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Abstract. In this work, pruning techniques for the AdaBoost clas-
sifier are evaluated specially aimed for a continuous learning frame-
work in sensors mining applications. To assess the methods, three
pruning schemes are evaluated using standard machine-learning
benchmark datasets, simulated drifting datasets and real cases. Early
results obtained show that pruning methodologies approach and
sometimes out-perform the no-pruned version of the classifier, being
at the same time more easily adaptable to the drift in the training dis-
tribution. Future works are planned in order to evaluate the approach
in terms of time efficiency and extension to big-data analysis.

1 Introduction

As the number of sensors deployed every day in the real world in-
creases, the ambition of mining these continuous data-streams be-
comes a crucial part in applications. In the recent years, data mining
techniques started to be very popular in sensors mining tasks spe-
cially when related to learning from data streams [3] [10]. These
techniques, stated upon the machine learning framework, are de-
signed to generate a predictive model from a well sampled training
dataset distribution. The model is further used to classify any future
instance of data without the possibility to be updated if the value dis-
tribution of the data-stream changes. In other words, the paradigm
provided by the typical machine learning setting is not suitable for
continuous mining of data streams [5]. The AdaBoost learning func-
tion [2] allows a suitable framework for mining continuous streams
[8]. Being an incremental ensemble of classifiers, this learning func-
tion is updated to grow its knowledge just adding new classifiers to
the previous models. Nevertheless, when many subsequent batches
of data are provided, Adaboost tends to create large ensembles that
suffer of two main drawbacks: (i) increasing memory needed to store
the decision model and (ii) over-fitting. Pruning techniques can be
suited for reducing the dimension of the ensemble by selecting only
specific models. The first attempt of pruning an AdaBoost classi-
fiers was introduced by Margineantu and Dietterich [6] by mean of
comparing five different methods, namely (i) early stopping, (ii) KL
divergence, (iii) Kappa statistics, (iv) Kappa error convex Hull and
(V) Reduce error with back-fitting. Hernanadez-Lobato et al. [4] used
Genetic Algorithms to prune the AdaBoost ensemble, searching in
the space of all possible subsets of classifiers created by AdaBoost.
Zhang et al. [11] defined pruning as a quadratic integer program-
ming problem with the aim to find a fixed size subset of k classifiers
with minimum misclassification and maximum diversity. Neverthe-
less, those works are no suitable solutions for pruning AdaBoost in a
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continuous learning framework. In this paper, experiments on prun-
ing methods for continuous data-streams mining are performed. The
AdaBoost algorithm is trained on subsequent batches of incoming
data followed by consecutive pruning steps. The advantage of this
approach is twofold: (i) on the first hand, when new concepts are
learned, pruning allows to maintain the ensemble in order to be the
least memory consuming and (ii) on the other hand, pruning provides
a first attempt to retain only the significant information acquired
from previous knowledge. The reminder of this paper is organized
as follows. In Section 1, the continuous learning framework, the Ad-
aBoost algorithm and the used pruning methods are introduced and
explained in details. In Section 3, validation protocols are described
and, in Section 4, results are presented. Finally, Section 5 discusses
the obtained results and concludes the paper.
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Figure 1. Continuous Learning Framework

2 Pruning AdaBoost in Continuous Learning

In a continuous learning framework, as shown in Fig. 1, new knowl-
edge is acquired only when the current model does not fit anymore
the incoming data-stream distribution [9]. This decision is performed
by evaluating the current classifier using the function g as perfor-
mance measure and evaluating the obtained performance e. When
e is not good enough, the current model h; is updated training the



learning function f with the new incoming data D;,. Incremen-
tal learning functions should be preferred. In this way, only the new
incoming data will be used for both maintaining the previous knowl-
edge acquired, not having to store historical data. The AdaBoost al-
gorithm represents an incremental learning function able to properly
meet these requirements. Nevertheless the classifiers created by Ad-
aBoost grows linearly as many subsequent learning steps are per-
formed. Here, the pruning function p allows to maintain the model
computationally optimal. Aim of this work is evaluating between dif-
ferent pruning functions p in terms of classifier performance. In the
following subsection, AdaBoost and the pruning methods are pre-
sented and explained in details.

2.1 AdaBoost

AdaBoost, short for Adaptive Boosting, is an ensemble learning al-
gorithm that allows to obtain an high performance classifier by a
linear combination of weak learners. Algorithm 1 shows the pseu-
docode for AdaBoost. The algorithm takes as input a training set
(x4,v:) where x; is a N-dimensional feature vector, and y; are
the class labels. After 1" rounds of training, 7" weak classifiers h:
and T" weights «; are combined to assemble the final strong clas-
sifier. Higher weights a; are assigned to the best weak classifiers
h:. Instantiations of AdaBoost may differ due to the choice of the

Algorithm 1 AdaBoost Algorithm
Input:
- Training set of N samples (x;,y;), withi = 1... N, x; € RN Yy €Y =
{1,+1};
- Weak learning algorithm WeakLearn ;
- Number of learning iteration T ;
Initialize W, (k) =1/N,k=1,...,N;

fort =1,...,T do

1. Train WeakLearn using distribution W, and get weak hypothesis A; ;
2. Compute classification error €; = Pri~w, [ht (k) # Yk :

3. Compute oy = % ln(%) ;
4. Update distribution:

k) exp(— hy(zp
Wt+1(k7) _ Wy (k) exp( Zf:wk t(zg)) :
where Z; is a normalization factor chosen so that W, 1 will be a proper
distribution function.
end for

Output:
H(x) = sign(37_; ache(x));

weak learning algorithm, defined as a learner performing slightly bet-
ter than random guessing (> 50% right-classification). A variety of
weak learners e.g., neural networks or decision trees can be used.
Decision stumps are the most common weak classifiers used in Ad-
aBoost. Decision stumps are one-level decision trees equivalent to a
threshold that best splits the data. Each stump learner is character-
ized by three parameters: (i) the n'" dimension of the features set
where the classifier is applied, (ii) the decision level, i.e., the thresh-
old splitting the data in the nt" given dimension and (iii) the decision
sign (—1 or 41) determining the inequality direction for the thresh-
olding. For a given batch of data with a set of features of size n, at
each iteration of AdaBoost the decision stump that minimizes the er-
ror € in an n** dimension of the training distribution is selected. The
information provided by the final set of decision stumps selected by
AdaBoost can be used for mining which are the significant features
of the data-stream and, more important, which is the best split in the
data.
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2.2 Pruning methods

Three different pruning methods have been used and compared,
namely (i) Reduce Error, (ii) Learner Weights Analysis and (iii)
Pareto Analysis. The Reduced Error algorithm was used first in [6].
Being the original implementation not suitable from a continuous
learning framework, an improved version is proposed in this work
in order to speed-up the process. Pruning has also been performed
using Learner Weights and Pareto Analysis methodologies, both of
them able to provide a set of most discriminative learners from the
whole ensemble. From the far of our knowledge, no previous appli-
cation of those methodologies has been done in the tasks of pruning
an AdaBoost ensemble.

2.2.1 Reduce Error (RE)

In this algorithm, the first step is performed in order to initialize the
pruning distribution W; and to select the weak classifier h; from the
ensemble H which minimizes the classification error €; on W; distri-
bution. This classifier is added to the pruned ensemble P, a weight o
is assigned to it and Wy 1 distribution is also updated as in AdaBoost
routine. Then, iteratively, each remaining classifier h; is individually
added to the ensemble P and the classification error €; of this new
ensemble is evaluated on the pruning set using W41 distribution.
In order to select the best classifier, the classifier h; combined with
P minimizing the classification error €; is definitely added to P, a
weight a; is assigned to it and Wy o distribution is also updated as
in AdaBoost routine. The routine stops when the number of classi-
fiers in the sub-ensemble P reaches a ppre-specified size. The two
main changes with respect the original RE algorithm are the follow-
ing. In the original version, a final back-fitting approach is performed
only after the selection of each weak classifier while in our approach
selection is done at each step. In addition, each weak classifier is
added to the pruned ensemble P only after being re-weighted. This
procedure ensures better classification results than the original RE
formulation.

2.2.2  Learner Weights Analysis (WA)

From the distributions of the weights o in the ensemble, weak learn-
ers were selected based on the following assumptions: (i) weak learn-
ers with higher ensemble weight o are the best weak learners of the
ensemble and (ii) an ensemble is better when more diversified the
classifiers forming it are. The technique works as follow. AdaBoost
is applied on the batch of data to obtain an ensemble of 1" classifiers.
Then, a matrix M is built, by grouping the ensemble weights a; of
each decision stump classifier using their dimension parameter. M
is of size n X D where n is the number of element for each of the
D dimensions. In order to select the best classifiers, M is first sorted
formerly by row and subsequently by column, always in a descen-
dant order. M is transformed into a vector V' by concatenating all its
columns. Finally ¢ classifiers corresponding to the ¢ first weights of
V', witht << T, are selected. The value of ¢ determines the pruning
percentage.

2.2.3  Pareto Analysis (PA)

PA is based on the assumption that few key actions will produce sig-
nificant overall effects. Applied to ensemble learning, this technique
implies that only few key weak classifiers will have an high impact
on the overall performance of the ensemble. PA proposed a statistical



point of view in order to select these key classifiers. This technique is
used to estimate effectiveness of each feature dimension, and accord-
ingly selects the classifiers from feature dimensions with high im-
pact. The effectiveness could be adjusted using a threshold. First, the
features are grouped based on the total number of ensemble weight
which are considers as outliers in each dimension. The outliers could
be found with reference to first and third quartile (Q1, @3), and inter
quartile range (IQR). Values above Q3 + 1.5 x (IQR) are con-
sidered as outliers in each case. The frequency distribution of these
outliers is sorted in descendant order and the cumulative distribution
is computed. Then, the features dimensions are selected based on a
threshold level corresponding to the number of classifiers to keep. All
dimensions with lower cumulative percentage than the threshold (i.e.
desired percentage of maximum cumulative value) are taken into ac-
count. From the selected feature dimensions, the maximum weights
are used to highlight the learners. The technique can be perceived as
a principle dimension selection, where the dimensions considered as
more important are selected.

3 Validation Protocol

Three typologies of experiments have been performed in order to
validate the effectiveness of the pruning methods on both static and
drifting distributions. A cross-validation approach has been used for
validating the methods. At each step of the cross-validation procees,
the dataset has been randomly divided into three sub-sets, training
(50%), pruning (40%) and testing(10%) sets. In the following sec-
tions the validation protocols adopted for each topology of experi-
ment are described. Under the model described in Fig. 1, a proper
threshold T'h has been chosen in order to train the model always on
the new incoming data.

3.1 UCI Datasets Repository

Five datasets from the UCI repository [1] have been used for eval-
uating the effectiveness of the pruning methods. In this validation
step, the KL divergence method as originally proposed in [6], has
been added in order to have a baseline comparison. The datasets con-
sidered are Australian, Breast, Diabetes, Heart and Pima. The mean
number of instances in the datasets is around 700, except Heart hav-
ing 270 instance. The aim of the experiment is to analyse the re-
sults by pruning at 90% an initial ensemble. The average error rate
for each technique was computed using a modified version of ten
fold cross-validation able to consider the pruning sets into the eval-
uation process, with the percentage previously outlined. AdaBoost
algorithm was used to create an ensemble of hundred weak classi-
fiers. Then, each pruning method was performed in order to create a
pruned sub-ensemble containing only ten classifiers.

3.2 Simulated Drifting Datasets

The second set of experiments has been focused on testing the prun-
ing methods in a continuous learning framework. These have been
performed using three sets of simulated data-streams that include
drifting. The datasets are generated using the software provided
by [7]. Figure 2 shows the three different settings for each experi-
ment. Four linear drifts have been considered for the first dataset and
three circular drifts have been created for the remaining two datasets.
The ensemble was incrementally grown using all the drifted distribu-
tions. The experiments performed using the simulated datasets are
described in the following.
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(a) Linear Drift

(b) Circular Drift (c) Circular Narrow

Drift

Figure 2. Artificial data with drifts

Exp. 1: In the first experiment, it is assumed that data distribution
is subject to the change due to different drifts and the ensemble
is incrementally grown over the drifted batches of incoming data
with the main aim to classify the current batch of information.
After the training, the pruning and the testing are applied on a
different samplings of the same drifted batch. The experiment is
repeated five times following a 5-fold cross-validation paradigm.

Exp. 2: The aim of the second experiment is to evaluate the poten-
tial of pruning in classifying both previous and current informa-
tion. With the training kept as in the previous experiment, at each
step ¢ the ensemble is pruned and tested on pruning and testing
sets of the joint distribution Cy U ... U C;. The experiment has
been performed on five different runs, following a 5-fold cross-
validation paradigm.

3.3 Real World Datasets

Three real-world datasets have been used in order to evaluate the pro-
posed methodology on a real world scenario. The datasets considered
are described in the following.

e The Sensor Stream(SS) dataset [12] contains sensors information
(temperature, humidity, light and sensor voltage) collected from
fifty-four sensors deployed at Intel Berkeley Research Lab. The
whole stream contains consecutive information over two months
(2 219 803 instances). The experiment aims to infer the illumi-
nance state based on the measurements provided by each sensor.
[luminance higher than 200 [ux are considered as class 1 oth-
erwise considered as class —1. Every fifteen days, a new batch
of data is collected which leads to three drifts considering the
changes in the lab environment due to weather, humidity and
office work. The experiment was performed using 4-fold cross-
validation paradigm.

Power Supply(PS) [12] is the second dataset used. The dataset
contains hourly power supply consumptions of the Italian electric-
ity company. The stream contains three year power supply records
from 1995 to 1998 (29 928 instances). The experiment aims to
predict the day state morning (1) - night (—1)) based on the raw
consumption value. The drifting in this stream is mainly derived
by some features such as the season, weather, hours of a day and
the day of the week. The data were split in three batches represent-
ing one drift for each year. The experiment was performed using
3-fold cross-validation paradigm.

Elec 2(E2) is the third dataset used. This dataset containing 27 549
instances is composed of seven drifts, each representing a week
day. The drifts are due to changes of power consumptions over
the weekdays. The experiment was performed using 7-fold cross-
validation paradigm.



075 WRE
mPA

0.25

Relative Error [%]
Relative Error [%]

-0.25

WRE
mPA

WRE
WPA

o
N
&

Relative Error [%]

920 50

70
Percentage of Pruning [%]

(a) Results obtained on Linear Drift in Exp.1

| r [T
‘ 0
-0.25- ” 1
0 80 60 50

70
Percentage of Pruning [%]

(b) Results obtained on Circular Drift in Exp.1

90

by f

70
Percentage of Pruning [%]

(c) Results obtained on Circular Narrow Drift in Exp.1

Figure 3. Results obtained on simulated drifting datasets for Exp.1

As in the Exp. 2 on simulated data, AdaBoost is trained for each drift
on the training set of current data. The pruning function is applied on
a pruning set which contains samples of previous and new batches of
data.
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Figure 5. Performance of pruning methods on real world datasets

4 Experimental Results

In this section, results obtained on the experiments described in the
previous section are reported. Misclassification error has been cho-
sen as performance measure. In particular, the pruning methods has
been evaluated using the relative error (e,;) with respect to the error
provided by the no-pruned version of AdaBoost, computed as shown
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in Eq. 1. Hence, methods with negative relative errors are performing
better than the reference model.

€no pruned — €pruned

€ret = —1-

€]

€no pruned

4.1 UCI Datasets Repository

In Fig. 4 the results obtained on the five UCI datasets are reported.
RE is the method performing better than the others, being better than
the reference in Aus, Dia and Hea datasets, and slightly worst than
the reference in Pim. Similar behavior is obtained by WA. Pruning
performs always bad on Bre, where the best result is provided by PA.

4.2 Simulated Drifting Datasets

Results obtained on simulated drifting datasets with Exp. 1 are re-
ported in Fig. 3. RE is the best pruning method for linear and circular
drifting datasets, as previous experiments suggest. In both linear and
circular drifting, WA performs better than PA. Non of the pruning
methods work better than the no-pruned version for high percentage
of pruning. Nevertheless, WA works slightly better than no-pruned
Adaboost when the percentage of pruning is almost 50%. As it may
be expected, the performance of the pruned ensemble generally get
worse as the percentage of pruning increases. Nevertheless, RE is
able to maintain its performance constant over the pruning percent-
age in the circular dataset and almost constant in the narrow pruning
dataset. For Exp. 2, results obtained on simulated drifting datasets
are reported in Fig. 6. In this setting, all the pruned ensemble behave
better than their correspondent no-pruned classifiers. As all previous
experiment suggest, RE is the best method, followed by WA. Also
in this case, although the performance of the methods decreases as
the percentage of pruning increases, RE remains almost constant re-
gardless of the percentage. It should be also noted that the AdaBoost
performance in this experiment is rather bad, reaching a global er-
ror up to 40%. The pruning methods improve this performance until
reaching an error of 25%.

4.3 Real World Datasets

Results obtained on the real world dataset are shown in Fig. 5. Re-
sults obtained with the PS datasets are shown in Fig. 7. RE con-
firms to be the best pruning method, followed by WA. For SS and
E2 datasets, WA and PA provide the same performance. It should be
noted that RE performs better than the no-pruned version for all the
experiments.
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5 Discussions and Conclusions

In this work, experiments have been carried out in order to evaluate
the potential of different pruning methods and their performance in
the framework of continuous learning. The Reduced Error method
is the most consistent method followed by Learner Weight Analysis.
The use of Pareto Analysis does not seem to be justified during the
experiment. Nevertheless, one of the important characteristic of this
method consists in the capability of defining automatically the num-
ber of classifiers of the pruned ensemble. PA may be automatized
by thresholding the performance. Early results show that this auto-
matic version performs better than the original method in most of the
cases. Experiments on simulated datasets in case of Exp 1 show that
pruning methods are more efficient over wider drifted distribution
rather than narrow drifted distribution. Due to the nature of the nar-
row circular dataset, drift stages have more common area and since in
this experiment, current stage has more effect for pruning, compare
to previous stage, the pruning performances are slightly lower. At the
same time, Fxp 2 show that pruning methods perform better than the
original classifier when the whole drifting distribution is presented.
Based on Fig. 6, pruning ensemble through the incremental learning,
definitely improves the final results. Finally, results obtained by ex-
periments on real datasets prove that pruning through the continuous
learning process provides very close or better results than AdaBoost.
As future works, an evaluation of the method efficiency in terms of
computational complexity will be considered since this parameter
has a great importance in a continuous learning framework. For this
main motivation, the reduced error method had been modified in our

o7

research in order to be conceptually capable to run following time
efficiency guidelines and methods based on genetic algorithm and
semi-definite programming have been not used for comparison. Fi-
nally, a study on the extension of the proposed methods towards a
big-data approach is planned to be done. This research shows that
pruning by selecting the weak classifiers from different pools of sub-
sampled data may improve the final ensemble in terms of accuracy,
diversity and adaptation ability to drift. The employed procedures
in this work can be easily adapted for large datasets and continuous
learning environment with the high quantity of incoming data.
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