
Formal Concept Analysis on Graphics Hardware

W. B. Langdon, Shin Yoo, and Mark Harman

CREST centre, Department of Computer Science,
University College London Gower Street, London WC1E 6BT, UK

Abstract. We document a parallel non-recursive beam search GPGPU
FCA CbO like algorithm written in nVidia CUDA C and test it on soft-
ware module dependency graphs. Despite removing repeated calculations
and optimising data structures and kernels, we do not yet see major speed
ups. Instead GeForce 295 GTX and Tesla C2050 report 141 072 concepts
(maximal rectangles, clusters) in about one second. Future improvements
in graphics hardware may make GPU implementations of Galois lattices
competitive.

Keywords: software module clustering, MDG, close-by-one, arithmetic intensity

1 Introduction

Formal Concept Analysis [7] is a well known technique for grouping objects
by the attributes they have in common. It can be thought of as discrete data
clustering. In general the number of conceptual clusters grows exponentially.
However there are a few specialised algorithms which render FCA manageable,
even on quite large problems, provided the object-attribute table is sparse [10].
Krajca, Outrata and Vychodil [10] report considerable improvement in FCA
algorithms in the last two decades. All these successful algorithms use depth
first tree search to find all the conceptual clusters in an object-attribute table.

Computer graphics gaming cards (GPUs) are relatively cheap and yet offer
far more computing power than the computer’s CPU alone. (E.g. a 295 GTX con-
tains 480 fully functioning processors and yet costs only a few hundred pounds.)
Also microprocessor trends suggest faster computing will require parallel com-
puting in future. There are already hundreds of millions of computers fitted with
graphics hardware which might be used for general purpose computing [3].

Krajca et al. [10] report using a distributed computer to overcome the “major
drawback [of FCA’s] computational complexity”. They report their parallel algo-
rithm PCbO gives near linear speed increase with number of computing nodes
in a network of up to 15 PCs. In other work [11] they conclude that there is
no universal best FCA data structure. Instead they suggest that the optimum
performance will depend upon the application. In earlier work, Huaiguo Fu had
created a parallel implementation of NextClosure but it was limited to 50 at-
tributes [5] but this was subsequently greatly extended [6]. However, like Krajca
et al. [10], both Fu’s [5] and [6] approaches use conventional distributed comput-
ers composed of a few CPUs rather than hundreds of GPU processing elements.

http://www.cs.ucl.ac.uk/staff/W.Langdon/index.html
http://www.cs.ucl.ac.uk/staff/S.Yoo/
http://www.cs.ucl.ac.uk/staff/M.Harman/
http://crest.cs.ucl.ac.uk/


Similarly Djoufak Kengue et al. [4]’s ParCIM implementation used a conven-
tional network of 8 computers connected in a star fashion with MPI. Ours is the
first FCA implementation to run in parallel on computer graphics cards (GPUs).

2 CUDA FCA Implementation

Although In-close [1] claims to be faster we easily obtained FCbO [9] from Source
Forge. We initially implemented the Krajca sequential algorithm [9] in Python.
This was followed by a version in CUDA C, where ComputeClosure is imple-
mented in parallel on the GPU. (For details see our technical report [13].)

Krajca’s routines ComputeClosure and GenerateFrom essentially form a depth
first search algorithm which builds and navigates a tree of formal concepts from
a binary 0/1 matrix describing which object has which property. Since the search
is recursive and operates on one point in the tree at one time, it is unsuitable for
parallel operation on graphics cards. Our graphics card parallel version retains
the tree but uses beam search rather than depth first search.

Instead of proceeding to the first leaf of the tree, recursively backing up
and then going forward to the next leaf and so on, in beam search, we also
start from the top of the tree and then proceed along every branch to the next
level. This requires saving information on the beam for every node at that level.
Beam search next expands the search again to cover everything at the next level
and so on until all the leafs of the tree have been reached. Notice instead of
working on a single point in the tree the beam covers many points which can
be worked on in parallel. Indeed within a couple of levels we can get a beam
containing tens of thousands of individual search points which can be processed
independently. This suits the GPU architecture which needs literally thousands
of independent processing threads for it to deliver its best performance [12]. You
will have spotted that in an exponential problem, like FCA, beam search quickly
runs out of memory.

Even for quite modest tree depths the beam width is limited by the available
space in the GPU card. (We have a configuration limit of 1.8 million simultane-
ous parallel operations.) When a beam search exceeds this limit, only the first
1.8 million searches are loaded onto the GPU and the rest of the beam is queued
on the host PC. (Although we have not done this, in multi-GPU systems it would
be possible to split the beam between the GPUs, allocating up to 1.8 million to
each GPU.) The GPU only searches to the next level. It returns the concepts
found by the searches and the newly discovered branches which remain to be
searched. The concepts are printed by the host PC and the new branches are
added to the end of the beam to await their turn. Effectively the beam becomes
a queue of points in the tree waiting to be searched. The number of parallel
searches is mostly limited by the need to have space on the GPU for all the
potential new branches. This depends upon the tree’s fan out which is problem
dependent. Nonetheless the GPU can manage modest real software engineering
examples (e.g. dependence clustering of the Linux kernel). Notice the beam will
contain a mixture of pending search points at different depths in the tree.

http://fcalgs.sourceforge.net/
http://fcalgs.sourceforge.net/


Table 1. Performance on, FCA benchmarks, random module dependency
graphs, and Software Engineering datasets [8]. Time given in seconds, except
longest Python run which is hours:mins:secs. (For 1

2 295 GTX and Tesla C2050
the total time on the GPU is given.)

Dataset Size Density Concepts FCbO Python 295 GTX C2050

krajca 5×7 54% 16 0.00 0.11 0.01 0.01
wiki 10×5 44% 14 0.00 0.03 0.00 0.00

random 10×10 20% 16 0.00 0.04 0.00 0.00
random 100×100 2% 137 0.00 0.40 0.02 0.01
random 200×200 2% 420 0.00 4.33 0.00 0.01
random 500×500 2% 2861 0.01 162.60 0.02 0.02

bison 37×37 24% 692 0.00 0.32 0.00 0.01
compiler 33×33 6% 24 0.00 0.05 0.00 0.00
dot 42×42 28% 1302 0.00 0.71 0.00 0.01
grappa 86×86 7% 850 0.00 2.54 0.01 0.01
incl 172×172 2% 238 0.00 1.84 0.00 0.01
ispell 24×24 34% 432 0.00 0.15 0.01 0.01
linuxConverted 955×955 2% 141072 0.73 15:42:51 1.79 0.93
mtunis 20×20 29% 110 0.00 0.05 0.00 0.01
rcs 29×29 37% 1074 0.00 0.46 0.01 0.02
swing 413×413 2% 3654 0.01 208.71 0.03 0.02

3 Results

FCbO (version 2010/10/05) was downloaded and compiled without changes on
a 2.66 GHz PC with 3 Gigabytes of RAM running 64 bit CentOS 5.0. The per-
formance of FCbO, our Python code and our CUDA code on two types of GPU
are given in Table 1. They show performance on: two bench mark problems, a se-
lection of randomly generated symmetric object-attribute pairings and software
module dependency graphs of real world example programs.

4 Discussion

It is unclear why our code does not do better.
We would expect a linear speed advantage for FCbO from both using 64 bit

operations and from using compiled rather than interpreted code. However on
sizable examples, the ratio between the speed of FCbO and that of our Python
code is huge. This hints that FCbO has some algorithmic advantage.

GPUs are often limited by the time taken to move data rather than to per-
form calculations. “Arithmetic intensity” is the ratio of calculations per data
item. Typically this is in the range 4–64 FLOP/TDE [2, p206], we estimate the
arithmetic intensity of Krajca et al.’s algorithm [9] is less than 1. Thus a po-
tential problem might be there is simply is not enough computation required by
FCA compared to the volume of data.

http://fcalgs.sourceforge.net


Newer versions of CUDA have make it easier to overlap GPU operations.
However our implementation does not do this. Since the work is spread across
the multi-processors, we suspect that idle time is not a major problem.

5 Conclusions

There are many problems which are traditionally solved by depth first search.
However this may not suit low cost computer graphics GPU hardware. We have
implemented a form of beam search and demonstrated it on several existing FCA
benchmarks and ten software engineering dependence clustering problems [8].
GPU beam search may also be more widely applicable.

Acknowledgements

I am grateful for the assistance of Gernot Ziegler of nVidia. Steve Worley, Sar-
nath Kannan, Stephen Swift, Stan Seibert and Yuanyuan Zhang. Software en-
gineering MDGs were supplied by Spiros Mancoridis. Tesla donated by nVidia.
Funded by EPSRC grant EP/G060525/2.

References

1. S. J. Andrews. In-close, a fast algorithm for computing formal concepts. In Con-
ceptual Structures Tools Interoperability Workshop at the 17th International Con-
ference on Conceptual Structures, Moscow, 26-31 July 2009.

2. M. Christen, O. Schenk, and H. Burkhart. Automatic code generation and tuning
for stencil kernels on modern shared memory architectures. CSRD, 26(3):205–210.

3. B. Del Rizzo. Dice puts faith in nvidia PhysX technology for Mirror’s Edge.
NVIDIA Corporation press release, Nov 19 2008.

4. J. Djoufak Kengue, P. Valtchev, and C. Tayou Djamegni. Parallel computation of
closed itemsets and implication rule bases. In I. Stojmenovic, et al., eds., ISPA
2007, LNCS 4742, pp359–370. Springer.

5. Huaiguo Fu and E. Nguifo. A parallel algorithm to generate formal concepts for
large data. In P. Eklund, ed., ICFCA, LNAI 2961, pp141–142. Springer, 2004.

6. Huaiguo Fu and M. O’Foghlu. A distributed algorithm of density-based subspace
frequent closed itemset mining. In HPCC, pp750–755. IEEE, 2008.

7. B. Ganter and R. Wille. Formal Concept Analysis. Springer, 1999.
8. M. Harman, S. Swift, and K. Mahdavi. An empirical study of the robustness of

two module clustering fitness functions. In H.-G. Beyer, et al., eds., GECCO 2005.
9. P. Krajca, J. Outrata, and V. Vychodil. Parallel recursive algorithm for FCA. In

R. Belohlavek and S. O. Kuznetsov, eds., CLA 2008, Olomouc, Czech Republic.
10. P. Krajca, J. Outrata, and V. Vychodil. Parallel algorithm for computing fixpoints

of Galois connections. Ann Math Artif Intel, 59:257–272, 2010.
11. P. Krajca and V. Vychodil. Comparison of data structures for computing formal

concepts. In V. Torra, et al., eds., MDAI 2009, LNCS 5861, pp114–125. Springer.
12. W. B. Langdon. Graphics processing units and genetic programming: An overview.

Soft Computing, 15:1657–1669, Aug. 2011.
13. W. B. Langdon, S. Yoo, and M. Harman. Non-recursive beam search on GPU for

formal concept analysis. RN/11/18, Computer Science, UCL, London, UK, 2011.

http://www.worley.com
http://people.brunel.ac.uk/~cssrsms/
http://www.cs.ucl.ac.uk/people/Yuanyuan.Zhang.html
https://www.cs.drexel.edu/~spiros/
http://www.nvidia.com
http://gow.epsrc.ac.uk/ViewGrant.aspx?GrantRef=EP/G060525/2
http://shura.shu.ac.uk/36/1/fulltext.pdf
http://dx.doi.org/10.1007/s00450-011-0160-6
http://dx.doi.org/10.1007/978-3-540-74742-0_34
http://dx.doi.org/10.1007/978-3-540-24651-0_33
http://dx.doi.org/10.1109/HPCC.2008.147
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2005/docs/p1029.pdf
http://dx.doi.org/10.1007/s10472-010-9199-5
http://dx.doi.org/10.1007/978-3-642-04820-3_11
http://dx.doi.org/doi:10.1007/s00500-011-0695-2
http://www-typo3.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Student_Information/RN_11_18.pdf

	Formal Concept Analysis on Graphics Hardware

