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Abstract.
of wind ramp events occurring in a large-scale wind farm tedan
the US Midwest. In this paper we introduce the SHREA framéwar
stream-based model that continuously learns a discrete Hihdkliel

The motivation for this work is the study and prediction parameters are estimated from historical data, the statsitions

probabilities are estimated from wind power measurememtstiae
emission probabilities, at each state, are estimated fromd speed
observations. To estimate the state probability transstidirst, we

from wind power and wind speed measurements. We use a supecoembine a ramp filter, a derivative alike filter, and a usdiree

vised learning algorithm to learn HMM parameters from disized

data, where ramp events are HMM states and discretized \pits
data are HMM observations. The discretization of the histébidata
is obtained by running the SAX algorithm over the first orderia-

tions in the original signal. SHREA updates the HMM usingriast

recent historical data and includes a forgetting mechamismodel

natural time dependence in wind patterns. To forecast rarapte
we use recent wind speed forecasts and the Viterbi algorithat

incrementally finds the most probable ramp event to occur.

threshold to translate the real-valued wind power timeeseinto
a labeled time-series, coding three different types of rawgnts:
ramp-up, no-ramp and ramp-down. Then, the transitionsraogu
in this labeled time series are used to estimate the transitf the
Markov process hidden in the HMM, i.e., to model the trapsisibe-
tween the three states associated with the three types pfeaamts.
To learn the HMM emission probabilities, first we combine mpa
filter and the SAX algorithm [9] to translate the wind speedmee-
ments signal into a string. Next we use both the wind powesl&b

We compare SHREA framework against Persistence baseline itime series and the wind speed string to estimate the emipsaba-

predicting ramp events occurring in very short-time hanzo

1 Introduction

Ramping is one notable characteristic in a time series &gsdovith
a drastic change in value in a set of consecutive time steypspiop-
erties of a ramping event i.e. slope and phase error, arertergo

from the point of view of the System Operator (SO), with impor regimes and continuously updates the HMM with the most riecen
measurements, both wind power measurements and wind sgeed m

tantimplications in the decisions associated with unitgotment or
generation scheduling. Unit commitment decisions mugtgmesthe
generation schedule in order to smoothly accommodate deted
drastic changes in wind power availability [2]. In this papee
present SHREA a novel stream-based framework that predicts-
ing events in short term wind power forecasting.

bilities at each state. The estimative is obtained by cagritie string
symbols, coding wind speed variations, associated withengtate/
ramp event.

When we analyze wind power historical data we observe bath se

sonal weather regimes and short-time ahead dependencaerettmt
past wind power/speed measurements. Thus, to accommbesie t
issues, in SHREA we included a strategy that forgets old kezat

surements.

To generate ramp event predictions occurring in short-timead
window we use the wind speed forecast, obtained from a majéPN
provider, and the current HMM. First, we run a filter over thimdv
speed forecast signal to obtain a signal of wind speed i@m&t

The development of the SHREA framework is the answer to thenext, we run the SAX algorithm to translate the resultind-tedued

three main issues available in ramp event forecasting. Howvee
describe and get insights on the wind power, and wind spéad; t
dependent dynamic and use this description to predict -simoet
ahead ramp events? How can we combine real valued histaiiical

time series into a string. Then, we run the Viterbi algoritfir3] to
obtain the most likely sequence of ramp events. We could huse t
Forward-Backward algorithm [12] usually used to estimateos-
terior probability but we would be using long time ahead sthare-

power and speed measurements and Numerical Weather Ryaslict |iable, wind speed forecasts to predict current ramp events

(NWP), specially wind speed predictions, to output rekatalal-time

It is important to observe that wind speed measurements and

predictions? How can we continuously adapt SHREA to accommoforecasts, mainly short time horizon predictions, are agipnately

date different natural weather regimes yet producing loédiaredic-
tions?

To answer these questions we designed a stream-based fvekmew

that continuously learns a discrete Hidden Markov Model (M
and uses it to generate predictions. To learn and updateliié the

equally distributed over time. Moreover, the wind powerpuitof
each turbine is related to wind speed measurements.

In this work we run the SHREA framework to describe and priedic

very short-time ahead ramp events occurring in a largesseaid

farm located in the US Midwest. We present a comparison again

SHREA framework uses a supervised strategy whereas the HMMhe Persistence model that is known to be hard to beat in-huet
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forecasts [10].

Despite the difficulty of the ramp forecasting problem, iis tiork
we make the following contributions: Develop a stream-tdseme-
work that predicts ramp events and generates both deserigtid



100

according to the specific features of the wind farm site asdally,
is defined as a percentage of the nominal wind power capaciy o
[ RAMPS | specified amount of megawatts.
A comprehensive analysis of ramp modeling and predictiog ma
: 5 ) 2 a be found in [2].

Power (i capacity)

results are presented that relate this parameter to theatyphenag-
/@\ nitude of identified ramps. Th&,..; parameter is usually defined
M\

Algorithm 1: SHREA: a stream-based ramp predictor

Flgure 1: lllustration of ramp events, defined as a Change of at in input : Three time series?» , wind power measurement8; , wind speed measurements; ahg , wind

power in an interval of 4 hours Speed forecasts; , the forecast horizonP,.., ¢ , threshold to identify ramp events ¢, the ramp

definition parameteri/, the PAA parameter that specifies the amount of signal agticegar, a
forgetting factor

output: A sequence of predictio@ﬁ A Qf+a for each period/windowl = 1, . ..
cost-effective modelg; Introduce a forgetting mechanlsrths_it we countTimePeriods « 0 flag « 0 ACOUNt (g peount g,
can learn a HMM using only the most recent weather regimes; Us o each perodiindowd do - as + +

- . . . Preprocessing
wind speed forecasts as observations of a discrete HMM ftigire P« fispline@), 08 « fispineod), 3¢ < fispineq)

Short'time ahead I‘amp eVentS. P‘fi — rampDef(Pg,At),U‘fi — rampDeng,At),‘]I‘% — rampDefﬂJg,At)
In the next Section we introduce the ramp event forecastg@mob L4« labelfd, P,.., ;); i Label Data

In Section 3 we present a detailed description of our franmlkewo 0« znom@}), 3¢ znom)

In Section 4 we present and discuss the obtained results. was ?e%tr:]*s‘l;)eﬁ:éz:’x%g))"U‘thr — SAX(PAA(ITE,)

present some conclusions and present future researchiaiiec ™ 4 u
6(LY(r) = rampDown), §(LY(r) = noramp), §(LY(r) = rampUp))
(A, B, 7) « LeanHMM©O%,, (1, ..., ™). L4, ..., ™) Acount Beount)

. .. 3 Predict Ramp Events using the learned HMM
2 Ramp Event Definition and Related Work Q. ..Qd, , « Viterbi(h, 0F%y, (r +1,..., 7+ a))
. . . i . A4(A, B, 7) + updateHMMO %, (r + 1, .. ). LA (r + 1,...))
One of the main problems in ramp forecasting is how to define a Forgeting mechariem
. . e It (countTimePeriods==" en
ramp. In fact, there is no standard definition [7, 3, 8] andasm L AZYE ¢ — Acounts BELE,t « Beount flag + 1
all existing literature report different definitions, depkng, for in- e e ot aa® o ot « Beount — BOUT

stance, on the location or on the farm’s size. L
The authors in [5] and [11] define several relevant charister

tics for ramp definition, characterizgtion and identi_fioatito define 3 Methodology developed to Forecast Ramps

a ramp event, we have to determine values for its three key cha

acteristics: direction, duration and magnitude (see Eigyr With  In this section we present SHREA framework, a stream-baseuk-

respect to direction there are two basic types of ramps: pmeard ~ Work that uses a supervised learning strategy to obtain a HMM

ones (or ramp-ups), and the downward ones (or ramp-dowhs). T SHREA continuously learns a discrete HMM on a fixed size non-

former, characterized by an increase of wind power, resatnfa  overlapping moving window and, at each time period, usesiffe

rapid raise of wind speeds, which might (not necessarilyjiieto ~ dated HMM to predict ramp events. We introduce a forgettiregim

low-pressure systems, low-level jets, thunderstormsgdwgusts, or ~ anism to forget old wind regimes and to accommodate weatbkal

other similar weather phenomena. Downward ramps are dudée a changes. The SHREA architecture has three main steps @ee al

crease in wind power, which may occur because of a sudder-depl fithm pseudo-code in Algorithm 1): preprocessing phasesresta

tion of the pressure gradient, or due to very high wind spets ramp filter and the SAX algorithm are used to translate reliech

lead wind turbines to reach cut-out limits (typically 22r2/5) and ~ signals into events/strings; learning phase, where a sisgel strat-

shut down, in order to prevent the wind turbine from damagelfd gy is used to learn a HMM; and prediction phase, where theriit

order to consider a ramp event, the minimum duration is asgum  algorithm is used to forecast ramp events. In the followingd we

be 1 hour in [11], although in [7] these events lie inintesvad 5to  describe each one of these phases.

60 minutes. The magnitude of a ramp is typically represebyeithe

percentage of the wind farm’s nominal power - nameplate. 3.1 Preprocessing In the preprocessing phase we translate the
In [7] the authors studied the sensitivity of two ramp defamis  real-valued points occurring in a given time perigd.e. occurring

to each one of the two parameters introduced above: ramptadel  inside a non-overlapping fixed size window, into a discréteet

ranging from150 to 600MW and ramp duration values varying be- series suitable to be used at HMM learning and predictio tifirst,

tween5 and 60 minutes. The definition that we present and use inwe fit a spline to both the wind power and wind speed measursmen

this work is similar to the one described in [7]. It is more eqpi- time series obtaining, respectively, two new sign&sand0?. We
ate to use in real operations since it does not considerseadhead  run the same procedure o\vEtime series, a wind speed forecast, and
point to identify a ramp event. obtainJ<¢. We fit splines to the original data to remove high frequen-

o ] ) ) ) cies that can be considered noisy data. Second, we run rainp de
Definition 1 A ramp event is considered to occur at time pairthe tion one, presented above in Section 2, to filter the threeotined
end of an interval, if the magnitude of the increase or deseda the  sjgnals and obtain three new signdl¢, 0 andJ¢. These signals

power signal is greater than the threshold value, fhey: are wind power and speed variations, derivative alike siysaitable
to identify ramp events. Third, we use a user-defined powgava
|P(t) — P(t — At)| > Preg tion threshold, the input paramet&. ; value, to translate the wind
power signalP} into a labeled time serie&®(1,...,r +a), wherel

The parameteAt is related to the ramp duration and defines theis the first point of the time window, is the forecast launch time and
size of the time interval considered to identify a ramp. Iri][dome  ais the time horizon. We map each wind power variation into ane
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three labels/ramp events: ramp-up, ramp-down and no-rahgse
three labels will be the three states of our HMM and the ttaorss
will be estimated using the points of ti¢ time series.

At this point we already have the data needed to estimatedghe t
sitions of the Markov process hidden in the HMM process. Nav w
need to transform wind speed data into a format suitabletimate
emission probabilities of the discrete HMM that we are lgagnWe
combine Piecewise Aggregate Approximation (PAA) and SAgoal
rithms [9] to translate the wind speed variations into sylichtime
series, more precisely. Thus, we normalize the two wind &g
nals and obtai®?¢ andJ¢ signals.0¢ will be used to estimate the
HMM emission probabilities and thE will be used as the ahead ob-
servations that will be used to predict ramp events. Nextumethe
PAA algorithm in each one of these signals to reduce contylexid,
again, obtain smoothed signals. The degree of signal casipreis

come less sensitive to new weather regimes. Thus we intecal frwr-
getting strategy to update the HMM using only the most reoesd-
surements and forgetting the old data. This strategy refiesthresh-
old that specifies the number of time periods to include inHMM
estimation. This forgetting parametert,is a user-defined value that
can be set by experienced wind power technicians. Consigiénat
at time periodd we have read time periods and that we backup the
current counts inted?}y,, and BZ. , temporary matrices. After
reading2o time periods we will use the following forgetting mecha-
nism:Aggunt = Aggunt - Azngnt andegunt = Bzgunt - g:’u,znt'
Then, we resed®“% . and B4*,, equal to the updated?,,,, and
B29,.. matrices, respectively. Next, to predict ramp events gouyir
in the time periods followin@o, we will update and use the HMM
parameters obtained from th&9,,,., and B22,,,, to forecast ramp
events. Every time we read a number of time periods that squal

the W PAA parameter that is a user-defined parameter of SHREAmultiple of o we apply this forgetting mechanism using the updated

This parameter is related with time point aggregation. Nenxt run
the SAX algorithm to map each PAA signal into string symb®dlsis
way we obtain two discrete signaly,,. andJ%,,.. After the prepro-
cessing phase we have two discrete time sefiésnd0¢?,,. that will
be used to learn the HMM state transitions and emissionsapitdb

ties, respectively.

3.2 Learn a Discrete HMM  Here we explain how do we learn the
HMM in the time periodd, and then how we update it in time.

In the HMM that we learn, compactly written(A, B, ), the
state transitions, thel parameter, are associated with wind power
measurements and the emissions probabilitiesRiparameter, are
associated with wind speed measurements. In Figure 2 we ahow

auxiliary matrices.

3.3 Predict Ramp Events using the learned HMM In this step

we use the HMM learned in time periaf] the A%, and the string
J4,.., obtained from wind speed forecasts, to predict ramp events f
the time points ranging from to » + a. Remember that is the
prediction launch time and is the forecast horizon.

To obtain the ramp event predictions we run the Viterbi algo-
rithm [12]. We feed this algorithm witfi¢,,. and\? and get the state
predictions (the ramp event®?, ,,...,Q¢,, for the time points
r+1,...,7 + a of time periodd. Saying it in other way we obtain
predictions for the points occurring in a non overlappingéiwin-
dow starting at and with length equal ta. We will obtain the most

HMM learned by SHREA at the end of the 2010 winter. To estimate|ike|y sequence of states that best explains the obsengti®., we

these two parameters we use the ramp laligl$], . . ., r), and the
wind speed mesurements signﬁlﬂw(L ...,7), and run the well-
known and straightforward supervised learning algoritheaatibed
in [12]. To estimate the transition probabilities betwetates, the
three-way matrix4, we count the transitions between symbols ob-
served inL%(1,...,r) and compute the marginals to estimate the
probabilities. To estimate the emission probabilities éach state,

will obtain a sequence of stat€, ,, . .., Q%, , that maximizes the
probability P(Q¢ 1, ..., Qo |Jd i1, ... T80, AY).

Regarding ther parameter, we introduce a non classical approach
to estimate this parameter. We defined this strategy aftegretng
that it is almost impossible to beat a ramp event forecaktdrgre-
dicts the ramp event occurring one step ahead to be the twioen
served ramp event. Thus, we seto be a distribution having zero

the matrix B, we count, for each state, the observed frequency ofprobability for all events except the event observed atdauime,

each symbol and then use state marginals to compute thehilioba
ties. This way, we obtain the maximum likelihood estimatéath
the transitions and the emission probability matrices.

We now explain how to update the model in the time. We de-
sign our framework to improve over the time with the arriviofy
new data. At each time periaél SHREA is fed with new data and
the HMM parameters are updated to include the most recetarhis
ical data. At each time periodl we update the HMM parameters by
counting the state transitions and state emissions cod#dtinur-
rent vector0?,,.(1,...,r)andL(1,. .., r), obtaining the number
of state transitions and emissions at each HMM statedthe,: and
Beount- Then, we compute the marginal probabilities of each matrix
and obtain the updated HMM, the moaél(A?, B¢, %) that will be
used to predict ramp events. The learned HMI¥, will be used to
predict ramp events occurring betweeandr + a. In the next time
period (i.e. the next fixed sized time window) we will update A¢
HMM, using this same strategy but including also the tramsg and
emissions of the time periatithat were not used to estima)té, i.e.,
we updateAcount and Beoun: With the wind measurements of the
time periodd occurring afte’s launch time and beforé+ 1 period
launch time, the- point. By using this strategy we continuously up-
date the HMM to include both the most recent data and all otd.da
By using this strategy, and with the course of time, the HMM ba-
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the r time point. In the pseudo code we write < (5(L%(r) ==
rampDown),§(L%(r) == noramp),5(L%(r) == rampUp),)
whered is a Dirac delta function defined Byz) = 1, if z iSTRUE
andd(z) =0, if zis FALSE.

4 Experimental Evaluation

In this section we describe the configurations, the metrics
and the results that we obtain in our experimental evaloatio

Table
Costs

1. Misclassification

Observed
down | no
0 10
20 0
100 | 30

down
no
up

Predicted

Figure 2: Winter HMM



Table 2 KSS, SS and Expected Cost Mean and standard deviationeidash100 days of the evaluation period

SHREA

Persistence

At=1 At=2

Metric

A8 At=1 At=2 At=3

phE=0 phE=1 phE=2 phE=0 phE=1

phE=2

phE=0 phE=1 phE=2

KSS | 0.144(0.002)

0.332(0.000)

0.446(0.002)

0.144(0.002) | 0.332(0.001)| 0.446(0.002)

30min | SS 0(0) - 0(0) -

0(0)

ECost - -

3.129(0.016) 4.176(0.027)

4,04(0.019) 3.129(0.02) | 4.176(0.03) | 4.041(0.02)

KSS

0.152(0.001) | 0.202(0.002 0.278(0.001)] 0.314(0.204)

0.369(0.001)] 0.417(0.001) 0.127(0.009)| 0.203(0.001)] 0.343(0.001)

60 min SS

Time ahead

0.028(0.001) | 0.085(0.002 0.094(0.00) | 0.139(0.001)

0.038(0.001)| 0.113(0.001) =

ECost | 2.312(0.18) | 2.107(0.014 3.860(0.39) | 3.719(0.39)

4.374(0.61) | 4.108(0.61) 8.731(0.99) | 14.687(1.50)| 16.104(1.63)

KSS | 0.123(0.000) | 0.185(0.001)] 0.231(0.002)] 0.193(0.001)] 0.240(0.001)

0.296(0.002)

0.271(0.001)] 0.316(0.001)] 0.345(0.001)] 0.101(0.001)] 0.163(0.002)] 0.258(0.002)

90 min | SS_| 0.0244(0.002)| 0.093(0.001)| 0.145(0.001)| 0.035(0.001)| 0.091(0.002)

0.159(0.001)

0.018(0.001)| 0.079(0.001)

ECost | 2.089(0.013) | 1.938(0.012)| 1.807(0.010)| 4.252(0.08) | 4.028(0.025)

3.728(0.024)

(
0.118(0.001)
(

5.165(0.025)| 4.893(0.023)| 4.677(0.025)| 3.204 (0.030

6.112(0.042)| 6.763(0.050)

4.1 Experimental Configuration Our goal is to predict ramp
events in a large-scale wind farm located in the US Midwest. T
evaluate our system we collected historical data and, toenpa&-
dictions, use wind speed power predictions (NWP) for thestpre-
riod ranging between 3rd of June 2009 and 16th of Februar®.201
Each turbine in the wind farm has a Supervisory Control anthDa
Acquisition System (SCADA) that registers several paramsgtin-
cluding the wind power generated by each turbine and theumegs
wind speed at the turbine, the latter are 10 minute spaced p@a-
surements. In this work we consider a subset of turbines and c
pute, for each time point, the subset mean wind power outpdt a
the subset mean wind speed, obtaining two time series ofureas
ments. The wind speed power prediction for the wind farmtioca
was obtained from a major provider. Every day we get a wineédpe
forecast with launch time at 6 am and having 24 hours horizoe.
predictions are 10 minute spaced point forecasts. In thik we

4.2 Results This work is twofold and here we present and ana-
lyze both the descriptive and predictive performance ofSREREA
framework.

In Figure 2 we present an example of HMM generated by SHREA
in February. This model was learned when running SHREA te pre
dict 90 minutes ahead events and setting = 2. This HMM has
three states, each state is associated with one ramp typaaah
state emits six symbols, each representing a discrete timeabb-
served wind speed. The lower level of wind speed is assatisiti
thea character and the higher level of wind speed is associatéd wi
the f character. The labels in the edges show the state emissidns a
the state transition probabilities.

The HMM models that we obtained in our experiments uncover
interesting ramp behaviors. If we consider all the data lise¢bese
experiments, when we sét¢ = 1 we found that there were de-
tected7% more ramp-up events than ramp-down events. When we

run SHREA to forecast ramp events occurring 30, 60 and 90 minset At = 3 we get the inverse behavior, we g€t more ramp-

utes ahead, the parameter. We start by learning a HMM using five

downs than ramp-ups. This behavior is easily explained byniind

days of data and then use the learned, and updated, HMM to gematural dynamics that causes steepest ramp-up events aathsm

erate predictions for each fixed size non overlapping timedoiv.
Moreover, we split the day in four periods and run SHREA tarea
four independent HMM models: dawn, period ranging betwesn z
and six hours; morning, period ranging between six to twalwers;
afternoon, period ranging between twelve and eighteenshoigh,
period ranging between eighteen and midnight. The lastrfadels
were only used to give some insight on the ramp dynamics ane we

ramp-down events. If we analyze independently the fourogerof

the day we can say that we have a small nhumber of ramp events,
both ramp-ups and ramp-downs, in the afternoon. If we coenthe
mean number of ramps, for all¢ parameters we get approximately
30%(15%) more ramp-up(ramp-down) events at night than in the af-
ternoon. Overall, we can say that we get more ramp eventght ni
and, in second place, at the dawn period. Moreover, we cathsay

not used to make predictions. We define a ramp event to be gehanin the summer we get, both for ramp-up and ramp-down eveins, w

in wind power production higher tha20% of the nominal capacity,
i.e., we set theP,.; threshold equal t@0% of the nominal capacity.
Moreover, we run a set of experiments by settxgparameter equal
to 1, 2 and 3 time points, i.e., equal to 30, 60 and 90 minutesruN
SHREA using thirty minute signal aggregation, thus eacle oint
represents thirty minutes of data. In these experimentsiszecan-
sider phase error corrections. Phase errors are errorsdoafsting
ramp timing [5]. We identify events that occur in a timestammot
predicted at that time, but predicted instead to occur in onéwo,
time periods immediately before or after

speed distributions with higher entropy, we get approxatyat5%

of the probability concentrated in two observed symboldfelbent
from this behavior, in the winter we have less entropy in thedwv
speed distribution associated with both types of ramp svéntthe
winter we have approximatel91% of the probability distribution
concentrated in the one symbol. The emission probabiliyridu-
tion of the ramp-down state is concentrated in synaenhd the emis-
sion probability distribution in the ramp-down state is centrated

in symbol f. These two findings are consistent with our empirical
visual analysis and other findings [4]: Large wind ramps teEndc-

Furthermore, as SHREA is continuously updating the HMM, wecur in the winter and usually there is a rapid wind speed smge

set the forgetting parameter= 30, i.e., each time the system reads a
new period of 30 days of data, the system forgets 30 days afaitd
The amount of forgetting used in this work results from a fidre
study of the wind patterns.

followed by a more gradual wind speed decrease. These findirgg
also related with the average high temperature in the sunamer
with the stable temperatures registered during the afternoCon-
sidering theAt¢ parameter, we can say that the number of ramps,

For this configuration we compute and present the Hanssen &oth ramp-ups and ramp-downs, increase withAltgparameter. In

Kuippers Skill Score (KSS) and the Skill Score (SS) [1, 6].rsto
over, we compute the expected misclassification costs (EiGythe
formula presented in [13]. The cost matrix presented in §4dbtle-
fines the misclassification costs. We compare SHREA agaiRst-a
sistence baseline algorithm. Despite its simplicity, thedictions of
this model are the same as the last observation, this mokebisn

to be hard to beat in short-time ahead predictions [10].
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general, we observe large ramps only when we compare tinméspoi
that are 20 to 30 minutes apart.

As is illustrated in Figure 2 we identified a large portion effs
loops, especially ramp-up to ramp-up transitions in thet@vinights.
The percentage of self-loops range betwdéfio, when we run
SHREA withAt = 1, and55% when we seiAt = 3. This self-loop
transition shows that we have a high percentage of ramp £hent



ing a magnitude of at leagb% of the nameplate, two times the.. s
threshold. Furthermore, in the winter we get a higher priporof
ramp-up to ramp-down and ramp-down to ramp-up transitibas t
in the summer. This is especially clear at the dawn and nighogs.
This phenomena can be related with the difference in theageer
temperatures registered in these time periods.

Before presenting the forecast performance, it must betbaid
the quality of ramp forecasting depends a great deal on thaktyof
meteorological forecasts. Moreover, as the HMMs repregsstia-
bility distributions it is expected that SHREA will be biaki predict
no-ramp events. Typically SHREA over predicts no-ramp &vént
makes less severe errors. This biased behavior of SHREAas-an
ceptable feature since it is better to forecast a no-ramptevhen
we observe a ramp-down(ramp-up) event than predicting g+am
up(ramp-down) event. In real wind power operations (sedeTap
the cost of the later error is several times larger than thedo er-
rors.

In Table 2 we present the mean (inside brackets we preseasthe
sociated standard deviation) KSS, SS and Expected Costatat
we obtained when running SHREA, and the reference modetgto p
dict ramp events occurring in the last hundred days of thkiatian
period.

Before presenting a detailed discussion of the obtainadtsesve
must say that, if we consider the sam\¢ parameter, in all exper-
iments we obtained better, or equal, results than the Ib@salgo-
rithm, the Persistence algorithm. Moreover, we must safy\timeen
we generate predictions for the 30 minute horizon (one tiwiatp
ahead, since we use 30 minutes aggregation) we get the sanfis re
as the Persistence model. This phenomena is related wisitrtitegy
that we used to define the HMM initial state distribution. Renfer
that we set the HMMr parameter equal to the last state observed.

As expected, the KSS results worsen with the increase ofittes t
horizon. It is well known that the forecast reliability/fitonsens as
the distance from the forecast launch time increases. Mereme
can say that we obtained better KSS values for the morninigger
than in the other three periods of the day. For lack of spacdovet
present a detailed description of the results that we olbthen we
run SHREA to predict ramp events occurring in each one ofahe f
periods of the day. This can be related with the wind speeztésts
launch time. The wind speed forecast that we use in this werk i
updated every day at 6 am.

The analysis of the\¢ parameter shows that the mean KSS val-
ues increase with the increase in the value. Again, this can be
explained by the wind patterns, typically the wind speedéaases
smoothly during more than 30 minutes. In Table 2 we can seelgle
that SHREA performance improves with the increaséinparam-
eter. We observe the same behavior when inspecting thesdisat
we obtained by running the Persistence algorithm. Conegrtiie

SS, we can see that we obtain improvements over the Persisten [8]

forecast that ranges betwe@ and16%.

Concerning the phase error technique, we get importantanepr
ments for the two phase error parameter values considerddsin
study. The amount of improvement that we obtained by conisigle
the phase error can be valuable in real time operations. 8dtent-

cians can prepare the wind farm to deal with a nearby rampteven

In Table 2 we present the results without considering the@learor
techniquephE = 0, and considering one time point (30 minutes),
phE = 1, and two time points (60 minutex)h E = 2, phase errors
corrections.

We also introduce a misclassification cost analysis framlewat

can be used to quantify the management decisions. We defiie a m
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(10]

(11]
(12]

(13]

classification cost scenario (see Table 2) and show that $HRE
produces valuable predictions. In this real scenario, SAIB&ner-
ates significant lower operational costs and better operaltperfor-
mance than the baseline model.

5 Conclusions and Future Work

In this work we obtained some insights on the intricate meigmas
hidden in the ramp event dynamics and obtain valuable fetedar
very short-time horizons. For instance, we can now say teapgst
and large wind ramps tend to occur more often in the winterevio
over, typically there is a rapid wind speed increase folldvby a
more gradual wind speed decrease. Overall, with the olatdihéM
models we both obtained insights on the wind ramp dynamids an
generate accurate predictions that prove to be cost bealefiben
compared against a Persistence forecast method.

The performance of SHREA is heavily dependent on the wind
speed forecasts quality. Thus, in a near future we hope temet
cial purpose NWP suitable to detect ramp events and havimg mo
frequent daily updates. Moreover, we will study multi-eae HMM
emissions to include other NWP parameters like wind dioectind
temperature.
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