenne, V.: On the merge of factor canonical bases. In: Medina,
R., Obiedkov, S. (eds.) ICFCA. Lecture Notes in Computer Science, vol. 4933, pp.
182–198. Springer (2008)

20. Wild, M.: Computations with finite closure systems and implications. In: Comput-
ing and Combinatorics. pp. 111–120 (1995)

21. Yevtushenko, S.A.: System of data analysis “Concept Explorer” (in Russian). In:
Proceedings of the 7th national conference on Artificial Intelligence KII-2000. pp.
127–134. Russia (2000), http://conexp.sourceforge.net/

