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Abstract. The motivation for this work is the study and prediction
of wind ramp events occurring in a large-scale wind farm located in
the US Midwest. In this paper we introduce the SHREA framework, a
stream-based model that continuously learns a discrete HMMmodel
from wind power and wind speed measurements. We use a super-
vised learning algorithm to learn HMM parameters from discretized
data, where ramp events are HMM states and discretized wind speed
data are HMM observations. The discretization of the historical data
is obtained by running the SAX algorithm over the first order varia-
tions in the original signal. SHREA updates the HMM using themost
recent historical data and includes a forgetting mechanismto model
natural time dependence in wind patterns. To forecast ramp events
we use recent wind speed forecasts and the Viterbi algorithm, that
incrementally finds the most probable ramp event to occur.

We compare SHREA framework against Persistence baseline in
predicting ramp events occurring in very short-time horizons.

1 Introduction

Ramping is one notable characteristic in a time series associated with
a drastic change in value in a set of consecutive time steps. Two prop-
erties of a ramping event i.e. slope and phase error, are important
from the point of view of the System Operator (SO), with impor-
tant implications in the decisions associated with unit commitment or
generation scheduling. Unit commitment decisions must prepare the
generation schedule in order to smoothly accommodate forecasted
drastic changes in wind power availability [2]. In this paper we
present SHREA a novel stream-based framework that predictsramp-
ing events in short term wind power forecasting.

The development of the SHREA framework is the answer to the
three main issues available in ramp event forecasting. How can we
describe and get insights on the wind power, and wind speed, time-
dependent dynamic and use this description to predict short-time
ahead ramp events? How can we combine real valued historicalwind
power and speed measurements and Numerical Weather Predictions
(NWP), specially wind speed predictions, to output reliable real-time
predictions? How can we continuously adapt SHREA to accommo-
date different natural weather regimes yet producing reliable predic-
tions?

To answer these questions we designed a stream-based framework
that continuously learns a discrete Hidden Markov Model (HMM)
and uses it to generate predictions. To learn and update the HMM the
SHREA framework uses a supervised strategy whereas the HMM
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parameters are estimated from historical data, the state transitions
probabilities are estimated from wind power measurements and the
emission probabilities, at each state, are estimated from wind speed
observations. To estimate the state probability transitions, first, we
combine a ramp filter, a derivative alike filter, and a user-defined
threshold to translate the real-valued wind power time series into
a labeled time-series, coding three different types of rampevents:
ramp-up, no-ramp and ramp-down. Then, the transitions occurring
in this labeled time series are used to estimate the transitions of the
Markov process hidden in the HMM, i.e., to model the transitions be-
tween the three states associated with the three types of ramp events.
To learn the HMM emission probabilities, first we combine a ramp
filter and the SAX algorithm [9] to translate the wind speed measure-
ments signal into a string. Next we use both the wind power labeled
time series and the wind speed string to estimate the emission proba-
bilities at each state. The estimative is obtained by counting the string
symbols, coding wind speed variations, associated with a given state/
ramp event.

When we analyze wind power historical data we observe both sea-
sonal weather regimes and short-time ahead dependence of the recent
past wind power/speed measurements. Thus, to accommodate these
issues, in SHREA we included a strategy that forgets old weather
regimes and continuously updates the HMM with the most recent
measurements, both wind power measurements and wind speed mea-
surements.

To generate ramp event predictions occurring in short-timeahead
window we use the wind speed forecast, obtained from a major NWP
provider, and the current HMM. First, we run a filter over the wind
speed forecast signal to obtain a signal of wind speed variations.
Next, we run the SAX algorithm to translate the resulting real-valued
time series into a string. Then, we run the Viterbi algorithm[12] to
obtain the most likely sequence of ramp events. We could use the
Forward-Backward algorithm [12] usually used to estimate the pos-
terior probability but we would be using long time ahead, thus unre-
liable, wind speed forecasts to predict current ramp events.

It is important to observe that wind speed measurements and
forecasts, mainly short time horizon predictions, are approximately
equally distributed over time. Moreover, the wind power output of
each turbine is related to wind speed measurements.

In this work we run the SHREA framework to describe and predict
very short-time ahead ramp events occurring in a large-scale wind
farm located in the US Midwest. We present a comparison against
the Persistence model that is known to be hard to beat in short-time
forecasts [10].

Despite the difficulty of the ramp forecasting problem, in this work
we make the following contributions: Develop a stream-based frame-
work that predicts ramp events and generates both descriptive and
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Figure 1: Illustration of ramp events, defined as a change of at least50% in
power in an interval of 4 hours

cost-effective models; Introduce a forgetting mechanism so that we
can learn a HMM using only the most recent weather regimes; Use
wind speed forecasts as observations of a discrete HMM to predict
short-time ahead ramp events.

In the next Section we introduce the ramp event forecast problem.
In Section 3 we present a detailed description of our framework.
In Section 4 we present and discuss the obtained results. Last, we
present some conclusions and present future research directions.

2 Ramp Event Definition and Related Work

One of the main problems in ramp forecasting is how to define a
ramp. In fact, there is no standard definition [7, 3, 8] and almost
all existing literature report different definitions, depending, for in-
stance, on the location or on the farm’s size.

The authors in [5] and [11] define several relevant characteris-
tics for ramp definition, characterization and identification: to define
a ramp event, we have to determine values for its three key char-
acteristics: direction, duration and magnitude (see Figure 1). With
respect to direction there are two basic types of ramps: the upward
ones (or ramp-ups), and the downward ones (or ramp-downs). The
former, characterized by an increase of wind power, result from a
rapid raise of wind speeds, which might (not necessarily) bedue to
low-pressure systems, low-level jets, thunderstorms, wind gusts, or
other similar weather phenomena. Downward ramps are due to ade-
crease in wind power, which may occur because of a sudden deple-
tion of the pressure gradient, or due to very high wind speeds, that
lead wind turbines to reach cut-out limits (typically 22-25m/s) and
shut down, in order to prevent the wind turbine from damage [4]. In
order to consider a ramp event, the minimum duration is assumed to
be 1 hour in [11], although in [7] these events lie in intervals of 5 to
60 minutes. The magnitude of a ramp is typically representedby the
percentage of the wind farm’s nominal power - nameplate.

In [7] the authors studied the sensitivity of two ramp definitions
to each one of the two parameters introduced above: ramp amplitude
ranging from150 to 600MW and ramp duration values varying be-
tween5 and60 minutes. The definition that we present and use in
this work is similar to the one described in [7]. It is more appropri-
ate to use in real operations since it does not considers a time-ahead
point to identify a ramp event.

Definition 1 A ramp event is considered to occur at time pointt, the
end of an interval, if the magnitude of the increase or decrease in the
power signal is greater than the threshold value, thePref :

|P (t)− P (t−∆t)| > Pref

The parameter∆t is related to the ramp duration and defines the
size of the time interval considered to identify a ramp. In [11] some

results are presented that relate this parameter to the typeand mag-
nitude of identified ramps. ThePref parameter is usually defined
according to the specific features of the wind farm site and, usually,
is defined as a percentage of the nominal wind power capacity or a
specified amount of megawatts.

A comprehensive analysis of ramp modeling and prediction may
be found in [2].

Algorithm 1 : SHREA: a stream-based ramp predictor
input : Three time series:PT , wind power measurements;OT , wind speed measurements; andJT , wind

Speed forecasts;a, the forecast horizon;Pref , threshold to identify ramp events;∆t, the ramp

definition parameter;W, the PAA parameter that specifies the amount of signal aggregation; σ, a
forgetting factor

output: A sequence of predictionsQd
r . . . Qd

r+a for each period/windowd = 1, . . .

countTimeP eriods ← 0; flag ← 0; Acount ← 0; Bcount ← 0;
for each period/windowd do

countT imeP eriods + +
Preprocessing1
Pd
s ← fitSpline(Pd), Od

s ← fitSpline(Od), Jds ← fitSpline(Jd)

Pd
f ← rampDef(Pd

s , ∆t), Od
f ← rampDef(Od

s , ∆t), Jdf ← rampDef(Jds , ∆t)

Ld ← label(Pd
f , Pref ); // Label Data

Od
n ← znorm(Od

f ), Jdn ← znorm(Jdf )

Od
str ← SAX(PAA(Od

n )), OFd
str ← SAX(PAA(Jdn ))

Learn Supervised HMM2
π ←
(δ(Ld(r) = rampDown), δ(Ld(r) = noramp), δ(Ld(r) = rampUp))

λd(A, B, π)← LearnHMM(Od
str (1, . . . , r), Ld(1, . . . , r), Acount, Bcount )

Predict Ramp Events using the learned HMM3
Qd

r . . . Qd
r+a ←V iterbi(λ, OFd

str(r + 1, . . . , r + a))

λd(A, B, π)← updateHMM(Od
str(r + 1, . . .), Ld(r + 1, . . .))

Forgetting mechanism4
if (countTimePeriods==σ) then

Aaux
count ←Acount; Baux

count ←Bcount; flag ← 1

if (countTimePeriods modσ == 0 & flag==1) then
Acount ← Acount − Aaux

count; Bcount ← Bcount − Baux
count

3 Methodology developed to Forecast Ramps

In this section we present SHREA framework, a stream-based frame-
work that uses a supervised learning strategy to obtain a HMM.
SHREA continuously learns a discrete HMM on a fixed size non-
overlapping moving window and, at each time period, uses theup-
dated HMM to predict ramp events. We introduce a forgetting mech-
anism to forget old wind regimes and to accommodate weather global
changes. The SHREA architecture has three main steps (see algo-
rithm pseudo-code in Algorithm 1): preprocessing phase, where a
ramp filter and the SAX algorithm are used to translate real valued
signals into events/strings; learning phase, where a supervised strat-
egy is used to learn a HMM; and prediction phase, where the Viterbi
algorithm is used to forecast ramp events. In the following lines we
describe each one of these phases.

3.1 Preprocessing In the preprocessing phase we translate the
real-valued points occurring in a given time periodd, i.e. occurring
inside a non-overlapping fixed size window, into a discrete time-
series suitable to be used at HMM learning and prediction time. First,
we fit a spline to both the wind power and wind speed measurements
time series obtaining, respectively, two new signals,Pd

s andOd
s . We

run the same procedure overJ time series, a wind speed forecast, and
obtainJd

s . We fit splines to the original data to remove high frequen-
cies that can be considered noisy data. Second, we run ramp defini-
tion one, presented above in Section 2, to filter the three smoothed
signals and obtain three new signals:Pd

f ,Od
f andJd

f . These signals
are wind power and speed variations, derivative alike signals, suitable
to identify ramp events. Third, we use a user-defined power varia-
tion threshold, the input parameterPref value, to translate the wind
power signalPd

f into a labeled time seriesLd(1, . . . , r+a), where1
is the first point of the time window,r is the forecast launch time and
a is the time horizon. We map each wind power variation into oneof
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three labels/ramp events: ramp-up, ramp-down and no-ramp.These
three labels will be the three states of our HMM and the transitions
will be estimated using the points of theLd time series.

At this point we already have the data needed to estimate the tran-
sitions of the Markov process hidden in the HMM process. Now we
need to transform wind speed data into a format suitable to estimate
emission probabilities of the discrete HMM that we are learning. We
combine Piecewise Aggregate Approximation (PAA) and SAX algo-
rithms [9] to translate the wind speed variations into symbolic time
series, more precisely. Thus, we normalize the two wind speed sig-
nals and obtainOd

n andJd
n signals.Od

n will be used to estimate the
HMM emission probabilities and theJd

n will be used as the ahead ob-
servations that will be used to predict ramp events. Next, werun the
PAA algorithm in each one of these signals to reduce complexity and,
again, obtain smoothed signals. The degree of signal compression is
theW PAA parameter that is a user-defined parameter of SHREA.
This parameter is related with time point aggregation. Next, we run
the SAX algorithm to map each PAA signal into string symbols.This
way we obtain two discrete signalsOd

str andJd
str. After the prepro-

cessing phase we have two discrete time series,Ld andOd
str that will

be used to learn the HMM state transitions and emissions probabili-
ties, respectively.

3.2 Learn a Discrete HMM Here we explain how do we learn the
HMM in the time periodd, and then how we update it in time.

In the HMM that we learn, compactly writtenλ(A, B, π), the
state transitions, theA parameter, are associated with wind power
measurements and the emissions probabilities, theB parameter, are
associated with wind speed measurements. In Figure 2 we showa
HMM learned by SHREA at the end of the 2010 winter. To estimate
these two parameters we use the ramp labels,Ld(1, . . . , r), and the
wind speed mesurements signals,Od

str(1, . . . , r), and run the well-
known and straightforward supervised learning algorithm described
in [12]. To estimate the transition probabilities between states, the
three-way matrixA, we count the transitions between symbols ob-
served inLd(1, . . . , r) and compute the marginals to estimate the
probabilities. To estimate the emission probabilities foreach state,
the matrixB, we count, for each state, the observed frequency of
each symbol and then use state marginals to compute the probabili-
ties. This way, we obtain the maximum likelihood estimate ofboth
the transitions and the emission probability matrices.

We now explain how to update the model in the time. We de-
sign our framework to improve over the time with the arrivingof
new data. At each time periodd SHREA is fed with new data and
the HMM parameters are updated to include the most recent histor-
ical data. At each time periodd we update the HMM parameters by
counting the state transitions and state emissions coded inthe cur-
rent vectorsOd

str(1, . . . , r) andLd(1, . . . , r), obtaining the number
of state transitions and emissions at each HMM state, theAcount and
Bcount. Then, we compute the marginal probabilities of each matrix
and obtain the updated HMM, the modelλd(Ad, Bd, πd) that will be
used to predict ramp events. The learned HMM,λd, will be used to
predict ramp events occurring betweenr andr + a. In the next time
period (i.e. the next fixed sized time window) we will update theλd

HMM, using this same strategy but including also the transitions and
emissions of the time periodd that were not used to estimateλd, i.e.,
we updateAcount andBcount with the wind measurements of the
time periodd occurring afterd’s launch time and befored+1 period
launch time, ther point. By using this strategy we continuously up-
date the HMM to include both the most recent data and all old data.
By using this strategy, and with the course of time, the HMM can be-

come less sensitive to new weather regimes. Thus we introduce a for-
getting strategy to update the HMM using only the most recentmea-
surements and forgetting the old data. This strategy relieson a thresh-
old that specifies the number of time periods to include in theHMM
estimation. This forgetting parameter,σ, is a user-defined value that
can be set by experienced wind power technicians. Considering that
at time periodd we have readσ time periods and that we backup the
current counts intoAaux

count and Baux
count temporary matrices. After

reading2σ time periods we will use the following forgetting mecha-
nism:A2σ

count = A2σ
count−Aaux

count andB2σ
count = B2σ

count−Baux
count.

Then, we resetAaux
count andBaux

count equal to the updatedA2σ
count and

B2σ
count matrices, respectively. Next, to predict ramp events occurring

in the time periods following2σ, we will update and use the HMM
parameters obtained from theA2σ

count andB2σ
count to forecast ramp

events. Every time we read a number of time periods that equals a
multiple of σ we apply this forgetting mechanism using the updated
auxiliary matrices.

3.3 Predict Ramp Events using the learned HMM In this step
we use the HMM learned in time periodd, the λd, and the string
Jd

str, obtained from wind speed forecasts, to predict ramp events for
the time points ranging fromr to r + a. Remember thatr is the
prediction launch time anda is the forecast horizon.

To obtain the ramp event predictions we run the Viterbi algo-
rithm [12]. We feed this algorithm withJd

str andλd and get the state
predictions (the ramp events)Qd

r+1, . . . ,Qd
r+a for the time points

r + 1, . . . , r + a of time periodd. Saying it in other way we obtain
predictions for the points occurring in a non overlapping time win-
dow starting atr and with length equal toa. We will obtain the most
likely sequence of states that best explains the observations, i.e., we
will obtain a sequence of statesQd

r+1, . . . ,Qd
r+a that maximizes the

probabilityP (Qd
r+1, . . . ,Qd

r+a|Jd
r+1, . . . , Jd

r+a, λd).
Regarding theπ parameter, we introduce a non classical approach

to estimate this parameter. We defined this strategy after observing
that it is almost impossible to beat a ramp event forecaster that pre-
dicts the ramp event occurring one step ahead to be the current ob-
served ramp event. Thus, we setπ to be a distribution having zero
probability for all events except the event observed at launch time,
the r time point. In the pseudo code we writeπ ← (δ(Ld(r) ==
rampDown), δ(Ld(r) == noramp), δ(Ld(r) == rampUp),)
whereδ is a Dirac delta function defined byδ(x) = 1, if x is TRUE
andδ(x) = 0, if x is FALSE.

4 Experimental Evaluation

In this section we describe the configurations, the metrics
and the results that we obtain in our experimental evaluation.

Table 1: Misclassification
Costs
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Figure 2: Winter HMM
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Table 2: KSS, SS and Expected Cost Mean and standard deviation for the last 100 days of the evaluation period

SHREA Persistence

Metric
∆t=1 ∆t=2 ∆t=3

∆t=1 ∆t=2 ∆t=3
phE=0 phE=1 phE=2 phE=0 phE=1 phE=2 phE=0 phE=1 phE=2

T
im

e
ah

ea
d 30 min

KSS 0.144(0.002) – – 0.332(0.001) – – 0.446(0.002) – – 0.144(0.002) 0.332(0.001) 0.446(0.002)
SS 0(0) – – 0(0) – – 0(0) – – – – –

ECost 3.129(0.016) – – 4.176(0.027) – – 4.04(0.019) – – 3.129(0.02) 4.176(0.03) 4.041(0.02)

60 min
KSS 0.152(0.001) 0.202(0.002) – 0.278(0.001) 0.314(0.204) – 0.369(0.001) 0.417(0.001) – 0.127(0.009) 0.203(0.001) 0.343(0.001)
SS 0.028(0.001) 0.085(0.002) – 0.094(0.00) 0.139(0.001) – 0.038(0.001) 0.113(0.001) –

ECost 2.312(0.18) 2.107(0.014) – 3.860(0.39) 3.719(0.39) – 4.374(0.61) 4.108(0.61) – 8.731(0.99) 14.687(1.50) 16.104(1.63)

90 min
KSS 0.123(0.000) 0.185(0.001) 0.231(0.002) 0.193(0.001) 0.240(0.001) 0.296(0.002) 0.271(0.001) 0.316(0.001) 0.345(0.001) 0.101(0.001) 0.163(0.002) 0.258(0.002)
SS 0.0244(0.002) 0.093(0.001) 0.145(0.001) 0.035(0.001) 0.091(0.002) 0.159(0.001) 0.018(0.001) 0.079(0.001) 0.118(0.001) – – –

ECost 2.089(0.013) 1.938(0.012) 1.807(0.010) 4.252(0.03) 4.028(0.025) 3.728(0.024) 5.165(0.025) 4.893(0.023) 4.677(0.025) 3.204 (0.030) 6.112(0.042) 6.783(0.050)

4.1 Experimental Configuration Our goal is to predict ramp
events in a large-scale wind farm located in the US Midwest. To
evaluate our system we collected historical data and, to make pre-
dictions, use wind speed power predictions (NWP) for the time pe-
riod ranging between 3rd of June 2009 and 16th of February 2010.
Each turbine in the wind farm has a Supervisory Control and Data
Acquisition System (SCADA) that registers several parameters, in-
cluding the wind power generated by each turbine and the measured
wind speed at the turbine, the latter are 10 minute spaced point mea-
surements. In this work we consider a subset of turbines and com-
pute, for each time point, the subset mean wind power output and
the subset mean wind speed, obtaining two time series of measure-
ments. The wind speed power prediction for the wind farm location
was obtained from a major provider. Every day we get a wind speed
forecast with launch time at 6 am and having 24 hours horizon.The
predictions are 10 minute spaced point forecasts. In this work we
run SHREA to forecast ramp events occurring 30, 60 and 90 min-
utes ahead, thea parameter. We start by learning a HMM using five
days of data and then use the learned, and updated, HMM to gen-
erate predictions for each fixed size non overlapping time window.
Moreover, we split the day in four periods and run SHREA to learn
four independent HMM models: dawn, period ranging between zero
and six hours; morning, period ranging between six to twelvehours;
afternoon, period ranging between twelve and eighteen hours; nigh,
period ranging between eighteen and midnight. The last fourmodels
were only used to give some insight on the ramp dynamics and were
not used to make predictions. We define a ramp event to be a change
in wind power production higher than20% of the nominal capacity,
i.e., we set thePref threshold equal to20% of the nominal capacity.
Moreover, we run a set of experiments by setting∆t parameter equal
to 1, 2 and 3 time points, i.e., equal to 30, 60 and 90 minutes. We run
SHREA using thirty minute signal aggregation, thus each time point
represents thirty minutes of data. In these experiments we also con-
sider phase error corrections. Phase errors are errors in forecasting
ramp timing [5]. We identify events that occur in a timestamp, t, not
predicted at that time, but predicted instead to occur in one, or two,
time periods immediately before or aftert.

Furthermore, as SHREA is continuously updating the HMM, we
set the forgetting parameterσ = 30, i.e., each time the system reads a
new period of 30 days of data, the system forgets 30 days of olddata.
The amount of forgetting used in this work results from a careful
study of the wind patterns.

For this configuration we compute and present the Hanssen &
Kuippers Skill Score (KSS) and the Skill Score (SS) [1, 6]. More-
over, we compute the expected misclassification costs (EC) using the
formula presented in [13]. The cost matrix presented in Table 1 de-
fines the misclassification costs. We compare SHREA against aPer-
sistence baseline algorithm. Despite its simplicity, the predictions of
this model are the same as the last observation, this model isknown
to be hard to beat in short-time ahead predictions [10].

4.2 Results This work is twofold and here we present and ana-
lyze both the descriptive and predictive performance of theSHREA
framework.

In Figure 2 we present an example of HMM generated by SHREA
in February. This model was learned when running SHREA to pre-
dict 90 minutes ahead events and setting∆t = 2. This HMM has
three states, each state is associated with one ramp type, and each
state emits six symbols, each representing a discrete bin ofthe ob-
served wind speed. The lower level of wind speed is associated with
thea character and the higher level of wind speed is associated with
thef character. The labels in the edges show the state emissions and
the state transition probabilities.

The HMM models that we obtained in our experiments uncover
interesting ramp behaviors. If we consider all the data usedin these
experiments, when we set∆t = 1 we found that there were de-
tected7% more ramp-up events than ramp-down events. When we
set ∆t = 3 we get the inverse behavior, we get4% more ramp-
downs than ramp-ups. This behavior is easily explained by the wind
natural dynamics that causes steepest ramp-up events and smooth
ramp-down events. If we analyze independently the four periods of
the day we can say that we have a small number of ramp events,
both ramp-ups and ramp-downs, in the afternoon. If we compute the
mean number of ramps, for all∆t parameters we get approximately
30%(15%) more ramp-up(ramp-down) events at night than in the af-
ternoon. Overall, we can say that we get more ramp events at night
and, in second place, at the dawn period. Moreover, we can saythat
in the summer we get, both for ramp-up and ramp-down events, wind
speed distributions with higher entropy, we get approximately 85%
of the probability concentrated in two observed symbols. Different
from this behavior, in the winter we have less entropy in the wind
speed distribution associated with both types of ramp events. In the
winter we have approximately91% of the probability distribution
concentrated in the one symbol. The emission probability distribu-
tion of the ramp-down state is concentrated in symbola and the emis-
sion probability distribution in the ramp-down state is concentrated
in symbol f. These two findings are consistent with our empirical
visual analysis and other findings [4]: Large wind ramps tendto oc-
cur in the winter and usually there is a rapid wind speed increase
followed by a more gradual wind speed decrease. These findings are
also related with the average high temperature in the summerand
with the stable temperatures registered during the afternoons. Con-
sidering the∆t parameter, we can say that the number of ramps,
both ramp-ups and ramp-downs, increase with the∆t parameter. In
general, we observe large ramps only when we compare time points
that are 20 to 30 minutes apart.

As is illustrated in Figure 2 we identified a large portion of self-
loops, especially ramp-up to ramp-up transitions in the winter nights.
The percentage of self-loops range between12%, when we run
SHREA with∆t = 1, and55% when we set∆t = 3. This self-loop
transition shows that we have a high percentage of ramp events hav-
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ing a magnitude of at least40% of the nameplate, two times thePref

threshold. Furthermore, in the winter we get a higher proportion of
ramp-up to ramp-down and ramp-down to ramp-up transitions than
in the summer. This is especially clear at the dawn and night periods.
This phenomena can be related with the difference in the average
temperatures registered in these time periods.

Before presenting the forecast performance, it must be saidthat
the quality of ramp forecasting depends a great deal on the quality of
meteorological forecasts. Moreover, as the HMMs representproba-
bility distributions it is expected that SHREA will be biased to predict
no-ramp events. Typically SHREA over predicts no-ramp events but
makes less severe errors. This biased behavior of SHREA is anac-
ceptable feature since it is better to forecast a no-ramp event when
we observe a ramp-down(ramp-up) event than predicting a ramp-
up(ramp-down) event. In real wind power operations (see Table 1)
the cost of the later error is several times larger than the former er-
rors.

In Table 2 we present the mean (inside brackets we present theas-
sociated standard deviation) KSS, SS and Expected Cost metrics that
we obtained when running SHREA, and the reference model, to pre-
dict ramp events occurring in the last hundred days of the evaluation
period.

Before presenting a detailed discussion of the obtained results, we
must say that, if we consider the same∆t parameter, in all exper-
iments we obtained better, or equal, results than the baseline algo-
rithm, the Persistence algorithm. Moreover, we must say that when
we generate predictions for the 30 minute horizon (one time point
ahead, since we use 30 minutes aggregation) we get the same results
as the Persistence model. This phenomena is related with thestrategy
that we used to define the HMM initial state distribution. Remember
that we set the HMMπ parameter equal to the last state observed.

As expected, the KSS results worsen with the increase of the time
horizon. It is well known that the forecast reliability/fit worsens as
the distance from the forecast launch time increases. Moreover we
can say that we obtained better KSS values for the morning period
than in the other three periods of the day. For lack of space wedo not
present a detailed description of the results that we obtainwhen we
run SHREA to predict ramp events occurring in each one of the four
periods of the day. This can be related with the wind speed forecasts
launch time. The wind speed forecast that we use in this work is
updated every day at 6 am.

The analysis of the∆t parameter shows that the mean KSS val-
ues increase with the increase in the∆t value. Again, this can be
explained by the wind patterns, typically the wind speed increases
smoothly during more than 30 minutes. In Table 2 we can see clearly
that SHREA performance improves with the increase in∆t param-
eter. We observe the same behavior when inspecting the results that
we obtained by running the Persistence algorithm. Concerning the
SS, we can see that we obtain improvements over the Persistence
forecast that ranges between0% and16%.

Concerning the phase error technique, we get important improve-
ments for the two phase error parameter values considered inthis
study. The amount of improvement that we obtained by considering
the phase error can be valuable in real time operations. The techni-
cians can prepare the wind farm to deal with a nearby ramp event.
In Table 2 we present the results without considering the phase error
technique,phE = 0, and considering one time point (30 minutes),
phE = 1, and two time points (60 minutes),phE = 2, phase errors
corrections.

We also introduce a misclassification cost analysis framework that
can be used to quantify the management decisions. We define a mis-

classification cost scenario (see Table 2) and show that SHREA
produces valuable predictions. In this real scenario, SHREA gener-
ates significant lower operational costs and better operational perfor-
mance than the baseline model.

5 Conclusions and Future Work

In this work we obtained some insights on the intricate mechanisms
hidden in the ramp event dynamics and obtain valuable forecasts for
very short-time horizons. For instance, we can now say that steepest
and large wind ramps tend to occur more often in the winter. More-
over, typically there is a rapid wind speed increase followed by a
more gradual wind speed decrease. Overall, with the obtained HMM
models we both obtained insights on the wind ramp dynamics and
generate accurate predictions that prove to be cost beneficial when
compared against a Persistence forecast method.

The performance of SHREA is heavily dependent on the wind
speed forecasts quality. Thus, in a near future we hope to getspe-
cial purpose NWP suitable to detect ramp events and having more
frequent daily updates. Moreover, we will study multi-variate HMM
emissions to include other NWP parameters like wind direction and
temperature.
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