
I

(

Computer Aided Database Design

Karin Beck, Korbinian Kern, Lore M. Kern-Bausch,
Bernd G. Wenzel

GEMAP mbH, Munich

Abstract

For all DBMS-based software systems, a good database design is the key to perfonnance.
Nevertheless the necessity to support this important task by adequate methods and comfortable
tools has been neglected up to now. As a consequence at least one generation of computer
progranuners fought the battle for necessary perf0J111anCe which was already lost in the begin
ning, lost by design.

Facing this situation, GEMAP first developed a database design methodology called Inf01111ation
Analysis. As database applications become more and more conunon and as they show increasing
complexity today, GEMAP started the development of INFODlC, the GEMAP INFOnnation
DICtionary, a tool for automatic database design based on Infonnation Analysis.

This paper will present to you an overview of this development. The fust section outlines the
basic concepts of our methodology, Information Analysis. The second section shows how the
interactive components oflNFODlC support the infonnation analyst in entering and maintaining
the infonllation structure. The third section covers the topic of consistency checks during all
phases of Infonnation Analysis. The fourth section gives you an impression of the resulting table
1U1d index structures for a relational database. The final one contains an outlook on our plans,
coming enhancements and futllre work.

Keywords

CASE Tool, Semantic Data Modell, InfoJ1natioll Analys.is. Conceptual Schema. Data DictionalY,
Database Design, Tables and Indexes.

•

Contents

1. Infom1ation Analysis

1.1 Objecltypes
1.2 Semantically Irreducible Associationtypes
1.3 Dependencetypes
1.4 The Phases ofInfonnation Analysis
1.5 Deriving Relations and Access Paths

2. INFODIC as an Infonnation Analysis Tool

2.1
2.2
2.3

Entering the Relevant InfOimation
Entering and Maintaining Objecltypes
Entering and Maintaining Associationtypes and Dependencetypes

(

3 Consistency Checks in INFODIC

3.1 Consistency for the Infonnation Stl1lcture
3.2 Consistency Checks in Preparing the Database Design

4 INFODIC as a Design Tool for Relational Databases

4.1 Generating Tables
4.2 Generating Indexes
4.3 Support of Other Data Models

5 INFODIC as a Progranuning Tool

5.1 Generation of Data Stl1lctures
5.2 Outlook

Introduction

INFODIC, the GEMAP-LNFOmlation-DICtionary, is a design tool for conceptual database model
ling.

Based on a semantic datamodel, the infonnation analysis [7], INFODIC describes the information
stlUcture of an application and automatically derives the relational database schema.

The principle ofINFODIC is the object role modelling method, which is based on the semantics of
the natural language ([6], [5], [8]).

1 Information Analysis

The aim of infOimation analysis is to set up the conceptual schema, that means the description of
the infonnation structure of an application, which is not subject to change as the application
evolves. The stl1lctural concepts, used for this pl1lpose, are objecltypes, associationtypes and de
pendencetypes.

Computer Aided Database Design. 2 •

1.1 Objectlypes

An objecllype is a class of things (real or abstract) which is interesting in the context of the appli
cation area. All the different infonnations in a database are infonnations about objects of some
type.

For the following, a bill of material problem should serve as an example: Infonnation conceming
paliS contained in components (with quantity QTY) and their deposits, as well as infonnation about
pal1 suppliers, their address and phonemllnber.

Using the graphical notation of figure 1 for the results of infonnation analysis, objecllypes are re
presented by rectangles. So e.g. "Pal·t" and "COmpallY" are objecllypes.

1.2 Semantically Irreducible Associationtypes

An associationtype is a class of inf0l1l1ations about objects of given types. It can be considered as a
pallem of a naturallallguage sentence.

To avoid instabilities in the infonnation structure, the associationtypes have to be semantically irre
ducible. This means that it must not be possible to decompose all associationtype into one or more
others without loss of infonnation.

In our graphical notation the circular constructs represent asSOCtaliontypes. The associationtype
"part_suppl" e.g. between the object types "part" and "compmlY" represents that pro1s are supplied
by companies. The objecllype "company" plays the role "supplies" in this associationtype, the
objecllype "pro"!" that of "supplied_by".

A role is cOlUlected to exactly one objecllype, which means that only one objecllype can playa
special role in an associationtype.

Along this connection line you read the lower and upper bounds of the corresponding membership
interval ("*" means unlimited). It has to be read from the objecllype (rectangle) to the role. The
lower bound tells us, in how mrolY occurrences of the associationtype any occurrence of the cor
responding objecttype at least has to be found playing this role. The upper bound tells us the
maXlffiUlll,

So in the exmnple, a "part" is supplied by exactly one "company", but one "compmlY" may supply
any number of "pro1s" (including 0). The lower bound of 0 means that we are interested also in
compmlies which do not supply any parts for the moment.

It is important to note, that an associationtype itself may be used as an objecuype in ,mother asso
ciationtype, as the example of figure I shows. I-Iere the associationtype "BaM_entry" plays the role
"has QTY" in the associationtype "BOM_QTY".

1.3 Dependencetypes

Dependencetypes ro'e infonnationtypes of higher order (correlations between infonnations). They
look fOlmally like associationtypes.

Computer Aided Databrlse Design. 3 .

I

They are especially of interest as integrity assertions for databases and as IUles for expel1 systems.

INFODIC is able to record dependencetypes, but they are not yet taken into consideration in a data
base design. Therefore we don't want to cover these topics here and the exan1ple doesn't contain
any dependencetypes.

1.4 The Phases of Information Analysis

It proved very useful to distinguish the following phases in modelling reality using infonnation
analysis.

First, we ask for all the objecttypes we see immediately in our area of interest, we collect all the
infolmation (associationtypes) relevant for our objecttypes, and we document hierarchical relation
ship (subtypes) between our objecttypes.

The second step is iterated for every objecttype in the model until no more new objecttypes appear.
Here we ask for the naming conventions for the objecttypes. It has to be stated here that a nanletype
is an objecttype which is used to reference another objecttype (uniquely or not), that a naming
convention is a special case of an associationtype, which associates an objecttype with its name
type.

Figure 2 shows two naming conventions, one for "part" which can be referenced uniquely by
"part_no", and one for "company" which can be referenced also uniquely by "name".

In addition, we ask for the attributes (interesting infonnation) of our ohjecttypes and keep record of
the objecttype hierarchies. We also fix the physical representation of the objecttypes.

The dotted arrows in figure 2 are the graphical notation for the physical representation of object
types.

1.5 Deriving Relations and Access Paths

In order to derive table structures, we build the connectivity components of those connections in our
graphical representation which are labeled with a membership interval of I: I only, if we want to
end up with SNF relations, or with a membership interval of 0: I in addition, which leads - with
respect to perfonnance - to an opti.n1al design for an RDBMS (Relational DataBase Management
System) handling null values correctly and efficiently (e.g. ORACLE).

Figure 3 shows the connectivity components for the bill of material problem, also the 0: I intervals
are taken into consideration.

Every such component results in one table, which contains one colunm for any objecttype inside the
component and one column for every role, which leads out of the component. All nonlexical
objecttypes have to be replaced here by an unique name (naming conventions).

Every objecttype inside of a cOlU1ectivity component, as mentioned above, is a candidate key. For
every candidate key a unique access path should be implemented in order to SUpp0l1 database inte
grity. Also performance is enl1anced by such an access path.

Computer Aided Database Design. 4 •

(

(

(

(

Additionally we see foreign keys. this means all the roles a candidate key plays in other com
ponents. For these foreign keys additional access paths are to be provided. In database systems
access paths are usually suppor1ed by indexes.

The result of the infOlmation analysis for the bill of material problem is shown in figure 4: The.
relation schema. the unique indexes (underlined colunUl names) mrd the foreign key indexes (join
colunUls indicated by the an·ows).

2. INFODIC as an Information Analysis Tool

Beyond question. information analysis is m1 exact method. but the result is a very expensive one.
because there are lots of details to document. Of course. large systems cm1 be maintained with
editors. but a special tool. checking the consistency and taking care of the context. would offer great
support.

INFODIC is such a tool. It allows the user to view an infonnation stmcture. resp. a meaningful par1
of it, to extend arId modify it while a maximum of consistency is guarar1teed.

INFODIC is fully database supported (for the time being: ORACLE). The architecture of INFODIC
consists of two components. an interactive one to record at1dmaintain infonnation in order to keep
it consistent. and a component to check the information at1alysis and derive the relational database
design, using a precompiler as interface to the INFODIC database.

The interactive part offers masks which a user Cat1 fIll with the relevant infonnation. All masks are
built in such a way that the user is guided from introducing fundmnental input up to the completion
of the infomation analysis. All the time it is possible to delete or extend. and the input is checked
for consistency automatically. All masks are formed with SQL*FORMS V 2.0 ORACLE V 5.1.

2.1 Entering the Relevant Information

A basic mask serves for entering ar1(1 showing the basic infonnation relevarll for the application
area. First, all elements can be filled in without being fully specified. Elements are objecttypes.
associationtypes and dependencetypes. If the user already knows the refined stmcture of his
element. he carl write it also in the basic mask. e.g. the declaration if ar1 objecttype is a lexical or a
nonlexical one.

Figure 5 shows this mask with parts of the relevant infOlmation of our bill of material problem (see
figure I also).

A particular mask serves for long descriptions and comments.

2.2 Entering and Maintaining ObjecttJpes

The mask in Figure 6 describes the refined stmcture of objecttypes only. Here the user must specify
things like the physical representation of a lexical objecttype by a basetype (BOOL. STRING,
INT....) arId its length.

Declar'ations in cOlUlection with special objecttypes. like set or enumeration types. are to be fixed in
[01 additional mask.

Computer Aided Database Design. 5 .

All dates concerning names and types are mandatory, other dales are typedependent and they will
be checked against consistency laler.

The possibility to delete separate objecttypes, which are not involved in any associationtype, is also
patt of the maintenance. INFODIC checks such wishes ,md denies deletion, whenever an objecttype
belongs to any associationtype.

2.3 Entering and Maintaining Associationtypes and Dependencetypes

For these purposes, there exists a mask, too. For the bill of material problem, figure 7 shows the
input possibilities of associationtypes resp. dependencetypes.

Beneath the title "roles", the associations and dependences will be defIned. For this purpose, the
associationtypes are specifIed with the involved objecttypes, their roles and membership intelvals.

lNFODIC guat·atltees that associations, for which the objecttypes palticipated in it have already
been inserted, Catl only be renanled but not deleted. FmthelTIlore it is guaratltecd that role natnes
and membership intervals, with lower bounds not greater than the upper ones, have to be inserted.

As an example for natning conventions, the identification for the nonlexical objecttype "pmt" is
given in fIgure 8. INFODIC prepm'es the name for such a naming convention in figure 8:
"NAM-CON-2". The user has to frll in the objecttype being identified (parI), the identifying
objecttype (part_no) and the concerning membership intervals.

3 Consistency Checks in INFODIC

INFODIC grants the consistency of the information by a lot of checks during and after entering the
inf0l111ation.

As indicated in Section 2, the rust checks are done during infonnation analysis. Fmther checks can
not be done before the inserting is completed. Concluding checks help to prepare the derivation of
the relational schema. The two latter ones are mainly implemented with ORACLE-precompiler
calls embedded in C-programs.

3.1 Consistency for the Information Structure

To guarmltee the consistency of the whole infonnation structure, infollnation analysis can't be
closed without checking that the infollnation is complete. correct and withoul contradiction.

Among others the following rules are checked:

Representation rules for lexical objecttypes

basetypes (BOOL, DATE, STRING, INT) must not be represented

any other lexical objecttype must be represented

exception: a subtype of an objecttype fitting one of the two forstanding items does
not need it's own representation

Computer Aided Database Design. 6 •

(

Rules for nonlexical objecttypes

any nonlexical objecttype must have an unique naming convention

Rules for hierarchical relations between elements

element A is not allowed to be subtype of itself

if element B is subtype of element A, A cannot be subtype of B

if element C is subtype of element Band B is subtype of A, C is also subtype of A

3.2 Consistency Checks in Preparing the Database Design

Especially the membership intervals allow INFODlC to check some semantic rules, which are
fundamental to derive a database free of redundance.

For instance the following checks are implemented

reducible associationtypes are recognized and notified as an error

the existence of undefined occurrences of an objecttype (only zero lower bounds in all
concerning membership intervals) are notified as a waming

nonlexical objecttypes not involved in any association are not considered in the database
design.

4 INFODIC as a Design Tool for Relational Databases

•

So far, INFODlC has been presented as a very general tool for the fom1al modelling of all kinds of
infonnation stmcture. Neither the basic method nor the tool with its logic concerning the recording
and the consistency rules does really restrict the user in any case. Therefore it is not astonishing that
this method is very suitable for fitting fonnally and generally into the rules of the relational
database model ([2], [3], [4]).

4.1 Generating Tables

A relational database consists of tables (relations). These are sets of identically structured data
records with elementary data fields.

In nem'ly all cases, INFODIC is able to derive an optullaltable structure out of the existulg informa
tion stmcture. For DBMS (DataBase Management System I. based on SQL, the tables are buill with
the standard SQL-statement CREATE TABLE, e.g.:

CREATE TABLE company
(mm1e
is_phone_of
is_adch'ess_of

CHAR (40)
CHAR (20)
CHAR (120)

NOT NULL,
NOT NULL,
NOT NULL)

Computer Aided Database Design. 7 .

The necessalY datatype adaption, dependant on the target system is INFODIC's job. For other
than SQL based database systems, it's not a principal problem to generate table descriptions
with allOther syntax like QUEL, for instal1ce, instead of SQL (for INORES). If required, the
implementation will only need a few days.

The reason for the remark, concerning a restricted optimality, lies in the present release of
INFODIC, which doesn't take into account the influence of dependences onto the table structures.
But as we know from experience, only one percent of the tables created by INFODIC show all
insignificrult loss of optimality. Working with such a database, however, is without restrictions
always possible.

E.g.: Very seldom and only in very complex database design problems, a data field may exist twice.
In any case, the result with INFODIC will be better than the solution of the most expel1s, ruld by far
better th1m rulY ad hoc solution, done by feeling without a method.

INFODIC's possibilities are widely spread. On the one hand, the tool supports bill-of-material-like
stmctures, as we have seen; not all database design tools are able to solve such problems (e.g. [I],
[9]). On the other hand INFODIC even generates an optimal database stmcture, when other
methods like the nOlmalization theory must give up. This happens mostly in case of intended
redundallcy, e.g. striking the balance is principally always possible, when the relevant data can be
accessed, and it is notnecessalY to store it, but storing the balance can lead to a better perf0111lallce.
INFODIC does allow to store redundrult information.

Sununarizing, INFODIC applies an optin1al table schema for a relational database nearly
completely and automatically. If this is not possible, it supports such a table schema at least very
efficiently.

4.2 Generating Indexes

INFODIC however not only SUppOl1S the development of an optimal relation schema, it also
SUpp0l1S the development of optin1al access paths on a relational database. It is impol1ant here to
mention, that the sepal'ation of data stmctures (tables) and access paths (indexes), usually seen in
the relational data model, must be done strictly, because it is impor1ant for developing secure
application software; but access paths me also absolutely necessary for tuning aspects, in order to
allow all efficient ruld therefore also economic use of a database.

INFODIC proposes a set of indexes derived from the existing infolmation structure. For DBMS
based on SQL, indexes are built with the standal"d SQL-Statement CREATE INDEX, e.g.:

CREATE UNIQUE INDEX compru1y-naJlle ON comprul), (nrune)

CREATE INDEX par1_supplied_by ON par1 (supplied_by)

The necessary adaptions to the target system me done by INFODIC. Also, in this case it's no
principal problem to generate index definitions with another syntax. When required, the imple
mentation will only need a few days.

The proposed index set contains unique indexes as well as all indexes, necessary for reasonable
joining different tables. Especially all indexes which can gumantee the consistency of the database
belong to this set. These indexes support efficiency, too. Extreme requests, concerning perfonnarlce
and/or the arnount of data may require special tuning actions.

COlIIl'ute.. Aided Database Design. 8 •

Perfonnance aspects could cause the need to changing the sequence of the data fields in a
concatenated index. E.g. the index COMPANY_NAME supports all the accesses onto the
companies' name. If lists, s011ed via phone numbers, are a main application, it would be better to
have an index COMP_PHONE with the field sequence phone and name.

CREATE UNIQUE INDEX comp_phone ON company (phone, name) I

(

(

Moreover, dependent on the target system, it might be useful to generate not all indexes proposed
by INFODIC. So relational database systems may have problems with index fields not occupied.
The proposed index list however is of essential help for the database administrator and it is very
easy to select those indexes, supported by the target system.

Besides, it is not possible to extract all desired accesses out of the information structure. E.g. attri
butes serving as database entries often depend on application details. These indexes must be added.
This should be no problem, because the user knows the conesponding data fields and he can induce
INFODIC to create the index.

It should be mentioned, that the INFODIC index proposal is to be supplemented by different decla
rations depending on the target system, e.g. the index block size, the index organization as B-tree
resp. hashing and so on. But those declarations are beyond the intended aims of INFODIC at the
time.

SUl1Unarizing it can be stated, that the set of indexes proposed by INFODIC is a first but good
approach. It contains all indexes to guarantee structural consistency, also those eventually unknown
to the user. Therefore INFODIC simplifies the tuning of a database inunensely.

4.3 Support of Other Data Models

Though the title of section 4 is restricted to relational databases, it should be mentioned that
INFODIC doesn't favour relational database systems. Table structures generated by INFODIC can
be used as recordtypes for every network or hierarchical database. Especially because INFODIC is
able to propose hierarchical structured records, typical for classic database systems as well. These
recordtype definitions have to be supplemented by the unique identifiers. This is no problem
because the corresponding information is available (as already mentioned, INFODIC can create
unique indexes).

Principally, the relations between recordtypes are also completely available in INFODIC. Therefore
the transfollnation to set definitions in a network schema can be done without difficulties. In case of
a hiermchical database system, those relations directly supported by the database software must be
added. But this step requests a detailed knowledge of all appl ications. because the performance is
thereby influenced in a high degree.

5 INFODIC as a Programming Tool

INFODIC - and moreover the method of infollnation analysis it is based on - does not only support
database design. The application facilities are multivarious ones. But the actual version of
INFODIC does not yet cover all principal possibilities.

Computer Aided Database Design. 9 -

5.1 Generation of Data Sh'uctures

Yet INFODIC generates record structures as INCLUDES conesponding to the database records,
which the progranuner can copy in COBOL· PASCAL· and PL/I programs. Thus the standard
problem of these languages - losing the hierarchical record st11lcture when facing relational data
bases· is avoided.

5.2 Outlook

In the future, there is a new kind of software development growing up. It should be possible to
generate applications nearly automatically, based on the knowledge of the input parameter, the
necessary infonl1ation and the general infOlmation stlUcture. Then the programmer only will have
to show the system on the map of the infol111ation structure the statting point, the intennediate
stations and the tat'get infonnation.

The actual status of INFODIC is a software system able to generate databases, and therefore it sup
ports an area of software development, whose economic meaning is often underestimated.

But in future INFODIC will hopefully mature to a very general software development tool.

Computer Aided Database Design. 10 •

References

[1] R. Barker
SQL*Design Dictionary (SDD)
Proc. 5th European Oracle Users Group

•Conference,
Munich, April 1987

[2] E. F. Codd
A Relational Model for Large Shared Data
Banks
CACM, Vol. 13, No.6,
Junil970

[3] E. F. Codd
FUl1her Nonnalization of the Database
Relational Model
in R. Rustin (EeL)

(
Data Base Systems Courant Computer
Science Symp., VoL6 Prentice Hall,
Englewood Cliffs,
N.J., 1972

[4] R. Fagin
MlIltivalued Dependences and a New Normal
Fonn for Relational Databases
ACM Transactions on Database Systems
Vol. 2, N03,
September 1977

[5] E. Falkenberg
Concepts for Modelling Infonnation
in G. M. Nijssen (Ed.)
Modelling in Database Management Systems,
N0l1h-Holland, 1976

[6] W. Kent
Data and Reality
North-Holland, 1978

[7] L. M. Kem-Ballsch, B. G. Wenzel
Database Design for Relational Systems:
Why, Who, How?
J. Til1lm, Ph. Lord (Ed.)
Europerul ORACLE Users Group Newsletter.
NolO,
August 1986

Computer Aided Database Design. 11 .

[8] G. M. Nijssen
A Gross Architecture for the Next Generation Data Base Management Systems
in G. M. Nijssen (Ed.)
Modelling the Data Base Management Systems,
North-Holland, 1976

[9] Quint
TINA Reference Manual
Quint Database Systems COlporatioll,
July 1985

Computer Aided Database Design. 12 •

(

(

Bill of Malerlal Conceplual Schema I
1 ;n _~'*.

o.~ 0.*
(PE}o.l 0'11< 0.Depot ._- r

-t

(

--
1'1

PhO:]

supplll'!>

0'*

COMpo.ny

I

(

111

Figure 1

COTllflllf{'J' Aided n:ttahase Design - 13 .

(

111

COl'lpo.ny

No.l'll?

P
0.

r
i;

Bill of lIn lOI'llll Concoplual Schornn

Ol!~

I
1

~--S-i;-r-In-g---[- - -

1 \.

I Phone \
I \
I \
I 11* \

: \
\

OllIE
I ."......._-'--_-,
I
I

.1
I

~dclr·,,1

Figure 2 ell" G(IW' N>ll

Computer Aided D.t.b.se Desien • 14 .

!:Jill of Mnlol'llIl COllcoplunl Sohorn"
•

(

I
I

,k

I QTY Jon.

string

Phone

(

l

I
I

I
I
I
I
I
I
I
I
I
I
I

~
Figure 3

COMpo.ny

01906 GCtfAP ~l

Comp"t... Aided D"I"b"5' Dosign . IS·

Relation Schema

+

Indexes

COMPANY (NAME, PHONE, ADDRESS)

PART (NAME, PART)

BOM (PART, COMPONENT, QTY)

STORE (DEPOT, PART)

Figure 4

Com puler Aided Dnlnbase Vesign • 16 •

(

(

I N F 0 DIe
GEMAP Information Dictionary (1.0)

element
ADORESS _

ADORESS
BOM ENTnl\vy,----------------
BOM-QTy _
BooL
COMP'''AN=y---------------
COMP ADDI\
COMP-PHON"'"E--------------
DATE:,,-,- _
DEPOT, _
INT,,,- _
NAME
NAM '''C'''O''N-'l--------------

NAM=CON==2===========================

Char Mode: Replace Page 1

Figure 5

element3
selection 1

type
OBJ-LEX

OBJ-LEX lexical object
ASS-OAT independent as~s~o~c-.
ASS-DAT independent assoc.
OBJ-LEX lexical Object
OBJ-NLX nonlexical object
ASS-DAT independent assoc-.
ASS-DAT independent assoc.
OBJ-LEX lexical object -
OBJ-LEX lexical object _
ODJ-LEX lexical object, _
ODJ-LEX lexical object
ASS-NAM naming convent'~i-::o-::n-
ASS-NAM naming convention

Count: *0

I

I N F 0 0 I C
GEMAP Information Dictionary (1.0)

simple objects
selection 1 I

(
object PART ,NO, _ type OBJ-LEX

type OBJ-LEX lexical object _

repres_by _

object NAME _

repres_by STRING, length 40__ scale

object PART, type OBJ-NLX nonlexical object_'_

length scale

object PART_NO, type ODJ-LEX lexical object _

repres_by STRING length 20 scale

Char Mode: Replace Page 1

Figure 6

Count: 9

Computer Aided Database Desi~1I • 17 •

I N F 0 D I C
GE~mp Information Dictionary (1.0)

associations/
dependences selection 2

association/dependence
BOM_ENTRY _

BO~l ENTRY _
BOM-QTY
CoMP_l\D·nDnR---------------

type
ASS-DAT

Ass-nAT independent assoc.
ASS-DAT independent assoc.
ASS-DAT independent assoc.

maximal occurence

role COMPONENT
object name PART ----------------

minimal occurence 0 maximai occurence

role PART
object name PART;--------------------

minLmal occurence 0

type OBJ-NLX

type OBJ-NLX

Char Mode: Replace Page 1

Figure 7

I N F 0 D I C
GEM1\P Information Dictionary (1.0)

Count: 1lI0

naming conventions
selection 2

naming convention

naming convention
nonlexical object
COMP1\NY _

naming convention
non1exical object
PART. _

NAM CON_l _

NAM CON 1
MIN-MAX- i":;d-=e-=n""t..,i..,f"i"e'"'r=----------- MIN MAX

1 1 NAME 1_ 1_

NAM CON 2
}UN-MAX-i·"'d;:e-:n"'t"'ir:f"'3.~'e"'"r----------- MIN M1IX
1 1 PART NO 1 1- - - --

naming convention
automatic naming (yin) _

nlx. object
identifier

type MIN
__________________ type MIN

MAX
MAX·--

Char Mode: Replace Page 1

Figure 8

Computer Aided Dat.b... Design. 18 •

Count: 2

