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Abstract. Traditional stock market analysis is based on the assump-
tion of a stationary market behavior. The recent financial crisis was
an example of the inappropriateness of such assumption, namely by
detecting the presence of much higher variations than what would
normally be expected by traditional models. Data stream methods
present an alternative for modeling the vast amounts of data arriv-
ing each day to a financial analyst. This paper discusses the use of
a framework based on an artificial neural network that continuously
monitors itself and allows the implementation on a multivariate fi-
nancial non-stationary model of market behavior. An initial study is
performed over ten years of the Dow Jones Industrial Average index
(DJI), and shows empirical evidence of concept drift in the multivari-
ate financial statistics used to describe the index data stream.

1 INTRODUCTION

Data streams are generated naturally within several domains. Net-
work monitoring, web mining, telecommunications data manage-
ment, stock-market analysis and sensor data processing are appli-
cations that have vast amounts of data arriving continuously. In such
applications, the process may not be strictly stationary, i.e., the target
concept may change over time. Concept drift means that the concept
about which data is being collected may shift from time to time, each
time after some minimum permanence [6].

In this paper we address the detection and analysis of concept drift
in financial markets by employing a methodology based on Artificial
Neural Networks (ANN). ANN are a set of biologically inspired al-
gorithms and well-established data mining methods popular for tech-
nical market analysis and price predictions. We are currently under-
going a wider research on using ANN in Ubiquitous Data Mining.
This work, in essence, is a real-world application of a mechanism to
detect concept drift while processing data streams. The motivation
for this approach in the financial field can be easily explained. Math-
ematical finance has made wide use of normal distributions in stock
market analysis to maximize return rates, i.e., they assume station-
ary distributions, which are easier to understand and work well most
of the times. However, this traditional approach neglects big heavy-
tails, i.e.,huge asset losses, in the distributions and their potential risk
evaluation [11, 12]. This is where the detection of drifting from this
normal behavior is of critical importance to reduce investment risk in
the presence of non-normal distribution of market events.
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The main contributions of this work are: (i) a drift detection
method based on the output of Adaptive Resonance Theory (ART)
networks [7] which produce aggregations (or data synopsis in some
literature) of d-dimensional data streams. These fast aggregations
compress a, possibly, high-rate stream while maintaining the intrinsic
relations within the data. A fixed sequence of consecutive aggrega-
tions is then analyzed to infer concept drift in the underlying distri-
bution – Section 2 ; (ii) an application of the previous scheme to the
stock market, namely to the Dow Jones Industrial index (DJI), using
a stream of with a chosen set of statistical and technical indicators.
The detection of concept drift is performed over an incoming stream
of these observations –Section 3.

These contributions adhere to the impositions of data stream mod-
els in [8], namely: the data points can only be accessed in the order
in which they arrive; random access to data is not allowed; memory
is assumed to be small relatively to the number of data points, thus
only allowing a limited amount information to be stored. Therefore,
all of the additional indicators are computed using sliding windows,
thus only needing a small subset of data kept in memory. This is also
true for the number of aggregations needed to compute the concept
drift.

At the end of the paper, Section 4, discussion of the results are
made together with final conclusions.

2 METHODOLOGY
The presented methodology for drift detection comprises two mod-
ules. The first module uses an ART network that receives the incom-
ing stream and produces aggregations, or data synopsis, compressing
the data and retaining the intrinsic relationships within the distribu-
tion (Section 2.1). This module feeds a second module that takes a
fixed set of these aggregations and through simple computations pro-
duces an output that can be used to detect concept drift.

2.1 Online Data Aggregation
One should point out that algorithms performing on data streams are
expected to produce “only” approximated models [6], since the data
cannot be revisited to refine the generated models. The aggregation
module is responsible for the online summarization of the incom-
ing stream and processes the stream in blocks of size S. For each S
observations q representative prototypes of data are created, where
q � S. This can be related to an incremental clustering process
that is performed by an ART network. Each prototype is included
in a tuple that stores other relevant information, such as the number
of observations described by a particular prototype and the point in
time that a particular prototype was last updated. These data struc-
tures were popularized in [1] and called micro-clusters.
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Hence, we create q “weighted” prototypes of data stored in tuples
Q = {M1, ...,Mj , ...,Mq}, each containing: a prototype of data
Pj ; the number of inputs patterns Nj assigned to that prototype and
a timestamp Tj that contains the point in time that prototype was
last accessed, hence Mj = {Pj , Nj , Tj}. The prototype together
with the number of inputs assigned to it (weighting) is important to
preserve the input space density if one is interested in creating of-
fline models of the distribution. The timestamp allows the creation
of models from specific intervals in time.

ART [7] is a family of neural networks that develop stable recog-
nition categories (clusters) by self-organization in response to arbi-
trary sequences of input patterns. Its fast commitment mechanism
and capability of learning at moderate speed guarantees a high ef-
ficiency. The common algorithm used for clustering in any kind of
ART network is closely related to the k-means algorithm. Both use
single prototypes to internally represent and dynamically adapt clus-
ters. The k-means algorithm clusters a given set of input patterns into
k groups. The parameter k thus specifies the coarseness of the parti-
tion. In contrast, ART uses a minimum required similarity between
patterns that are grouped within one cluster. The resulting number
k of clusters then depends on the distances (in terms of the applied
metric) between all input patterns, presented to the network during
training. This similarity parameter is called vigilance ρ. K-means is
a popular algorithm in clustering data streams, e.g., [4], but suffers
from the problem that the initial k clusters have to be set either ran-
domly or through other methods. This has a strong impact on the
quality of the clustering process. On the other hand, ART networks
do not suffer from this problem.

More formally, a data stream is a sequence of data items (ob-
servations) x1, ..., xi, ..., xn such that the items are read once in
increasing order of the indexes i. If each observation contains a
set of d-dimensional features, then a data stream is a sequence of
Xd

1 , ..., X
d
i , ..., X

d
n vectors. We employ an ART2-A [3] network spe-

cially geared towards fast one-shot training, with an important mod-
ification given our goals: constrain the network on a maximum of q
prototypes. It shares the basic processing of all ART networks, which
is based on competitive learning. ART requires the same input pat-
tern size for all patterns, i.e., the dimension d of the input space where
the clusters regions shall be placed. Starting with an empty set of pro-
totypes P d

1 , ..., P
d
j , ..., P

d
q each input pattern Xd

i is compared to the
j stored prototypes in a search stage, in a winner-takes-all fashion.
If the degree of similarity between current input pattern and best fit-
ting prototype WJ is at least as high as vigilance ρ, this prototype is
chosen to represent the micro-cluster containing the input. Similarity
between the input pattern i and a prototype j is given by Equation 1,
where the distance is subtracted from one to get SXi,Pj = 1 if input
and prototype are identical. The distance is normalized with the di-
mension d of an input vector. This keeps measurements of similarity
independent of the number of features.

SXi,Pj = 1−

√√√√1

d

d∑

n=1

(Xn
i − Pn

j )2 (1)

The degree of similarity is limited to the range [0, 1]. If similarity
between the input pattern and the best matching prototype does not
fit into the vigilance interval [ρ, 1], i.e., SXi,Pj < ρ, a new micro-
cluster has to be created, where the current input is used as the pro-
totype initialization. Otherwise, if one of the previously committed
prototypes (micro-clusters) matches the input pattern well enough, it
is adapted by shifting the prototype’s values towards the values of the
input by the update rule in Equation 2.

P
(new)
J = η ·Xi + (1− η) · P (old)

J (2)

The constant learning rate η ∈ [0, 1] is chosen to prevent proto-
type PJ from moving too fast and therefore destabilizing the learning
process. However, given our goals, i.e., to perform an adaptive vector
quantization, we define η dynamically in such a way that the mean
quantization error of inputs represented by a prototype is minimized.
Equation 3 establishes the dynamic value of η, where NJ is the cur-
rent number of assigned input patterns for prototype J . This way, it
is expected that the prototypes converge to the mean of the assigned
input patterns.

η =
NJ

NJ + 1
(3)

This does not guarantee the convergence to local minimum, how-
ever, according to the adaptive vector quantization (AVQ) conver-
gence theorem [2], AVQ can be viewed as a way to learn prototype
vector patterns of real numbers; it can guarantee that average synap-
tic vectors converge to centroids exponentially quickly.

Another needed modification arises from the fact that ART net-
works, by design, form as much prototypes as needed based on the
vigilance value. At the extremes, ρ = 1 causes each unique input to
be encoded by a separate prototype, whereas ρ = 0 causes all inputs
to be represented by a single prototype. Therefore, for decreasing
values of ρ coarser prototypes are formed. However, to achieve ex-
actly q prototypes solely on a manually tuned value of ρ is a very
hard task, mainly due to the input space density, that can change over
time, and is also different from application to application.

To overcome this, we make a modification to the ART2-A algo-
rithm to impose a restriction on creating a maximum of q proto-
types and dynamically adjusting the vigilance parameter. We start
with ρ = 1 so that a new micro-cluster is assigned to each arriving
input vector. After learning an input vector, a verification is made to
check if q = j + 1, where j is the current number of stored micro-
clusters. If this condition is met, then to keep only q we need to merge
the nearest pair of micro-clusters. Let Tr,s = min{‖Pr − Ps‖2 :
r, s = 1, ..., q, r 6= s} be the minimum Euclidean distance between
prototypes stored in micro-clustersMr andMs. We merge the two
micro-clusters into one:

Mmerge = {Pmerge, Nr +Ns,max{Tr, Ts}} (4)

with the new prototype being a “weighted” average between the
previous two:.

Pmerge =
Nr

Nr +Ns
Pr +

Ns

Nr +Ns
Ps (5)

With d-dimensional input vectors, Equation 1 defines a hyper-
sphere around any stored prototype with radius r = (1 − ρ) ·

√
d.

By solving this equation in respect to ρ, we update the vigilance pa-
rameter dynamically with Equation 6, hence ρ(new) < ρ(old) and the
radius, consequently, increases.

ρ(new) = 1− Tr,s√
d

(6)

Our experimental results show that this approach is effective in
providing a summarization of the underlying distribution within the
data streams. The inclusion of these results is out of the scope of this
paper.

We must point out that the aggregation module produces more in-
formation that it is actually necessary for the concept drift detection,
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namely the weighting of the prototypes and the timestamps. This
module is an integrating part of a larger framework that also gen-
erates offline models of the incoming stream for specific points in
time.

2.2 Detecting Concept Drift
Our method assumes that if the underlying distribution is stationary
that the error-rate of the learning algorithm will decrease as the num-
ber of samples increases [5]. Hence, we compute the quantization
error at each aggregation phase of the ART network and track the
changes of these errors over time.

We use a queue B of b aggregation results, such that B =
{Ql, Ql−1, ..., Ql−b+1}, where Ql is the last aggregation obtained.
For each Ql that arrives, we compute the average Euclidean distance
between each prototype Pi in Ql and the closest one in Bl−1 =
{Ql−1, ..., Ql−b+1}. Equation 7 formalizes this Average Quantiza-
tion Error (AQE) computation for the lth aggregation, where ‖ · ‖2
is the Euclidean distance and q is the number of prototypes in Ql by
definition. This computes the error of the last aggregation in “quan-
tifying” previous aggregations in a particular point in time.

AQE(l) =
1

q

q∑

i=1

min( ‖ Pi − Pj ‖2, ∀Pj ∈ Bl−1 ) (7)

By repeating this procedure over time, we obtain a series of errors
that stabilizes and/or decreases when the underlying distribution is
stationary and presents increases on this curve when the underlying
distribution is changing, i.e., concept drift is occurring. This series of
errors is the drift curve.

Larger values of b are used to detect abrupt changes in the un-
derlying distribution, whereas to detect gradual concept drift a lower
value should be adopted. We exemplify the automatic concept drift
detection in this drift curve using a moving average in Section 3.2.

3 APPLICATION TO DOW JONES
INDUSTRIAL

We present an application of the previous methodology to the stock
market, namely to the Dow Jones Industrial index (DJI). Instead of
using daily prices of several stocks that compose the DJI, our ap-
proach to this problem uses the DJI daily index values themselves
and other computed statistical and technical indicators, which are ex-
plained in Section 3.1. We make extensive use of moving averages,
as they reduce the short term volatility of time series and retain in-
formation from previous market events; another statistical indicator
is the Hurst index [9], defined as a function to uncover changes in the
direction of the trend of a set of values in time. We believe that these
indicators, together with the index value, can provide a multi-variate
insight to hidden and subtle changes in the normality of financial
events and be used to assess the risk of investment at any point in
time, thus lowering exposure to risk.

This application makes use of data gathered from the period com-
prised between the 1st of January of 2001 to the 31st of December
of 2011, in a total of 2767 observations.

3.1 Variable Selection and Generated Data Stream
The data gathered was composed by a set of technical variables in-
cluding different index values for one trading day like Open, Close,

Figure 1. Hierarchical clustering of variables produced by VARCLUS.

High and Low values. From these we chose the lowest daily price
(PX LOW) because it provides better insight to the risk of a fall.
Other available technical indicator was the trading Volume.

In terms of statistical indicators, we initially considered a large
number of them, like moving averages (MA) from 20 to 180 trading
days, relative numbers, i.e., the DJI index value divided by moving
averages (AVG), price fluctuation and Hurst index. However, it was
important to reduce the number of variables because redundant vari-
ables can reduce the model efficiency. For this purpose we performed
an analysis with the VARCLUS procedure (SAS/STAT).The VAR-
CLUS procedure can be used as a variable-reduction method. The
VARCLUS procedure divides a set of numeric variables into dis-
joint or hierarchical clusters through principal component analysis.
All variables were treated as equally important. VARCLUS created
an output was used by the TREE procedure to draw a tree diagram
of hierarchical clusters (SAS/STAT R©9.1 User’s Guide p. 4797). The
tree diagram is depicted in Figure 1. We can observe in the hier-
archical clustering that the price variables and moving averages are
correlated, so it was only chosen PX LOW of Cluster 1. In Cluster
2 all variables were selected because, although they are correlated,
they measure different characteristics. In the case of relative num-
bers different averages were selected because it is interesting to see
the differences between the analysis of short, medium and long term.
Finally in Cluster 3 and Cluster 4 just Hurst index and price fluctu-
ation appeared, because they are not correlated with any other vari-
able, so these variables were included in the final data set.

Hence, the complete set of features in the data stream is the fol-
lowing:

PX LOW: Minimum daily price;
PX VOLUME: Volume of daily business;
IX HURST: Hurst index computed for 30 days;
IX CAP FLUTUATION: PX LOW(t)/ PX LOW (t 1). This vari-

able represents price fluctuation for one day interval;
AVG 20: PX LOW / 20-day moving average. This variable repre-

sents the relative number of current price divided by the 20-day
Moving Average. This shows whether the current price is cheap,
average value, expensive or really expensive. The same applies to
the next indicators but within other time frames;
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AVG 30: PX LOW / 30-day moving average;
AVG 60: PX LOW / 60-day moving average;
AVG 100: PX LOW / 100-day moving average;
AVG 120: PX LOW / 120-day moving average;
AVG 180: PX LOW / 180-day moving average;

The dataset is depicted in Figure 2, where the behavior of all vari-
ables can be seem. This data is our data stream. The stream comprises
10 features, e.g., a 10-dimensional stream.

Figure 2. Variables of the data stream used in the presented application. It
comprises technical and statistical indicators (description in text).

3.2 Concept Drift in the Dow Jones Industrial
The methodology presented in Section 2 was applied to the above
data. It is converted into a data stream by taking the data input or-
der as the order of the streaming. All features were previously nor-
malized to the range [0, 1] so they have equal importance in the
Euclidean distances used to process them. The largest moving av-
erage indicator computed was over 180 days. Therefore, only after
the 180th observation can the stream be presented to the algorithm.

However, since we are dealing with financial time-series, it is im-
portant to retain the time dependency of the sequence of observa-
tions. Therefore, in this application, we use a sliding-window of 100
trading days, i.e., approximately a trimester of trading as input to
each aggregation phase. Note that a year of trading has approxi-
mately 260 days. This means that the stream is processed in blocks
of 100 observations that are kept in a queue. For each new observa-
tion that arrives the oldest in the queue is discarded and the new one
added. The parameterization used was the following:

Block size: S = 100;
Number of micro-clusters: q = 10;

Concept drift buffer size: b = 15

The result of the procedure of Section 2.2 applied to the data
stream is presented in Figure 3. Each point of the series corresponds
to the error of the model for a particular trading day, thus provid-
ing possible indications of drifting. It can be seen an overall shape
of a curve that indicates the drift over time. Since this drift is being
computed for every trading day, the “noise” around the curve is con-
sidered normal since it is affected by the daily volatility of the index
values.

To obtain a “clean” curve we apply a convolution filter along this
drift series of the same size as b, i.e., 15 days. An alarm scheme is
created through the generation of an empirical moving average of 60
days performed over the drift series. The cleaned drift curve and its
moving average are depicted in Figure 4a).

We then compare the differences between the drift series and its
moving average obtaining a line that oscillates around zero. We call
this line the drift trend, shown in Figure 4b). Whenever the drift se-
ries has values lower than its moving average we are in a descending
trend. This is reflected in the drift trend with values lower than zero.
Whenever the moving average is crossed by the drift series it signals
a shift in the trend and the drift trend crosses zero. This reasoning to
detect trends is also very popular in financial technical analysis. In
this context, the 60 trading days moving average reflects the intuitive
notion of long-term “decreasing” or “increasing” trend of the drift.

All plots in Figure 4 are aligned in time for easy comparison. Fig-
ure 4c) shows the time series of PX LOW, i.e., the DJI index, that we
compare to the detection of drift performed.

4 DISCUSSION AND CONCLUSIONS
Based on experiments we found that a tenth of prototypes relative
to the number of observations are sufficient in most applications to
represent them adequately, hence, q = 10. Usage of higher values
of q did not improve the results with the additional problem of in-
creased computational time. Additionally, since we are both inter-
ested in abrupt and gradual drift detection we used a moderate sized
buffer of aggregations (b = 15) to compute the series of quantifi-
cation errors. During our experiments we found that this value was
appropriate for the established goals.

By inspecting Figure 4 and comparing the drift trend with the be-
havior of the DJI index we can make two important observations: (i)

Figure 3. Concept drift series obtained through the methodology in
Section 2.2 computed for each trading day.
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Figure 4. a) Cleaned drift curve and its moving average. b) The trend drift curve is used to automatically detect drifting. c) The DJI index time series (PX
LOW variable).

the drift trend crossed zero before the market crash of 2008 (around
day 1500). It appears that the concept that was being learned changed
sometime before the crash occurred. (ii) it may be reasonable to as-
sume that in periods of normality the long-term tendency of these
indexes is upwards. One of such periods is after the recovery of the
2002 market crash, i.e., the dot-com bubble, until the other crash of
2008 (approximately between days 300 and 1300). During such pe-
riod it is interesting to see that the drift trend was always below zero.

In the present work we have shown a methodology to detect con-
cept drift in financial markets. We intend to apply this same method-
ology to intra-day trading as soon as it is possible, thus reinforcing
the need to efficient processing of large volumes of data. The pro-
posed methodology applied over a data stream comprised of care-
fully chosen technical and statistical indicators seems promising in
detecting changes in markets events ahead of time that can reduce
the exposure to risk.

The characterization of the drifts, i.e., trying to understand what is
really changing in the markets through inspection of hidden changes
in the indicators is reserved for future work. Work is under way in
this subject and we are using Self-Organizing Maps [10] to produce
different mappings of the variables for particular segments in time,
namely ones where the market seems to exhibit a stable behavior and
comparing with others where it does not. This segments are obtained
by segmenting time with the concept drift detection. As another im-
mediate future work we will apply this methodology to other indexes
and perform the same study.
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