
Towards a Language for Pattern Manipulation
and Querying�

Elisa Bertino1, Barbara Catania2, and Anna Maddalena2

1 Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano (Italy)

2 Dipartimento di Informatica e Scienze dell’Informazione
Università degli Studi di Genova (Italy)

Abstract. Patterns are concise, but rich in semantic, representation of
data. The approaches proposed in the literature to cope with pattern
management problems usually deal with a single type of knowledge ar-
tifact and mainly concern pattern extraction issues. Little emphasis has
been posed in defining an overall environment to represent and efficiently
manage different types of patterns. The first general approach to deal
with patterns has been proposed in the context of the PANDA project
[1]. In this paper, we discuss some basic requirements for pattern manip-
ulation and retrieval, represented according to the PANDA model. The
proposed languages extend previous proposals and represent the basis
for the development of an efficient pattern query processor.

1 Introduction

Patterns are concise, but rich in semantic, representation of data. There are
many different applicational contexts from which different types of patterns can
be generated (e.g. market-basket analysis/association rules, click-stream anal-
ysis/click sequences, image recognition/image features, etc.). Moreover, due to
the diffusion of the (Semantic) Web, the ability to manipulate different types
of patterns is becoming a fundamental issue for any “intelligent” data-intensive
and distributed application, where systems must be able to handle and analyze
multisite and multiowner data repositories.

Even if several applicational contexts call for a systematic approach to pat-
tern management, the problem of directly storing and querying pattern-bases has
received very limited attention so far in the commercial world and the database
community. Several approaches have been proposed in the literature to cope
with knowledge extraction and management problems. However, they usually
deal with a single type of knowledge artifact. As far as we know, the first at-
tempt to introduce a general approach for patterns handling has been proposed
in the context of the PANDA project [9, 1]. In the PANDA approach, in order

� This work was partially funded by the Information Society Technologies programme
of the European Commission, Future and Emerging Technologies under the IST-
2001-33058 PANDA project.

1-2 E. Bertino, B. Catania and A. Maddalena

to ensure an efficient handling of both raw data and patterns, two dedicated
systems are considered: a traditional DataBase Management System (DBMS)
is used for raw data while patterns are managed by a specific Pattern Based
Management System (PBMS). The proposed model provides the representation
of patterns in terms of their structure, data source, some measures qualifying the
quality of the achieved representation, and an expression which relates patterns
with the subset of the data source from which they have been generated.

The difference in semantics between patterns and raw data discourages from
adopting the same query language for both. Since raw data are managed by using
traditional DBMSs, they can be queried by using traditional query languages.
On the other side, to retrieve patterns from the PBMS a specific pattern query
language (PQL) has to be defined, capable of capitalizing on the peculiar seman-
tics of patterns as defined in the model. In particular, besides basic operators to
retrieve patterns, the pattern query language has to support operations binding
patterns with raw data (cross-over queries). Moreover, there is also the need for
a pattern manipulation language (PML), by which patterns can be generated
from raw data, inserted from scratch, deleted, and updated.

The aim of this paper is to present a manipulation language and a query
language for patterns represented according to the PANDA model [1]. We first
identify basic pattern manipulation operators and provide examples of their
usage. To this purpose, traditional manipulation operations, such as insertion,
deletion and update, are re-interpreted in the context of the PBMS, leading
to the definition of specific operations, such as extraction, recomputation and
synchronization. Then, we present an algebraic PQL. The proposed operators
extend all previous proposals. In particular, they extend traditional relational
operators to cope with patterns of arbitrary type and support cross-over queries.
Due to their formal semantics and generality, they can be used as the basis for
the development of optimization techniques for pattern query processing.

This paper is organized as follows. In Section 2, the architecture and pattern
model defined in the context of PANDA are briefly introduced. Some preliminary
notions, useful in defining the pattern manipulation and query language, are
then provided in Section 3. Sections 4 and 5 introduce the PML and the PQL,
respectively. In Section 6 related work are discussed and, finally, in Section 7 we
outline some conclusions and discuss some future work directions.

2 Pattern Management

A Pattern-Base Management System (PBMS) [9] is a system for handling (stor-
ing/processing/retrieving) patterns defined over raw data. Due to their different
characteristics, raw data and patterns cannot be managed by using a single
management system. According to the PANDA proposal [9], we assume that
raw data reside in the raw data layer and are managed by their native systems
(for example, a DBMS or just files); on the other side, patterns generated from
raw data or inserted from scratch are stored and managed within the PBMS.
Within the PBMS, it is worth to distinguish three different layers. The pattern

Towards a Language for Pattern Manipulation and Querying 1-3

layer is populated with patterns. The type layer holds built-in and user-defined
pattern types. The class layer holds definitions of pattern classes, i.e., collections
of semantically related patterns.

The basic concepts of the pattern model are therefore: pattern types, pat-
terns, and classes [1, 9]. A pattern type represents the intensional form of patterns,
giving a formal description of their structure and relationship with source data.
It is defined as a record with five elements: (i) the structure schema ss, which
defines the pattern space by describing the structure of the instances of the pat-
tern type; (ii) the source schema ds, which defines the related source space by
describing the dataset from which patterns, instances of the pattern type being
defined, are constructed (when no otherwise stated, we assume that data sources
are intensionally described); (iii) the measure schema ms, which describes the
measures which quantify the quality of the source data representation achieved
by the pattern; (iv) the formula f , which describes the relationship between the
source space and the pattern space, thus carrying the semantics of the pattern.
Inside f , attributes are interpreted as free variables ranging over the components
of either the source or the pattern space. Note that, though in some particular
domains f may exactly express the inter-space relationship, in most cases it will
describe it only approximatively. The model is parametric with respect to the
language adopted for formulas.

Patterns are instances of a specific pattern type. Thus, they are record values
with identifiers. Each record contains the following elements: (i) a structure that
positions the pattern within the pattern space defined by its pattern type; (ii) a
source that identifies the specific dataset the pattern relates to; (iii) a measure
that estimates the quality of the raw data representation achieved by the pattern;
(iv) an expression which relates the pattern to the source data. In particular, the
expression is obtained by the formula f in the pattern type by (i) instantiating
each attribute appearing in ss with the corresponding value, and (ii) letting the
attributes appearing in ds range over the source space. Dot notation and path
expressions can be used to denote pattern components.

A class is a set of semantically related patterns and constitutes the key
concept in defining a pattern query language. A class is defined for a given
pattern type and contains only patterns of that type. A pattern may belong to
any number of classes. If it does not belong to any class, it cannot be queried.

Example 1. Given a domain D of values and a set of product sales transactions,
a possible pattern type for modeling association rules is the following:
n: AssociationRule
ss: TUPLE(head: SET(STRING), body: SET(STRING))
ds: BAG(transaction: SET(STRING))
ms: TUPLE(confidence: REAL, support: REAL)
f: ∀x(x ∈ head ∨ x ∈ body ⇒ x ∈ transaction)

The structure schema is a tuple modeling the head and the body as strings
representing products . The source schema specifies that association rules are
constructed from a bag of transactions, each defined as a set of products. The
measure schema includes two common measures to assess the relevance of a rule:
its confidence (what percentage of transactions including the head also include

1-4 E. Bertino, B. Catania and A. Maddalena

the body) and its support (what percentage of the whole set of transactions
include both the head and the body). Finally, the formula represents (exactly,
in this case) the pattern/dataset relationship by associating each rule with the
set of transactions which support it.
Now suppose that raw data include a relational database containing a table
sales which stores data related to sales transactions in a sport shop with scheme:
(transactionId, article, quantity). Using an extended SQL syntax to denote the
dataset, an example of an instance of AssociationRule is:
pid: 512
s: (head={’Boots’}, body={’Socks’,’Hat’})
d: ’SELECT SETOF(article) AS transaction FROM sales GROUP BY transactionId’
m: (confidence=0.75, support=0.55)
e: {transaction : ∀x(x ∈ {′Boots′, ′Socks′, ′Hat′} ⇒ x ∈ transaction)} �

To increase the expressivity of the logical model some interesting relationships
between patterns have also been introduced [1]. Among them, we recall: special-
ization, a sort of IS-A relationship (e.g. clusters of integer points can be seen
as a specialization of generic cluster of points); composition, between a pattern
and those used to define its structure; refinement, between a pattern and those
belonging to its source component. Composition and refinement support the
definition of complex patterns.

Example 2. The following pattern type models clusters of association rules:
n: ClusterOfRules
ss: representative: AssociationRule
ds: SET(rule: AssociationRule)
ms: TUPLE(deviationOnConfidence: REAL, deviationOnSupport: REAL)
f: rule.ss.head=representative.ss.head

There is a refinement relationship between ClusterOfRules and AssociationRule,
since the data source of a cluster of rules is a set of association rules. In addition,
since the representative of each cluster is an association rule, there exists a
composition relationship between those two pattern types. �

3 Preliminaries

In the following, some preliminary notions useful in the definition of pattern
languages are introduced. We introduce the concept of mining function, i.e. a
function used to generate patterns from raw data, and we discuss how informa-
tion concerning mining functions can be stored in catalogs within the PBMS.
Mining function. Given a pattern type pt, a mining function µ for pt takes
as input a data source, applies a certain computation to it, and returns a set
of patterns, instances of pt. Note that a mining function generates not only
the structure but also the measures associated with patterns, according to the
chosen pattern type. However, sometimes, given a pattern, it is important to be
able to recompute its associated measures against a certain dataset, which may
either be the one over which the pattern has been generated or another one. It
is useful to define a mining function starting from two additional functions: (i) a

Towards a Language for Pattern Manipulation and Querying 1-5

structure function, computing the structure pattern components; (ii) a measure
function, computing the measure pattern components. For formal details see [1].
Catalogs over patterns. In order to be able to effectively use information
concerning mining functions during the pattern generation process, we must
store somewhere information concerning them. In general, given a pattern type,
several structure and measure functions (thus, several mining functions) can be
defined. We assume there exist some libraries of structure and measure functions
for each pattern type, stored in some PBMS catalog, since such information is
useful from an operational point of view but it is not queried by final users.

Catalogs are created for both the pattern type layer and the pattern layer.
Function libraries constitute the content of the pattern type layer catalog. We
assume there exists one library for each pattern type. On the other hand, the
catalog for the pattern layer must contain, for each pattern, the mining function
used to generate it. Thus, the catalog is a set of tuples, specifying: (i) the pattern
identifier (pid); (ii) the mining function used to generate the pattern; (iii) the
measure functions, if different from those applied by the mining function; (iv) the
pattern transaction time, i.e. the instant of time at which the pattern instance
has been generated and inserted in the system.

4 Pattern Manipulation Language

A pattern manipulation language (PML) must support primitives to generate
patterns from raw data and to insert them in the PBMS, to delete and to update
patterns. In the following, we discuss each PML operator in details. Their formal
definitions are provided in [1]. For the sake of simplicity, all the PML operations
are defined assuming to deal with a single pattern at a time. All the proposed
operations can of course be extended to deal with sets of patterns.

4.1 Insertion operators

Three different types of insertion are supported. The first one (extraction) gen-
erates new patterns starting from raw data, by applying a mining function. The
second one (direct insertion) allows one to insert in the PBMS patterns from
scratch. Finally, the third one (recomputation) generate new patterns from ex-
isting ones, by recomputing their measure over a different source dataset.
Extraction E. The extraction operator E(pt, d, cond, µ) allows the extraction
of patterns, of a specific pattern type pt, from a raw dataset d, by applying
a specific mining function µ, and their insertion in the pattern layer if they
satisfy a specified condition cond. Note that, once the mining function µ has
been fixed, the pattern type pt of the resulting patterns is determined by the
function signature. The data sources of the generated patterns correspond to
the source description specified as input for the extraction operation. As a side
effect, new tuples are inserted in the catalog of the pattern layer. Finally, note
that the extraction operator does not directly insert resulting patterns in any
class, but only in the pattern layer.

1-6 E. Bertino, B. Catania and A. Maddalena

Direct Insertion I. The direct insertion operator I(pt, d, s,m) allows one to
insert a user-defined pattern of a certain pattern type in the pattern layer. It
takes as input a pattern type pt, a source d, a structure s, and a measure m
value and inserts the pattern generated from those data in the pattern layer. As
a side effect, new tuples are inserted in the catalog of the pattern layer. Since
they have not been generated by using a mining function, all these tuples contain
no mining function information.
Recomputation R. In a pattern-based system, given some pattern p, the user
may be interested in establishing whether it holds for a specified dataset d,
different from the one the pattern has been generated from, and computing the
new measures, accordingly to some measure functions µm specified as input. This
operation is denoted by R(p, d, µm). In this case, the resulting patterns have the
same structure than the input ones but the data source and the measures are
different. As a side effect, a new tuple is inserted in the pattern layer catalog.
The mining function for the new pattern is the same used for the one in input.

4.2 Deletion and update operators

In the PBMS context, the delete operation has the same meaning than in a tradi-
tional DBMS context, i.e. patterns satisfying specific conditions are selected and
removed from the pattern layer. However, since a pattern can belong to different
classes, the following two types of deletion operation have been introduced.
Deletion Restricted δR. It allows the user to remove a pattern p from the
pattern layer only if it is contained in no classes (denoted by δR(p)).
Deletion Extended δE. It allows the user to remove a pattern p from the
pattern layer and from all the classes it belongs to (denoted by δE(p)).
Synchronize S. The synchronize operator S(p, µm) is an update operator which
allows the user to re-compute the measure values associated with a pattern p, in
order to reflect modifications that occurred in its data source, by using a measure
function µm specified as input. Note that only measures are modified, the pid,
the structure, the data source, and the expression do not change. Thus, it can be
seen as a special case of recomputation, applied against the pattern data source.
As a side effect of the synchronization operation, the measure functions specified
in the tuple corresponding to the input pattern are updated.

4.3 Operators for class

Since, according to the pattern model, a class is a set of semantically related
patterns sharing the same pattern type (see Section 2), each pattern can be
inserted in an arbitrary number of classes. However, it must be inserted in at
least one class in order to be queried. Therefore, two PML operations supporting
the insertion and the removal of a pattern into or from a class are provided.
Insertion Into Class IC. It allows one to insert a fixed pattern p into a specific
class c (denoted by IC(p, c)).
Deletion From Class DC. It allows one to delete a specific pattern p from a
class c it belongs to (denoted by DC(p, c)).

Towards a Language for Pattern Manipulation and Querying 1-7

Example 3. Let QRome and QMilan be two intensional descriptions of two differ-
ent datasets concerning sales in stores in Rome and Milan. Let µaPriori be the
mining function corresponding to the A-Priori algorithm for computing associ-
ation rules and let µM be a measure function for pattern type AssociationRule.
Let ARR, ARM , and AR classes containing association rules. The following are
some examples of interesting PML operations:

1. A set of association rules (SP) about sales in a department store in Rome
are extracted and inserted into ARR:
– SP = E(AssociationRules,QRome, ∅, µaPriori)
– IC(SP,ARR)

2. New patterns SP ′ are generated by recomputing SP over the dataset con-
cerning sales in a department store in Milan. Then, they are inserted into
classes ARM and AR. Finally, patterns SP are removed from the system.
– SP ′ = R(SP,QMilan, µM)
– IC(SP ′, ARM)
– IC(SP ′, AR)
– δE(SP)

3. The patterns SP can be synchronized to reflect changes in the data source:
– SP = S(SP, µM) �

5 Pattern Query Language

The Pattern Query Language supports the retrieval of patterns from the pattern
layer. In order to identify the main operations that could be useful in pattern
retrieval, we present a pattern query algebra. Algebraic operators take as input
classes, thus sets of patterns, and return a new set of patterns.

Besides operators manipulating patterns, for real application purposes it is
also important to support operations binding patterns with raw data. Such op-
erations are known as cross-over queries since for their execution two different
systems, the PBMS and the system where raw data rely, have to be used.

5.1 Basic Pattern Operators

Traditional relational operators. Since classes are sets, usual relational op-
erators such as union, difference, and intersection are defined for pairs of classes
over the same pattern type.

Projection. The projection operator allows one to reduce the structure and the
measures of the input patterns by projecting out some components. The new
expression is obtained by projecting the formula defining the expression over the
remaining attributes [7]. Note that no projection is defined over the data source,
since in this case the structure and the measures would have to be recomputed.

Let c be a class over pattern type pt. Let ls be a non empty list of attributes
appearing in pt.ss, lm a list of attributes appearing in pt.ms. Then, the projec-
tion operator is defined as follows:

1-8 E. Bertino, B. Catania and A. Maddalena

π(ls,lm)(c) = {(new(), πs
ls(s), d, πm

lm(m), πls∪lm(e))|∃p ∈ c, p = (pid, s, d,m, e)}.
In the previous formula, new() is a function returning new pattern identifiers,
πm

lm(m) is the usual relational projection and πs
ls(s) is defined as follows: (i) if s is

of type TUPLE(t), then πs
ls(s) is the usual relational projection; (ii) if s is of type

SET(t) or BAG(t), then πs
ls(s) is obtained by removing from s the unrequired

components, maintaining the existing nesting.

Example 4. Let A a class over the pattern type AssociationRule. The projection
π(<head>,<support>)(A) returns a set of patterns whose structure contains only
the head component and whose measure contains only the support one. �
Selection. The selection operator allows one to select the patterns belonging to
a certain class satisfying a certain condition, involving any possible pattern com-
ponent. Conditions are formulas constructed over the following atomic formulas,
by using ∨,∧, and ¬:

– t1θv, t1θt2, where t1, t2 are path expressions starting from ss or ms compo-
nents, t1 and t2 denote elements having the same type t (or two compatible
types), v is a value for t, and θ is a suitable operator for t. If t is not a
base type (thus, it is a pattern type), the allowed operators are: (i) iden-
tity equality (=i); (ii) shallow and deep value equality (=se and =de); (iii)
similarity (=s). The previous operators can also be directly applied to pat-
terns belonging to a class. To this purpose, we assume that unary operators
syntactically and semantically equivalent to the ones presented above exist.

– t1θt2, where t1, t2 denote either data source or expression components and
θ ∈ {≡,⊆}. ≡ stands for equivalence and ⊆ for containment between in-
tensional data source descriptions (i.e., between queries). Note that equality
or containment are checked by considering the intensional definition of data
sources, without accessing raw data (thus, we assume that selection is not
a cross-over operation). A similar consideration holds for expression compo-
nents.

Let c be a class over pattern type pt and F a formula. The selection of c with
respect to F is denoted as σF (c) and is defined as:

σF (c) = {p|p ∈ c and p satisfies F}
Example 5. The query: find all association rules belonging to class AR1 whose
body contains “Boots” or whose confidence is greater than 0.75 can be expressed
as: σ′Boots′ IN s.body OR m.confidence>0.75(AR1). �
Drill-Down. The drill-down operator allows one to navigate the refinement re-
lationship between patterns, from a pattern to some of the patterns it refines.
More formally, let c be a class over pattern type pt and let a be an attribute
appearing in the source component, ds, associated with the pattern type. Then
the drill-down operation, denoted by δa(c), returns the following set:
δa(c) = {p|∃p′ ∈ c, p′ = (pid, s, d,m, e), d.a1....an.a = p}1.

1 d.a1....an.a denotes a path expression starting from the patterns data source com-
ponent and ending at attribute a.

Towards a Language for Pattern Manipulation and Querying 1-9

Example 6. Consider the refinement relationship between ClusterOfRules and As-
sociationRule. Let C be a class of type ClusterOfRules: δrule(C) returns a set of
association rules. �

Roll-Up. The roll-up operator allows one to navigate the refinement relation-
ship between patterns, from a pattern p to some of the patterns obtained by
refining p. More formally, let c be a class over pattern type pt1 and let pt2 be a
pattern type refining pt1. The roll-up operator, when applied to c, returns the
pattern instances of pattern type pt2 refining at least one pattern belonging to
c. The roll-up operation is formally defined as follows:

ρpt(c) = {p′|∃p ∈ c,∃ a class c′ over pt such that ∃p′ ∈ c′, p′ refines p}.

Example 7. Consider a class C of type AssociationRule, ρClusterOfRules(C) returns
a set of patterns of type ClusterOfRules refining at least one pattern in C. �

Decomposition. The decomposition operator allows one to navigate the com-
position relationship, returning for each pattern a component pattern associated
with a certain attribute. More formally, let c be a class over pattern type pt and
let a be an attribute appearing in the structure schema, ss, associated with a
pattern type. The decomposition operation is denoted by Ca(c) and it is formally
defined as follows:

Ca(c) = {p|∃p′ ∈ c, p′ = (pid, s, d,m, e), s.a1....an.a = p}

Example 8. Consider a class c over pattern type ClusterOfRules, Crepresentative(c)
returns a set of patterns of pattern type AssociationRule. �

Join. The join operation provides a way to combine patterns belonging to two
different classes according to a join predicate specified by the user.

Let c1 and c2 be two classes over two pattern types pt1 and pt2. In order
to formally define the join operator, we need to introduce the concept of join
predicate and composition function. A join predicate F is any selection condition
defined over a component of patterns in c1 and a component of patterns in c2. A
composition function c() for pattern types pt1 and pt2 is a 4-tuple of functions
c = (css, cds, cms, cf), one for each pattern component. For example, function css

is defined as css : Dom(pt1.ss) × Dom(pt2.ss) → SS, i.e., it takes as input two
structure values of the right type and return a new structure value, for a possible
new pattern type, generated by the join. Functions for the other pattern compo-
nents are similarly defined. Given two patterns p1 = (pid1, s1, d1,m1, f1) ∈ c1

and p2 = (pid2, s2, d2,m2, f2) ∈ c2, c(p1, p2) is defined as the pattern p with the
following components, s : css(s1, s2)d : cds(d1, d2)m : cms(m1,m2)f : cf (f1, f2)

The join of c1 and c2 with respect to the join predicate F and the composition
function c, denoted by c1 ��F,c c2, is now defined as follows:

c1 ��F,c c2 = {c(p1, p2)|p1 ∈ c1 ∧ p2 ∈ c2 ∧ F (p1, p2) = true}.
Similarly to the relational context, the Natural Join can be defined as a special
type of join. We assume it can be applied only to classes and pattern types
having the same data source schema. The natural join is defined as c1 ��F,c c2,

1-10 E. Bertino, B. Catania and A. Maddalena

where: F is the join predicate requiring the equality between data sources and
for attributes with the same name and type in the structure components; c()
is the following composition function: c = (c<,>, ↓d,∪null,∧), where: (i) c<,>

returns a record with two components, one for each input structure value; (ii)
↓d is a function that takes two patterns with the same data source and returns
it; (iii) ∪null returns a record with one component for each input measure and
assign a “null” to all of them (thus, measures are not recomputed for the new
dataset); (iv) ∧ is the logical conjunction.

Since in a natural join operation F and c are fixed, the natural join notation
can be simplified. Thus, it is simply denoted by c1 �� c2.

Example 9. Consider two classes c1, c2 on pattern type AssociationRules. Suppose
we want to generate new association rules by transitive closure, i.e., informally,
given two rules A → B ∈ c1 and B → C ∈ c2, we want to generate A → C.
Such rules can be generated through a join operation c1 ��F,c c2 applied to c1

and c2 with join predicate F ≡ c1.ss.body = c2.ss.head and using a specific
composition function c. A reasonable composition function generates the new
structures as described above. Data sources can be combined by considering the
natural join between the input sources since the new rule will refer only to the
tuples belonging to both datasets. Null values can be assigned to measures if
we do not want to recompute them on the new dataset. Finally, expressions can
be combined by considering the intersection of the input ones. The resulting
patterns are of type AssociationRules.

Note that if patterns belonging to c1 and c2 are generated from the same
data source, the natural join of c1 and c2 (c1 �� c2) can be computed. In this
case, the obtained result is similar to the one obtained by applying the join. The
only difference concerns the structure of the generated patterns: for the natural
join, it is a record with two components, that are association rules. �

5.2 Cross-over queries

Cross-over queries are a particular type of queries that correlate patterns with
raw data, providing a way for navigating from the pattern layer to the raw data
layer and vice versa. In the following, we present some cross-over operators that
from our point of view are quite useful in real applications.

Drill-Through. The drill-through operation allows one to navigate from the
pattern layer to the raw data layer, through pattern data sources and expres-
sions. Thus, it takes as input a class and it returns a raw data set. More formally,
let c be a class over pattern type pt and let a be an attribute associated with a
base data type in ds. Then, the drill-through operation is denoted by γa(c) and
it is formally defined as: γa(c) = {πa(d′)|∃p ∈ c, p = (pid, s, d,m, e), d′ = e(d)}.
In the previous expression, e(d) represents the result of the evaluation of ex-
pression e against the (extensional) data source of the considered pattern. As
a special case, we assume that γ(c) projects the data source over all its attributes.

Towards a Language for Pattern Manipulation and Querying 1-11

Covering. The covering operation allows one to determine whether a given pat-
tern holds for a specified data source. Let p be a pattern, possibly selected by
using other query language operators, and d a data source. The covering op-
eration, denoted by ϑ(p, d), is defined as: ϑ(p, d) = true iff p ∈ E(pt, p, true, µ)
where pt is the pattern type of p and µ is the mining function used to generate
p (retrieved from the catalog).

PML operations reinterpreted as PQL operations. Extraction, recompu-
tation, and synchronization can be interpreted as PQL operators. In this case,
the generated patterns are not inserted in the pattern base. Rather, they are
returned as query results.

Example 10. Let AR be a class of type AssociationRule, and CR be a class of
type ClusterOfRules. Let a1 and a2 be two association rules in AR. The following
are some examples of interesting queries over AR and CR.
Q1 - Find rules containing “Bread” in the head or having a support greater than
0.6, belonging to the dataset by which patterns in class CR have been mined:

σ′Bread′ IN ss.head OR ms.support>0.6(δrule(CR))
Q2 - Retrieve all association rules belonging to class AR having at least con-
fidence 0.7 and whose body contains “Boots”, and project the result over the
body structure component and the support measure component:

π(<head>,<support>)(σ′Boots′ IN ss.body AND ms.confidence>0.75(AR))
Q3 - Retrieve all representatives of clusters of rules refining at least one associ-
ation rule belonging to class AR mined from the dataset doneted by Q Rome:

Crepresentative(ρClusterOfRules(σQ Rome⊆d(AR)))
Q4 - After computing the join presented in Example 9, it is possible to recompute
the measures by using a cross-over operation (µm is a measure function for
association rules): S(c1 ��F,c c2, µm). �

6 Related work

As we have already discussed, the PANDA approach [9] introduces a logical
separation between raw data and patterns in order to efficiently manage both
of them through dedicated management systems. Differently, in the inductive
databases, data and patterns are stored together [5, 3] and the knowledge dis-
covery process is modeled as an interactive process in which users can query
data as well as patterns. In this context, no attempt is made toward a general
model for heterogeneous patterns. Rather, inductive databases rely on specific
types of patterns (i.e. association rules, clusters, functional dependencies). Also
approaches which claim to be general enough to cover all possible pattern types,
such as [2], are then instantiated over few of them.

Due to the considered models, most of the proposed languages deal with
specific types of patterns, by usually using an SQL-like syntax [6, 5, 8]. In those
cases, standard query languages are extended with fixed operators supporting
the pattern mining process from a collection of relational data. No user-defined

1-12 E. Bertino, B. Catania and A. Maddalena

mining function can be specified [4]. In [2] relational algebra has been extended
with operators specifying mining tasks, selecting patterns according to speci-
fied conditions, and combining data and patterns in the same query (cross-over
queries). However, the proposed operators do not seem to cover all possible
queries that could be useful from an application point of view.

Another approach for querying patterns has been presented in [10], where a
pattern algebra has been presented. However, no formal pattern model is pro-
vided and the proposed operations seem too simple to be useful in practice.
Finally, we remark that none of the proposed languages takes into account syn-
chronization aspects and hierarchical relationships between patterns.

7 Conclusions and future work

In this paper, we have proposed some basic operators to cope with pattern
manipulation and retrieval. The proposed operators cover and extend the op-
erations already proposed in the literature to deal with patterns of arbitrary
type. Future work includes the definition of a pattern calculus, equivalent to
the proposed algebra and the analysis of expressive power and complexity of
the proposed languages. Furthermore, we plan to investigate issues concerning
soundness and completeness of the proposed pattern query language.

References

1. E. Bertino, B. Catania, M. Golfarelli, M. Halkidi, A. Maddalena, S. Skiadopoulos,
S. Rizzi, M. Terrovitis, P. Vassiliadis, M. Vazirgiannis, and E. Vrachnos. The
Logical Model for Patterns. Technical Report TR-2003-02, PANDA, 2003.

2. J. F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD Processes within
the Inductive Database Framework. In Proc. of the Data Warehousing and Knowl-
edge Discovery, pages 293–302, 1999.

3. L. De Raedt. A Perspective on Inductive Databases. ACM SIGKDD Explorations
Newsletter, 4(2):69–77, 2002.

4. B. Goethals and J. Van den Bussche. A Priori versus a Posteriori Filtering of
Association Rules. In Proc. of the ACM SIGMOD Workshop on Research Issues
in Data Mining and Knowledge Discovery, 1999.

5. T. Imielinski and H. Mannila. A Database Perspective on Knowledge Discovery.
Communications of the ACM, 39(11):58–64, 1996.

6. T. Imielinski and A. Virmani. MSQL: A Query Language for Database Mining.
Data Mining and Knowledge Discovery, 2(4):373–408, 1999.

7. P. Kanellakis, G. Kuper, and P. Revesz. Constraint Query Languages. Journal of
Computer and System Sciences, 51(1):25–52, 1995.

8. R. Meo, G. Psaila, and S. Ceri. An Extension to SQL for Mining Association
Rules. Data Mining and Knowledge Discovery, 2(2):195–224, 1999.

9. S. Rizzi, E. Bertino, B. Catania, M. Golfarelli, M. Halkidi, M. Terrovitis, P. Vas-
siliadis, M. Vazirgiannis, and E. Vrachnos. Toward a Logical Model for Patterns.
In Proc. of the 22nd International Conference on Conceptual Modeling (ER 2003),
Chicago, 2003.

10. A. Tuzhilin. A Pattern Discovery Algebra. In Proc. of the 1997 Workshop on
Research Issues in Data Mining and Knowledge Discovery, pages 71–76, 1997.

