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Abstract. Smart grids consist of millions of automated electronic
meters that will be installed in electricity distribution networks and
connected to servers that will manage grid supervision, billing and
customer services. World sustainability regarding energy manage-
ment will definitely rely on such grids, so smart grids need also to
be sustainable themselves. This sustainability depends on several re-
search problems that emerge from this new setting (from power bal-
ance to energy markets) requiring new approaches for knowledge
discovery and decision support. This paper presents a holistic dis-
tributed stream clustering view of possible solutions for those prob-
lems, supported by previous research in related domains. The ap-
proach is based on two orthogonal clustering algorithms, combined
for a holistic clustering of the grid. Experimental results are included
to illustrate the benefits of each algorithm, while the proposal is dis-
cussed in terms of application to smart grid problems. This holistic
approach could be used to help solving some of the smart grid intel-
ligent layer research problems, thus improving global sustainability.

1 INTRODUCTION
The Smart Grid (SG), regarded as the next generation power grid,
is an electric system that uses two-way digital information, cyber-
secure communication technologies, and computational intelligence
in an integrated fashion across heterogeneous and distributed elec-
tricity generation, transmission, distribution and consumption to
achieve energy efficiency. It is a loose integration of complementary
components, subsystems, functions, and services under the pervasive
control of highly intelligent management-and-control systems [4].

A key and novel characteristic of smart grids is the intelligent layer
that analyses the data produced by these meters allowing companies
to develop powerful new capabilities in terms of grid management,
planning and customer services for energy efficiency. The develop-
ment of the market with a growing share of load management incen-
tives and the increasing number of local generators will bring new
difficulties to grid management and exploitation.

1.1 Research problems
Power and current balance is major goal of all electricity distribu-
tion networks, given its impact on the need to produce, buy or sell
energy. Moreover, due to the fluctuating power from renewable en-
ergy sources and loads, supply-demand balancing of power system
becomes problematic [17]. Several intelligent techniques have been
proposed in the past that make use of the amounts of streaming data
that is available. As an example, Pasdar and Mahne (2011) proposed
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to use ant collony optimization on smart meters data to improve the
current balancing on low-voltage distribution network. Further re-
search could even take more advantages from smart grids if con-
sumption patterns could be extracted [14].

The energy market is changing to meet the global challenge of
power consumption awareness even at the lower household level [3].
New energy distribution concepts and the advent of smart grids has
changed the way energy is priced, negotiated and billed. We are
now in a world of hourly real-time pricing [1] which make use of
smart meters to overcome the need for demand prediction preci-
sion and, more important, demand prediction reliability [13]. Fur-
thermore, with the advent of micro-generation at household level, the
market expanded into multiplicity of energy buyers and energy sell-
ers. In this setting, new techniques to efficiently auction in the market
are required in order to make the smart grid smarter. Ramachandran
et al. (2011) developed a profit-maximizing adaptive bidding strategy
based on hybrid-immune-system-based particle swarm optimization.

1.2 Components and features

Smart grids are built on different sub-systems and present special
features that need to be attended. The sources of energy are hetero-
geneous (power plants, wind, sun, sea, etc) and might be intermittent.
A key characteristic of a SG is that it supports two-way flow of elec-
tricity and information: a user might generate electricity and put it
back into the grid; electric vehicles may be used as mobile batter-
ies, sending power back to the grid when demand is high, etc. This
backward flow is relevant, mainly in microgrids, where parts of the
system that might be islanded due to power failures. Following [4],
the three major systems in SG are:

• Smart infrastructure system that supports advanced and heteroge-
neous electricity generation, delivery and consumption. Is respon-
sible for metering information and monitoring, and information
transmission among of systems, devices and sensors.

• Management systems providing advanced management and mon-
itoring, grid topology and control services. The objectives are en-
ergy efficiency improvement, supply and demand balance, emis-
sion control, operation cost reduction, and utility maximization.

• Protection system providing grid reliability analysis, failure pro-
tection, security and privacy protection services.

1.3 Advantages and challenges

Some of the anticipated benefits of a SG include [4]:

• improving power reliability and quality;
• optimizing facility utilization and averting construction of back-

up (peak load) power plants;
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• enhancing capacity and efficiency of existing electric power net-
works, hence improving resilience to disruption;

• enabling predictive maintenance and self-healing responses to
system disturbances;

• facilitating expanded deployment of renewable energy sources;
• accommodating distributed power sources, while automating

maintenance and operation;
• reducing greenhouse gas emissions by enabling electric vehicles

and new power sources, thus reducing oil consumption by reduc-
ing the need for inefficient generation during peak usage periods;

• presenting opportunities to improve grid security;
• enabling transition to plug-in electric vehicles and new energy

storage options;
• increasing consumer choice, new products, services, and markets.

All these jointly lead to massive research problems that might be
tackled by artificial intelligence techniques. Some challenges where
machine learning can play a relevant role, include:

• The reliability of the system supports itself on millions of meters
and other devices that require online monitoring and global asset
management [2].

• Real-time simulation and contingency analysis of the entire grid
have to be possible. However, not all operations models currently
make use of real-time data [8].

• Interoperability issues that arise from the integration of distributed
generation and alternate energy sources [17].

• The heterogeneity and volatility of smart grids require mecha-
nisms to allow islanding [9] and self-healing [2].

• Finer granularity in management leads to strong demand response
requirements [7] and dynamic pricing strategies [1].

2 THE DATA MINING POINT OF VIEW
Present SG monitoring systems suffer from the lack of machine
learning technologies that can adapt the behavior of monitoring sys-
tems on the basis of the sequence patterns arriving over time. From
a data mining point of view, a smart grid is a network (eventually
decomposable) of distributed sources of high-speed data streams.

Smart meters produce streams of data continuously in real-time. A
data stream is an ordered sequence of instances that can be read only
once or a small number of times [6, 10], using limited computing and
storage capabilities. These sources of data are characterized by being
open-ended, flowing at high-speed, and generated by non stationary
distributions.In smart grids the dynamics of data are unknown; the
topology of network changes over time, the number of meters tends
to increase and the context where the meter acts evolves over time.

In smart grids, several knowledge discovery tasks are involved:
prediction, cluster (profiling) analysis, event and anomaly detection,
correlation analysis, etc. However, different types of devices present
different levels of resources and care should be taken in data mining
methods that aim to extract knowledge from such restricted scenar-
ios. All these characteristics constitute real challenges and oppor-
tunities for applied research in ubiquitous data mining. Generally,
the main features inherent to ubiquitous learning algorithms are that
the system should be capable of process data incrementally, evolving
over time, while monitoring the evolution of its own learning process
and self-diagnosis this process. However, learning algorithms differ
in the extent of self-awareness they offer in this diagnosis. .

One of the most popular knowledge discovery techniques is clus-
tering, the process of finding groups in data such that data objects
clustered in the same group are more alike than objects assigned

to different groups [6]. There are two different clustering problems
in ubiquitous and streaming settings: clustering sensor streams and
clustering streaming sensors. The former problem searches for dense
regions of the data space, identifying hot-spots where sensors tend to
produce data, while the latter finds groups of sensors that behave sim-
ilarly through time [15]. We identify two different settings for clus-
tering problems in smart grids. In the first setting a cluster is defined
to be a set of sensors (meters, households, generators, etc.). In the
second setting, a cluster is defined to be a set of data points (demand,
supply, prices, etc.) generated by multiple sources.

2.1 Research on clustering electrical networks
Several real-world applications use machine learning methods to ex-
tract knowledge from sensor networks. The case of electricity load
demand analysis is a paradigmatic one that has been (and continues
to be) studied. Sensors distributed all around electrical-power distri-
bution networks produce streams of data at high-speed. Three major
questions rise: a) can we define consumption profiles based on simi-
lar sensors? b) can we find global patterns in network consumption?
and c) can we manage the uncertainty in sensor data?

To efficiently find consumption profiles, clustering techniques
were applied to the streams produced by each sensor, either hier-
archically at a central server [16] or distributed in the network [15].
Although the problem is still very hard to model, given the dimen-
sionality of the networks at stake, the incremental systems evolved
and adapt to changes in the data, bridging the gap to future paths
of research. Regarding global network patterns, related research has
resulted in a system that distributes the clustering process into lo-
cal and central tasks, based on single sensor data discretization and
centralized clustering of frequent states [5]. But data and models are
both uncertain. For example, if a sensor reads 100, most of times it
could be 99 or 101. This uncertainty has been tackled by reliability
estimators and improved predictions using those estimates [13], but
reliability for clustering definitions is still uncharted territory.

2.2 Clustering as a smart grid problem solver
In this work we argue that major smart grids problems previously
enunciated can and should be addressed as unsupervised machine
learning problems.

Power balance Power balance is the most basic-level problem that
smart grids need to solve before anything else. The strongest re-
quirement is that energy is available in the entire network. Hence,
clustering the data and sources together to find hot-spots can de-
tect specific points of danger in the network.

Multiple alternate sources In smart grids, supply and demand
must be leveled across multiple alternate sources. Hence, com-
bining clustering definitions for power demand and power supply
should give indications on how to better level the sources.

Contingency analysis Contingency analysis tries to produce detec-
tion and reaction mechanisms to specific unexpected problems.
Hence, monitoring the evolution of clusters of nodes, should help
on detecting drifting sources of demand or supply.

Islanding Islanding is a concept that is directly connected with clus-
tering, in the sense that it searches for subnetworks where de-
mand and supply are leveled. Hence, local distributed clustering
of sources and data should produce the expected definitions.

Self-healing Self-healing relates to the ability to rearrange and
adapt the network on-the-fly to meet unexpected changes. Hence,
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ad-hoc distributed clustering of sources, independently from a
centralized server, should produce procedures for self-healing.

Online monitoring and asset management These features are
strongly connected with incremental learning and adaptation of
learned models. Hence, incremental models for sources and data
clustering, and their evolution, should provide basic information.

Dynamic energy pricing Energy pricing largely depends on supply
and demand balance. Hence, clustering power demand and supply
together with buy and sell prices, should give insights on prospec-
tive energy pricing.

3 HOLISTIC DISTRIBUTED CLUSTERING

The smart grid produces different types of data, on each source (node
or subnetwork), which must be taken into account: power demand,
power supply, energy sell price, energy buy price. As previously
stated, two clustering problems exist: clustering data and clustering
data sources. This way, each node might be assigned to a cluster on
(at least) eight different clustering definitions. For all problems, there
is a common requirement: each node (meter) should process locally
their own data. Only aggregated data should be shared between the
different nodes in the grid.

From the previous section it became clear that a holistic approach
to clustering in smart grids is needed and should produce benefits
to energy sustainability. In this section we present such a proposal,
based on two existing works on stream clustering (L2GClust and
DGClust) and their prospective integration in a multi-dimensional
clustering system. Next sections present the original clustering algo-
rithms, their application to electricity demand sensor data streams,
and how they could be merged into a holistic clustering system.

3.1 L2GClust: Distributed clustering of grid nodes

Clustering streaming data sources has been recently tackled in re-
search, but usual clustering algorithms need the data streams to be
fed to a central server [15]. Considering the number of sensors possi-
bly included in a smart grid, this requirement could be a bottleneck.
A local algorithm was proposed to perform clustering of sensors on
ubiquitous sensor networks, based on the moving average of each
node’s data over time [15]. L2GClust has two main characteristics.
On one hand, each sensor node keeps a sketch of its own data. On the
other hand, communication is limited to direct neighbors, so cluster-
ing is computed at each node. The moving average of each node is
approximated using memoryless fading average, while clustering is
based on the furthest point algorithm applied to the centroids com-
puted by the node’s direct neighbors. This way, each sensor acts as
data stream source but also as a processing node, keeping a sketch of
its own data, and a definition of the clustering structure of the entire
network of data sources.

Global evaluation of the L2GClust algorithm on synthetic data re-
vealed high agreement with the centralized, yet streaming, counter-
part, being especially robust in terms of cluster separability. Also, for
stable concepts, empirical evidence of convergence was found. On
the other hand, sensitivity analysis exposed the robusteness of the
local algorithm approach. Figure 1 shows that agreement levels are
robust to an increase on the number of clusters, being, however, a bit
more sensitive with respect to network size and cluster overlapping.
Nonetheless, the robusteness to network communication problems is
exposed, as the proportion of agreement is harmed only for high lev-
els of communication incompleteness.
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Figure 1. L2GClust: sensitivity of κ̂ statistic to the number of sensors (d),
for different number (k) and overlap (s) of clusters. Bottom plot presents the

impact of communication incompleteness on average proportion of
agreement for 5 clusters in a 128 sensor network.

One important task in electrical networks is to define profiles
of consumers, to better predict their behavior in the near future.
L2GClust was applied to a sample of an electrical network to try
to find such profiles. From the raw data received at each sub-station,
observations were aggregated on a hourly basis over more than two
and a half years [14]. The log of electricity demand data from active
power sensors was used to check whether consumer profiles would
rise. The log has hourly data from a subsample (780 sensors) of the
entire data set (∼4000 sensors). Since no information existed on the
actual electricity distribution network, the simulator used this dataset
as input data to a random network and monitored the resulting clus-
tering structures. Unfortunately, real data is never clean, and half of
the sensors have more than 27% missing values, which naturally hin-
dered the analysis. Given this, and the dynamic nature of the data,
no convergence was possible in the clustering structures. However,
we could stress that, as more data is being fed to the system, better
agreement can be achieved with the centralized approach, as exposed
in Figure 2. Hence, not only does the agreement tend to increase with
more observations, but also changes on the clustering structure are
apparently possible to detect. L2GClust presented good characteris-
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Figure 2. L2GClust evolution of clustering agreement (probability of
agreement and κ̂ statistic) for a real active power sensor data log.
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Figure 3. DGClust: impact of the number of sensors on loss to real
centroids (top) and communication reduction (bottom) [5].

tics to find clusters of sensors in wide networks such as smart grids.

3.2 DGClust: Grid clustering of grid data streams
Clustering data points is probably the most common unsupervised
learning process in knowledge discovery. In ubiquitous settings,
however, there aren’t many tailored solutions to try to extract knowl-
edge in order to define dense regions of the sensor data space. Clus-
tering examples in sensor networks can be used to search for hot-
spots where sensors tend to produce data. In this settings, grid-based
clustering represents a major asset as regions can be, strictly or
loosely, defined by both the user and the adaptive process [5]. The ap-
plication of clustering to grid cells enhances the abstraction of cells
as interval regions which are better interpreted by humans. More-
over, comparing intervals or grids is usually easier than comparing
exact points, as an external scale is not required: intervals have in-
trinsic scaling. The comprehension of how sensors are interacting in
the network is greatly improved by using grid-based clustering tech-
niques for the data examples produced by sensors.

The Distributed Grid Clustering (DGClust) algorithm was pro-
posed for clustering data points produced on wide sensor net-
works [5]. The rationale is to use: a) online discretization of each
single sensor data, tracking changes of data intervals (states) instead
of raw data (to reduce communication to central server); b) frequent
state monitoring at the central server, preventing processing all possi-
ble state combinations (to cut computation); and c) online clustering
of frequent states (to keep high validity and adaptivity). Each local
sensor receives data from a given source, producing a univariate data
stream, which is potentially infinite. Therefore, each sensor’s data is
processed locally, being incrementally discretized into a univariate
adaptive grid. Each new data point triggers a cell in this grid, reflect-
ing the current state of the data stream at the local site. Whenever
a local site changes its state, that is, the triggered cell changes, the
new state is communicated to a central site. Furthermore, the cen-
tral site keeps the global state of the entire network where each local
site’s state is the cell number of each local site’s grid. Nowadays, sen-
sor networks may include thousands of sensors. This scenario yields
an exponential number of cell combinations to be monitored by the
central site. However, it is expected that only a small number of this
combinations are frequently triggered by the whole network, so, par-
allel to the aggregation, the central site keeps a small list of counters
of the most frequent global states. Finally, the current clustering defi-
nition is defined and maintained by an adaptive partitional clustering
algorithm applied on the frequent states central points.

To evaluate the sensitivity of the system to the number of sensors,
synthetic data was used and the average result for a given value of
granularity (w), averaged over all values of number of frequent states
to monitor (m, as loss seemed to be only lightly dependent on this
factor) was analyzed. In figure 3 we note no clear trend, strengthen-
ing the evidence of robusteness to wide sensor networks. Regarding
communication reduction when compared with centralized cluster-
ing, figure 3 also shows that the amount of communication reduction
does not depend on the number of sensors. This way, the benefits of
reduced transmission rates are extensible to wide sensor networks.

3.3 HDClust: Holistic Distributed Clustering

The two algorithms previously exposed are designed for streaming
data, and work with reduced computational costs in terms of memory
and communications bandwidth. They present strong characteristics
that could be even improved if used together. In L2GClust, each sen-
sor node each node has an approximation of the global clustering. In
DGClust, a centralized site maintains the global cluster structure of
the entire network at reduced communication costs. The main idea of
the Holistic Distributed Clustering (HDClust) is to integrate the local
distributed approach of L2GClust, with the grid data clustering ap-
proach of DGClust, in order to achieve the holistic clustering of data
and sources on sensor networks such as smart grids. Specifically, for
each measured dimension:

• each local node (meter) keeps a sketch of its own data streams (as
in L2GClust) and a local discretization grid (as in DGClust);

• communication is restricted to the neighborhood (as in L2GClust);
• at regular intervals, each local node receives from its neighbors

the estimates of the clusters centroids (as in L2GClust) and the
current data discretized grid cell (as in DGClust);

• each node keeps an estimate of the global clustering of nodes by
clustering neighbors’ centroids (as in L2GClust);

• each node keeps a frequent state list and maintains a clustering of
the most frequent states (as in DGClust) from the neighbors;
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Figure 4. HDClust schema to be applied at each node, for each included
dimension. Left branch applies L2GClust while right branch applies

DGClust using data from the neighbors, each node acting also as central
clustering agent. Both clustering definitions are then combined and

integrated with other measured dimensions.

• to link clustering of sources with clustering of data, each node also
receives from the neighbors their self assignment to a cluster.

In the resulting cluster structure, each sensor maintains C clusters of
data sources, and K clusters of data points.

In a smart grid context, and taking advantage of the decomposable
property of the grid network (microgrids), L2GClust and DGClust
can work together. Assume a microgrid of D sensors, and 4 dimen-
sions or quantities of interest: power demand, power supply, energy
sell price and energy buy price. The resulting HDClust, the network
is summarized by C clusters of data sources, and K clusters of data
points, for each quantity of interest. In real-time and at each moment,
each sensor is in a state 〈ci, ki〉 in each dimension. Figure 4 presents
the global schema for a holistic approach to clustering, to be applied
at each node of a smart grid. The combination of the characteristics
both algorithms seems not only possible, but extremely relevant as
complementary knowledge discovery in a holistic view of the grid.

4 REMARKS AND FUTURE PATHS
Smart grids are a paradigmatic example of ubiquitous streaming data
sources. Data is produced at high speed, from a dynamic (time-
changing) environment. Meters are geographically distributed, form-
ing a network. On top of clustering algorithms, several tasks can

be computed: profiling, anomaly and event detection, outliers de-
tections, trends, deviations, etc. In this paper, we have discussed
distributed clustering algorithm for data streams produced on wide
sensor networks like smart grids. Furthermore, we have shown how
smart grid problems can be addressed as clustering problems, and
proposed a holistic approach to better extract knowledge from the
grid. We believe that this holistic approach could be used to help
solving some of the smart grid intelligent layer research problems.
Current research focus on the integration of both algorithms into the
schema and its evaluation on real-world electrical networks data.
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