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Abstract.
1
   Mining public transportation networks is a 

growing and explosive challenge due to the increasing number of 

information available. In highly populated urban zones, the 

vehicles can often fail the schedule. Such fails cause headway 

deviations (HD) between high-frequency bus pairs. In this paper, 

we propose to identify systematic HD which usually provokes the 

phenomenon known as Bus Bunching (BB). We use the PrefixSpan 

algorithm to accurately mine sequences of bus stops where 

multiple HD frequently emerges, forcing two or more buses to 

clump. Our results are promising: 1) we demonstrated that the BB 

origin can be modeled like a sequence mining problem where 2) 

the discovered patterns can easily identify the route schedule points 

to adjust in order to mitigate such events. 

1. INTRODUCTION 

In highly populated urban zones, it is well known that there is some 

schedule instability, especially in highly frequent routes (10 

minutes or less) [1-5]. In this kind of routes it is more important the 

headway (time separation between vehicle arrivals or departures) 

regularity than the fulfillment of the arrival time at the bus stops 

[4]. Due to this high frequency, this kind of situations may force a 

bus platoon running over the same route. In fact, a small delay of a 

bus provokes the raising of the number of passengers in the next 

stop. This number increases the dwell time (time period where the 

bus is stopped at a bus stop) and obviously also increases the bus’s 

delay. On the other hand, the next bus will have fewer passengers, 

shorter dwell times with no delays. This will continue as a snow 

ball effect and, at a further point of that route, the two buses will 

meet at a bus stop, forming a platoon as it is illustrated in Fig. 1. 

This phenomenon has several denominations: the Bangkok effect 

[6], Bus Platooning [7], Vehicle Pairing [8], Headway Instability 

[1], Bus Clumping or Bus Bunching (BB) [2]. From now on, we 

will use the last one. 

The occurrence of BB forces the controllers to take 

actions in order to avoid this headway instability, forcing the 

adherence to the schedule. BB situations can cause several 

problems like: further buses delays, full buses, decreased comfort 

in the buses, larger waiting times at the bus stops, growing number 

of passengers waiting, greater resources demand and a decrease of 

schedule reliability. All this can cause the loss of passengers to 

other transportation means and/or companies. 
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Figure 1.  Bus Bunching problem illustration. Figure from [1]. 

 

Our goal is to identify the causes of BB occurrences using 

AVL (Automatic Vehicle Location) historical data. The BB 

phenomenon always starts by a headway deviation (HD) at a bus  

stop [9]. We intend to find frequent and systematic HD event 

sequences in the trips of a given route: bus stops where the bus 

activities - like the passenger boarding - will propagate the 

headway irregularities further and further. These bus stops 

sequences highlights problematic route regions: from now on we 

will refer to it as Bunching Black Spots (BBS - bus stops 

sequences where a HD will, with a high probability, start a BB in 

one of the following bus stops of the trip).  

We use the PrefixSpan algorithm (presented in Section 3) to 

mine frequent sequences in the HD sequences extracted from this 

dataset. We apply this methodology to data from two urban lines of 

a public transport operator of Porto. It proved to be efficient in the 

detection of HD patterns in the bus stops of the studied routes.  

The results from this framework can be highly useful to the 

public transport planners. One of the most known ways to mitigate 

the bus bunching is to adjust the slack time introduced in each 

schedule point (bus stops selected along the route for which the 

arrival time is defined) [10]. By using this framework, the planners 

can use the information about the BBS along the routes to select 

which schedule points should be changed (increasing or decreasing 

the slack time) to mitigate BB effectively.  

The main results are: the observation that the BB phenomenon 

starts at the initial bus stops; and the existence of high correlation 

between HD that occurs at a given bus stop and the HD detected in 

the next ones. 

This paper is structured as follows. Section 2 states a brief 

description of the problem we want to solve, the related work, our 

motivation and a clear definition of our approach. Section 3 

presents the methodology proposed. Section 4 presents summarily 

the dataset used, its main characteristics and some statistics about 

it. Section 5 presents the results obtained through the application of 
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the PrefixSpan algorithm to our dataset and a discussion about 

those results. Section 6 concludes and describes the future work we 

intend to carry on. 

2. PROBLEM OVERVIEW 

Nowadays, the road public transportation (PT) companies face a 

huge competition of other companies or even of other 

transportation means like the trains, the light trams or the private 

ones. The service reliability is a fundamental metric to win this 

race [11]: if a passenger knows that a bus of a selected company 

will arrive certainly on the schedule on his bus stop, he will 

probably pick it often. The reverse effect is also demonstrated and 

a BB event forming a visual bus pair is a strong bad reliability 

signal to the passengers’ perception of the service quality, which 

can lead to important profit losses [12, 13]. This tendency to form 

platoons is usual for urban vehicles (specially the PT ones) and 

arises for the specific and complex characteristics of transit service 

perturbations. Those are mainly related with changes in three key 

factors [8]: the dwell time and the loading time (highly correlated) 

and the non-casual passenger arriving (passengers that, for an 

unexpected reason – like a soccer match or a local holiday - try to 

board in a specific bus stop distinct from the usual one). However, 

the study of these changes impact on the service reliability is not in 

our current scope. Our goal is to find persistent and frequent 

headway irregularities which will probably provoke, in a short time 

horizon, a BB event.  

There are two distinct approaches found in the literature to 

handle the BB events: the first one defines the bunching problem as 

a secondary effect of a traffic system malfunction like a 

traffic/logistic problem (signal priority handling, adaptation of bus 

stops/hubs logistics to the needs, adjustments of the bus routes to 

the passengers demand, etc.). The second one defines the BB 

problem like a main one that must be treated and solved per se 

(adjust the timetables and the schedule plans to improve schedules’ 

reliability or set live actions to the irregular bus pairs, for instance).  

In this work, we are just focused on the second approach which 

related work, motivation and scope we present along this section. 

2.1. Related Work 

Gershenson et. al. presented a model adapted from a metro-like 

system and implemented a multi-agent simulation [1]. To achieve 

stability, they implemented adaptive strategies where the 

parameters are decided by the system itself, depending on the 

passenger density. As a result, the system puts a restriction to the 

vehicle holding time (it sets a maximum dwell time), negotiating 

this value for each bus stop with the other vehicles.  

The introduction of AVL systems changed the research point-

of-view on bus bunching, in the last ten years, from planning to 

control. There are several techniques in PT to improve the schedule 

plans on time tables based on AVL data.. C. Daganzo presents a 

dynamic holding time formula based on real time AVL data in 

order to adaptively compensate the headway instability introduced 

in the system [2].  

The relations between the irregularities in the headway 

sequences and the BB events have been recently explored: in [8] is 

presented a study identifying the headway distributions 

representing service perturbations based on probability density 

functions (p.d.f.). Despite their useful conclusions, their model had 

two main disadvantages: 1) is not based in real AVL data and 2) it 

does not present a probability density function to represent the 

pattern of consecutive headways irregularities. We do believe that 

this specific issue can be rather addressed mining frequent 

sequences on real AVL data, as we present here. 

2.2. Motivation and Scope 

We can define the headway irregularities as events that occur in a 

bus stop of a given trip. Those events consist in a large variation (1 

for positive or -1 for negative) on the headway: Headway 

Deviation events (HD).  

These are usually correlated in a snowball effect that may 

occur (or not) in a given (straight or spaced) sequence of bus stops. 

Despite the analysis of the state-of-art work on the mitigation of 

BB events, the authors found no work on systematizing real HD 

patterns that seem to be in the genesis of a BB event.  

An unreliable timetable is one of the main causes of many HD 

events. Usually, a timetable is defined using schedule points: stops 

for which there is an arriving or departing time defined. One of the 

most well-known PT planning ways to mitigate HD events is to 

add/reduce slack time in these defined timestamps to increase 

schedule plan overall reliability. However, only a small percentage 

of the bus stops served by a given timetable are used as schedule 

points. This is exemplified in the upper part of Fig. 2 (the reader 

can obtain further details on schedule plan building in chapter 1 

from [14]).Usually, PT planners easily identify which lines present 

more HD and BB events. However, three questions still remain 

open: 

 

 Which should be the schedule points affected? 

 Which action (increase/decrease slack time) should be 

applied to these schedule points in order to reduce the 

occurrence probability of BB events? 

 Which day periods should have the timestamps in these 

schedule points changed? 

 

In this work, we address the first and third questions by mining 

frequent HD event sequences in the trips of a given route: bus stops 

that systematically propagate the headway irregularities further and 

further. The second issue is out of our scope but it is well 

addressed in the literature [10]. 

Our intention is to point out a route region where an HD event 

fast and systematically propagates itself along the route, forming a 

Bunching Black Spot (BBS). The BBS can be specific of a period 

of the day or continuous along the day. In the bottom part of Fig. 2 

we present an example of a BBS. In the next section we present our 

methodology to mine BBS. 

3. METHODOLOGY 

Our methodology consists in finding consistent patterns of frequent 

HD events occurring in the same bus stops whenever a BB occurs 

– BBS. To do so we compare, at each bus stop, the round-trip times 

of every consecutive bus pairs. With the HD series thus obtained, 

we mine frequent sequence patterns. Firstly, we introduce the 

algorithm we used and finally we describe how we use it to create 

and mine our HD series for a given route. 
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3.1. Mining Time Series Sequences 

There is a wide range of algorithms that can explore sequential data 

efficiently. To the best of our knowledge, Agrawal and Srikant 

introduced the sequential data mining problem in [15].  Let I = {i1, 

i2,.., in} be a set of items and e an event such that e   I. A sequence 

is an ordered list of events e1e2…em where each ei   I.  

Given two sequences α=a1a2…ar and β=b1 b2 …. bs,  sequence 

α is called a subsequence of β if there exists integers 1 ≤  j1 < j2< 

… <jr ≤ s such that a1   bj1, a2   bj2, … ,ar   bjr. A sequence 

database is a set of tuples (sid, α) where sid is the sequence 

identification and α is a sequence. The count of a sequence α in D, 

denoted count(α, D), is the number of sequences in D containing 

the α subsequence. 

The support of a sequence α is the ratio between count(α, D) 

and the number of sequences in D. We denote sequence support as 

support(α, D). Given a sequence database D and a minimum 

support value λ, the problem of sequence mining is to find all 

subsequences in D having a support value equal or higher than the 

λ value. Each one of the obtained sequences is also known as a 

frequent sequence. 

One of the most interesting approaches to solve this kind of 

problems is PrefixSpan algorithm [16]. This algorithm makes use 

of pattern-growth strategies to efficiently find the complete set of 

frequent sequences. The algorithm starts by finding all frequent 

items (length one sequences). Then, for each one of these frequent 

items (the prefix) PrefixSpan partitions the current database into 

prefix projections. Each projection database contains all the 

sequences with the given prefix. This procedure runs recursively 

until all frequent sequences are found.  

The PrefixSpan algorithm was chose to solve this problem due 

to its popularity and efficiency.  

3.2. Method 

Firstly we constructed headway sequences based in the AVL 

historic data for every bus pairs in a given route. Then we 

identified the headway profiles where BB events occurred based on 

the bus service reliability metrics presented in [17] and we 

extracted HD sequences from them. 

Let X = x1x2…xn be a headway sequence measured between a 

bus pair in a given route through   bus stops running with a 

frequency   (       . We identify a BB if there exists a    

satisfying the inequality    (           for at least one 

    {     }. Based on this headway profiles, we formed a HD 

sequence as follows. Let H = h1h2…hn be the HD sequences based 

on X. We compute the value of each hi (the headway between a bus 

pair in the bus stop    , for each     {     }  using the 

expression 1. 
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where    is a threshold parameter given by the user for the HD 

definition. For the first bus stop is considered an HD of 0. 

Basically, a -1 event corresponds to a negative HD (delay) in a bus 

stop (i.e.: the two buses become closer), the 1 event is a positive 

HD (ahead of schedule) and the 0 occurs when the headway  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.  Example of Schedule Points and BBS. The two schemas 

exemplify two routes of a line running between an arbitrary school and a 

main bus station. In top part, route 1A has 19 bus stops represented by 13 

small black circles and 6 big grey circles (the single one’s are just bus 

stops, the double are hubs/interfaces). The last ones are the schedule points 

in the route’s timetables. In the bottom part, the stops belonging to frequent 

HD sequences are identified (even if the BB itself occurs later in the route) 

with a small white circle inside them. The highlighted stops form a route 

region (Bunching Black Spot) where the schedule points need to be time-

adjusted. 

remains stable. 

The xn represents a headway deviation in a bus stop n. The HD 

sequences are ordered according to the bus stop order defined for a 

given route. Our goal is to find sequences of bus stops with 

frequent HD by exploring a set of trips, in a given route, where BB 

occurrences were identified. 

To do so, we collected the HD sequences of trips in work days 

where a BB event occurred and we mined them using the 

PrefixSpan algorithm by setting a (user-defined) minimum support 

value in order to identify HD patterns in the bus stops. The Fig.3 

illustrates our methodology. We applied this methodology to four 

routes in a given period. This data is summarily described in 

Section 4. 

4. DATASET 

The source of this data was STCP, the Public Transport Operator  

of Porto, Portugal. The dataset was obtained through a bus dispatch 

system that integrates an Automatic Vehicle Location (AVL) 

system. The data captured through this system contains data of the 

trips from two lines (A and B) in the working days for the first ten 

months of 2010. Each line has two routes – one for each way {A1, 

A2, B1, B2}. Line B is a common urban line between Viso (an 

important neighborhood in Porto) passing by 26 bus stops 

(BS1_B1 to BS26_B1 and BS1_B2 to BS26_B2, respectively), and 

ending at Sá da Bandeira, a downtown bus hub. Line A is also an 

urban line between another downtown bus hub (Cordoaria) and 

Hospital São João - an important bus/light train interface in the city 

– using 22 bus stops (same schema than line B). 

This dataset has one entry for each stop made by a bus running in 

the route during that period. It has associated a timestamp and a 

day type (1 for work days, 2-6 for other day types i.e.: holidays and 

weekends). Table 1 presents some statistics about the set of trips 

per route considered and the BB events identified. The Nr. of Trips 
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is the total number of trips considered in the given route, TT is the 

round-trip time, expressed in minutes, and DT is the number of 

daily trips occurred. Finally, trips with BB are the trips where at 

least one BB situation occurs and HD events are the positive or 

negative events (             , respectively) measured in 

every bus stops along every trip for a given line.  

5. RESULTS 

We did our experiments only for the trips occurred during the peak 

periods (08:00 to 11:00 and 16:00 to 19:00). We did so because BB 

mainly occurred – as expected – during those periods. The routes 

A1 and A2 suffer more BB events and they are time-dispersed 

along the day. This happens because this line is an urban one 

between two important bus/metro interfaces (the downtown and the 

University Campus) with regular high frequencies during the entire 

day. So, they are highly frequent routes with many passengers 

during the entire day, which are well known factors to provoke BB 

occurrences. We mined sequences just in the bunching partition 

(trips with BB events). Moreover, we use the two partitions to 

compute the confidence of each sequence to be specific on the BB 

one. Our goal was to find patterns (i.e. frequent HD sequences) 

describing the headway irregular behavior of a typical BB trip. 

We did two different experiments: the first one mined 

sequences in both peak hours simultaneously; the second one 

mined each peak hour considered individually (the morning and the 

evening ones). We did so to mine BBS peak-dependent (just occur 

in one of the two peaks), discovering whether the schedule points 

should be adjusted for the entire day or just in a specific period. 

The results presented in Table 2 are for frequent subsequences 

of the HD sequences. We set PrefixSpan minimum support to 40% 

(sequences of length=1) and 20% (sequences with a length greater 

than 1) in the selected data partition, and a ht=0.15. We did so 

because the significance of the second case is higher than the first 

one. The second case demonstrates high correlations between 

distinct HD events in distinct bus stops that explain better the 

origin of the BB events. 

5.1. Discussion 

Firstly, we want to highlight that only frequent HD subsequences 

(BBS) with events of type -1 (headway reductions) were 

detected. All the sequences presents high confidence, 

demonstrating their specific validity in the bunching partition. In 

route B1 two BBS were identified: BS2_B1 and the pair  BS3_B1 

and BS4_B1. Both are located at the beginning of the route: the 

gap verified in these points may become larger in successive stops. 

The pair is deeply analyzed in Table 3: the isolated events in 

BS3_B1 and BS4_B1 have the same support than the events 

occurred in both bus stops. We can also set an association rule like 

BS3_B1= -1 -> BS4_B1= -1 (with a confidence of 97%) 

identifying a solid BBS in those two bus stops and an expected BB 

behavior.  

In line A, BS2_A1 and BS2_A2 were identified as BBS. 

Additionally, they are - as well as the BBS identified in line B – 

located in the beginning of the route. The causes for this behavior 

are, probably, the large affluence of passengers in peak hours but 

the authors cannot sustain this with the available data.  

Summarily, just BBS for the first bus stops were found. Based 

on this, we can conclude that the BB in those routes were largely 

provoked by successive bus delays in the first bus stops (the HD 

 

Table 1. Descriptive statistics for each route considered. These times are in 

minutes. TT means round-trip times. DT means daily trips. Based in our 

HD event definition, the maximum number of events for a time period is 

given as                              . 

 

 B1 B2 A1 A2 

Nr. of Trips 9391 10675 13802 12753 

Nr. of Bus Stops 26 26 22 22 

Minimum TT 11 11 11 11 

Maximum TT 78 82 70 65 

Minimum of DT 39 39 33 36 

Maximum of DT 74 74 89 88 

Median TT 29 21 21 38 

Nr. of Bus Stops 26 26 22 22 

Nr. of Trips w/ BB 332 378 559 630 

Nr. of HD events detected 26905 29911 42803 43525 

 

 

 

 

 

 

 

Figure 3.  Bunching Black Spot Detection Methodology illustration. Tn is 

the time series measured in each bus stop of a given trip. HS are the 

corresponding Headway Sequences and HD the Headway Deviation event 

subsequences. 

 

Table 2. The values presented are the Support of the sequences (number of 

trips where those events occur / total number of BB trips considered) as 

well as the confidence between the occurrences of those in the trips with 

BB and the total trips occurred in the period. 

 

Route Peaks 

Considered 

Sequence 

(possible BBS) 

Support Confidence 

B1 Both BS3_B1 = -1 

BS4_B1=-1 

0,2619 0,75 

B1 Both BS2_B1 = -1 0,4206 0,80 

A1 Both BS2_A1 = -1 0,5095 0,72 

A2 Both BS2_A2 = -1 0,5706 0,61 

B1 8h to 11h BS5_B1 = -1 0,4000 0,91 

B1 8h to 11h BS2_B1 = -1 0,4308 0,85 

A1 8h to 11h BS6_A1 = -1 0,4064 0,88 

A1 8h to 11h BS3_A1 = -1 0,4225 0,87 

A1 8h to 11h BS2_A1 = -1 0,5669 0,72 

A2 8h to 11h BS2_A2 = -1 0,6237 0,74 

B1 16h to 19h BS2_B1 = -1 0,4099 0,82 

A1 16h to 19h BS2_A1 = -1 0,4500 0,81 

A2 16h to 19h BS2_A2 = -1 0,6237 0,78 

 

Table 3. Detailed analysis of the mined sequence BS3_B1 = -1, BS4_B1=-

1. The support of the highlighted sequences 01a and 01b are the same of the 

sequence 01: this can demonstrate an implication between the bus delays in 
the BS3_B1 and BS4_B1, an usual BB behavior. The confidence for a 

possible association rule BS3_B1 = -1 -> BS4_B1=-1 is 97%. 

 

ID Route Peaks 

Considered 

Sequence (possible 

BBS) 

Support 

01 B1 Both BS3_B1 = -1 BS4_B1=-1 0,2619 

01a B1 Both BS3_B1 = -1 0,2619 

01b B1 Both BS4_B1 = -1 0,2619 

 

-1 events are mainly caused by bus delays [8]) although we cannot 

sustain whether they are failing the schedule. 
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In the second study, we analyzed whether the BBS identified 

were coherent in both peak hours. In route B1, the BS2_B1 is a 

BBS for both peak hours. BS2_A1 and BS2_A2 are also persistent 

BBS in both peaks. Those two bus stops correspond to an 

important bus interface (Sá da Bandeira) in the city and to a 

University Campus (Asprela), respectively. This happens because 

both routes maintain a high frequency and a large number of 

passengers during the day, being always busy. 

In our opinion, the short lengths of the frequent subsequences 

mined (1 and 2) are not relevant compared with the relevance of 

the identified patterns. Those lengths will always depend on the 

routes analyzed, so they can be larger when applied to other  

datasets. The achieved patterns demonstrate that the BB patterns  

can be modeled like a frequent sequence mining problem. The 

results achieved demonstrate the utility of our framework to 

identify the exact schedule points to change in the timetables. 

6. CONCLUSIONS AND FUTURE WORK 

In public transportation planning, it is crucial to maintain the 

passengers’ satisfaction as high as possible. A good way to do so is 

to prevent the phenomenon known as Bus Bunching.  

There are two main approaches to handle this problem: the PT 

planning one, anticipating and identifying the origin of the 

problem, and a real time one, which tries to reduce the problem 

online (during the network function). 

Our approach is a contribution to solve the PT planning 

problem: this framework can help to identify patterns of bus events 

from historical data to discover the schedule points to be adjusted 

in the timetables. 

In this paper, we presented a methodology to identify BB 

events that use headway deviations from AVL trips data. We ran a 

sequence mining algorithm, the PrefixSpan, to explore such data.  

The results are promising. We clearly demonstrated the existence 

of relevant patterns in the HD events of the travels with bunching. 

There were some bus stops sequences along the routes 

identified as BBS - Bunching Black Spots, forming regions within 

the schedule points that should be adjusted. We want to highlight 

the following findings: 

 

 The high correlation between HD in distinct bus stops – 

one event in a given bus stop provoke an event on 

another one with a regularity sustained by a reasonable 

support and confidence; 

 The detection of BBS in the beginning of the routes 

demonstrated that HD that occurs in the beginning of the 

trips can have a higher impact into the occurrence of BB 

compared with events occurred in bus stops further. 

The main contributions of this work are: 1) to model the BB trip 

usual pattern like a frequent sequence mining problem; 2) to 

provide the operator the possibility to mitigate the BB in a given 

line by adjusting the timetables, instead of suggesting forced 

actions that can decrease schedule reliability and, consequently, 

reduce passengers’ satisfaction. 

The identified patterns are no more than alerts that suggest a 

systematic cause for the BB in the studied routes. This information 

can be used to improve the schedule. The goal is not to eliminate 

those events but just to mitigate them. Our future work consists in 

forecasting BB in a data stream environment based on AVL data. 

By using this approach, the BSS will be identified online as the 

data arrive in a continuous manner. This possibility will allow the 

use of control actions to avoid BB events that can occur even when 

the timetables are well adjusted, in order to prevent the majority of 

the potential BB occurrences. 

 

ACKNOLEDGMENTS 

We would like to thank STCP (Sociedade de Transportes 

Colectivos do Porto, S.A.) for the AVL historical data supplied to 

this work. We would also like to thank the support of the project 

Knowledge Discovery from Ubiquitous Data Streams (PTDC 

/EIA-EIA/098355/2008). 

REFERENCES 

[1] C. Gershenson, Pineda, L., "Why Does Public Transport Not Arrive 

on Time? The Pervasiveness of Equal Headway Instability," PLoS 

ONE, vol. 4, 2009. 

[2] C. Daganzo, "A Headway-Based approach to eliminate Bus 

Bunching.," Transportation Research Part B, vol. 43, pp. 913-921, 

2009. 

[3] J. Pilachowski, "An approach to reducing bus bunching.," PhD, 

Univ. of California, Berkeley, California, 2009. 

[4] J. Lin, Ruan, M., "Probability-based bus headway regularity 
measure," IET intelligent transport systems, vol. 3, pp. 400-408, 

2009. 

[5] L. Matias, J. Gama, J. Mendes-Moreira, and J. F. Sousa, "Validation 

of both number and coverage of bus Schedules using AVL data. ," 

presented at the ITSC'2010, Funchal, Portugal, 2010. 

[6] P. Newman, "Transit-Oriented Development: An Australian 

Overview.," Transit Oriented Development – Making it Happen, 

2005. 

[7] J. Strathman, Kimpel, T., Callas, S., "Headway Deviation Effects on 

Bus Passenger Loads:Analysis of Tri-Met’s Archived AVL-APC 

Data," 2003. 

[8] G. Bellei, Gkoumas, K., "Transit vehicles’ headway distribution and 

service irregularity," Public Transport, vol. 2, pp. 269-289, 2010. 

[9] G. Newell, Potts, R., "Maintaining a bus schedule," in 2nd Australian 
Road Research Board, 1964, pp. 388-393. 

[10] J. Zhao, Dessouky, M., Bukkapatnam, S., "Optimal Slack Time for 

Schedule-Based Transit Operations," Transportation Science, vol. 
40, pp. 529-539, 2006. 

[11] J. Strathman, Kimpel, T., Dueker, K., "Automated bus dispatching, 

operations control and service reliability.," Transportation 
Resesearch Record, vol. 1666, pp. 28–36, 1999. 

[12] R. Mishalani, "Passenger Wait Time Perceptions at Bus Stops: 

Empirical Results and Impact on Evaluating Real-Time Bus Arrival 
Information," Journal of Public Transportation, vol. 2, 2006. 

[13] F. Wang, "Toward Intelligent Transportation Systems for the 2008 

Olympics," IEEE Intelligent Systems, vol. 18, pp. 8-11, 2003. 

[14] V. Vuchic, "Transit Systems, Operations and Networks.," in Urban 

Transit, ed New York: Wiley, 2005. 

[15] R. Agrawal, Srikant, R., "Mining Sequential Patterns," presented at 
the Eleventh International Conference on Data Engineering, Taipei, 

Taiwan, 1995. 

[16] P. Jian, Han, J., Mortazavi-asl, B., Pinto, H., Chen, Q., Dayal, U., 
Hsu, M., "PrefixSpan: Mining Sequential Patterns Efficiently by 

Prefix-Projected Pattern Growth.," presented at the 17th International 

Conference on Data Engineering, Heidelberg, Germany, 2001. 

[17] TRB, "Transit Capacity and Quality of Service Manual. Transit 

Cooperative Research Program Web Document No. 6," presented at 

the Transportation Research Board - National Research Council, 
Washington, D.C., 1999. 

 

 

17


