
(

IB - An Information Bus:

A Multilayered Information Base Interface

for Remote Applications

Bjf:lrn Skjellaug

Dept. of Information Technology,

Centre for Industrial Research (SI),

P.O.Box. 124 Blindem, 0314 Oslo 3, Norway.

email. addr: skjellaug@si.uninelL

Abstract

A framework for an information bus (IE) is presented. The IE integrates

information bases and remote application systems. Within the framework we

present an outline of an integration methodology, which includes integration

analysis and conceptual specification of an information base interface. The

analysis highlights and structures the strategic and technical aspects of an

integration. The aim of the conceptual step is to describe the infom1ation in a

formal and abstract way. This specification formalism is based on object

oriented methodology (as objects and operations). An example of application

of the IE is given.

Keywords and phrases: Framework for an information bllS, integrulion methodology,

integration analysis, objcct·oricntcd conccplllUl specification, interfaces, inforrmnion bases.

•

1. Introduction
The ni neties will be a challenge to the hardware
and software vendors. In the area of system
Integratton, the market will demand standardized
products and solutions. Still, products are
developed with "ad hoc" or so called "de facto
standard" solutions. These products are not
always directly integratable with other
(hardware/software) systems (based' on
standards), an will increase the integration costs
significantly.

This paper is. structured as follows; Chapter 2
IIltroduces an Illformal description of the strategic
and the technical aspects of the framework.
Chapter 3 gives the formalized methodology for
~ow to ~orm a c<?nceptual specification of an
IllformatIon base I.nte~face. Chapter 4 gives an
example of an apphcalI.on (the example is related
to. tl~e DIMUN3 project [6], project no. 1039
wllhlll the EEC RACE program), and finally
chapter 5 contains a discussion of the framework.

2. A Framework of An
Information Bus

Figure I • The lnlegration Process: before the systems
arc aULonomous, the integration has opened the systems.

Indicated by the plus sign of A+ and B+ afler Ole
integration.

:rhe fr~mework describes all parts of the
Integratton process, some more detailed than
others. This c.hapter focus on the overall problem
of an mtegratton process as an introduction to the
domain it self. We have already mentioned that we
face a horizontal and a vertical process when we
want to integrate different sites, connected by
networks and network services.

(

(

(

S)'SlClll n" Syslem A ..

Inh.·gnliun
pro.... C'Ss

Autono
moo.

I)'stem II

Autono
mous

s)'slC'mA

This. chapt~r focuses on these two parts. As a
~tartlllg. POlllt we say that systems before the
~ntegratlon are autonomous, and after they are
IIltegrated as a whole by the lB. In this context the
h~rizontal integration (exchange) is concerned
wIth the Information representation and
presentation. On the other hand, the vertical
Integration (transmission) is concerned with how
the infOlmation is transferred.

The inf?rmation. bus (lB) is a multilayered
mformatIon base IIlterface. Therefore, the IB will
?e descri.bed by the different layers that are
Illv?lved III such an architecture. The layers and
theIr InterconneClion IS the basis of the
framework. The framework is intended to be a
supplement within the strategic and technical
decision making.

This paper presents a framework as a study of the
complex and heterogeneous environment that
devel?p.ers and.programmers face when extending
an eXlstmg envIronment to include both automatic
exchange and automatic transfer of information
between systems. The application area addressed
in this paper is remote use of information bases
which is relevant within office automation and
Ci M2. Different bottle-necks exist, and must be
conSidered and analysed before the realization of
the integration. This includes aspects as
"openness" of the application systems as well as
types of services provided by the communication
systems, denoted in this paper as horizontal and
vertical integration aspects respectively.

The objective is to present an integration
methodology within the framework. This
methodology consists of two parts. First an
integration analysis that highlights and structures
the differents levels of the IB which affect the
integration. The analysis is given a general and
mformal (natural language) description and is the
basis for an integration process. Secondly, an
outline IS given for a more technical description of
the InformatIon base IIlterface. This part of the
methodology IS based on an object-oriented
approach (but not limited by it) and serves as a
common platform for the conceptual level of the
integration process, i.e. the COnCelJlual
specification.

Still, we have th~ feeling that, with respect to
Integralion, there IS a gap between the application
development and communication development
communities. Techniques and methods that could
help to specify the integration requirements are
missing.

In the present decade there has been a strong
coordination between ISO and CCITII (see
endnotes) in standardization work on software and
communication. This has in turn resulted in
national and international activities (ref.
[11,[2],[3],[4],[5] and others), which promote
profi les based on ISO and CCITI standards and
recommendations respectively.

1

The role of an IE is to integrate different
autonomous systems. Figure I illustrates the
result of an integration process. The autonomous
systems A and B are marked A+ and B+ after the
integration, this illustrates that the systems have
been "opened" in some way or an other as a result
of the integration. In figure I, the integration
solution has solved both the exchange and transfer
problems, Le. horizontal and vertical problems
respectively.

Beware that with an application we mean both the
information bases and the connected end systems.

The term horizontal is chosen because the systems
that are able of interpreting the information are on
the same semantic level.

We may chose among four types of logical
solutions for an integration (or an combination of
these.) They are:

Figure 2 • Two integration aspects

2.1.1 Horizontal Integration

• common infOlmation base
• common user interface
• standard information formats
• common infOlmation directory

Standard Information Formats: All systems have
pre- and post-processors to translate between
native and neutral formats.

Note that in three of the strategies, the
transmission (vertical) aspect is already implicitly
included. The one that is missing this aspect is the
standard format. This gives only a format or a
language for which native formats cau be
translated to or from a neutral one.

Common Information Base: All involved systems
use the same pool of information that is relevant
for use by the systems.

We say that both systems know the semantics.
The description of the semantics is included in an
object protocol definition. This object protocol is
then the horizontal integration solution.

For all four types of integration strategies there are
objects which are exchanged. These objects must
have a meaning for the applications or users.

Common User Inte/face: All systems are available
through one uniform user interface. A user does •
not need to download and upload the systems each
time he or she is going from one system to an
other.

As an example we take an ODA4 or an EDlFACTs
document, here called an ODA or EDIFACT
object. The interior of the object is the specific
structure and contents of the document. If the
object is exchanged from one system to an other,
both systems can, if desired, interpret the
information according to the agreed format and
language.

Common Information Directory: All systems may
use this directory to get information about
information, i.e. meta information.

Sitell

Object
Protocol•

SilcA

c:::::;:::> •---------.-~::>
............Object Transmission ",

service

2.1 Two main integration aspects

The basic difference can be summarized as
followed: The information can be viewed as an
object, where the semantic manipulation knows
both the interior and the exterior of that object.
The syntactic manipulation knows only the
exterior of the object. In other words, the
information is encapsulated in that object.

Meaningful manipulation is not possible if an
operation does not know the interior definition(s).
This leads us to choose an object-oriented
approach for the methodology presented later in
this paper.

We have mentioned two main aspects which both
are essential for the possibility of integration. We
will describe both of these aspects in this section.
First we give a little introduction to the concepts.
They differ mainly in their nature of information
handling. The first is capable of a semantic
manipulation of the information, the second is
only capable of a syntactic manipulation of the
information.

In figure 2, the two integration aspects are
illustrated by means of the horizontal and vertical
concepts - object protocol and object transmission
service - which we define below.

(

(

Horizontal aspects in this paper means the
semantics of the information and the logical
solutions which are closest to the application level.

2

structures information as well as the required
object services for transfer of the desired
information.

2.2.2. The In layers

Figure 4 • "Local" and "global" IB, and the
interconnection of Ulese two.

(

'.

LocaVgkJbal
m

connection

..............~

A Site

1..':1
~ .

~ Local 10
As in the example mentioned above, where we
have an aDA or an EDIFACf object, we need a
transmission of this object, i.e. an object
transmission service. For both ODA and
EDIFACT objects there are, to some extent,
specified services for transmission of such
objects. These services know the basic syntax
structure, and are able to path the objects as
messages from one site to an other. The service
definitions (as well as the object protocol
standardization) is done within ISO and CCITT.

The vertical integration is the transmission of the
information without any concern on what is
transmitted. We may say that the transmission is
some kind of an Object carrier, which carries the
information object from one site to an other.

2.1.2 Vertical Integration

The object transmission service is the vertical
integration solution.

2.2 The IB Architecture

In the previous section we have given a general
description of the two integration aspects of the
Information Bus. In this section we will describe
the architecture of the lB. We focus on each of the
layers, and show the sequence of steps that must
be undertaken as parts of the integration analysis.

ASilc ASHe
The Informotlon Bus

:",,,
ASHe ASitc-

Figure 3 - TIle Information Bus WiOI different sites
conneclCd.

In figure 3 the IB (the hatched area) is illustrated
as the communication bus which provide facilities
for exchange and transfer of information. Each
site represents one or more activities that are
integrated with other activities (locally or not)
through the lB. Thus, the lB can also be a concept
for both the internal integration of activities, as
well as integration of widely distributed activities,
see figure 4.

The IB does not intend to support distributed
mechanisms such as those provided by distributed
DBMS. It rather gives a strategic and technical
basis for a requirement specification of the system
integration analysis. This involves requirements
on how the object protocol represents and

3

We shall describe the strategic parts of the
integration analysis, divided according to the
layers of the lB. All layers of the IB are
strategically important within the decision
making.They all influence the functionality of the
lB. Still, the underlaying layers of an IB are
transparent to the applications or the users. But
they are not transparent for those who perfonn the
integration analysis. Each layer represent a step of
the integration analysis.

In figure 5 the IB is presented with three main
layers, each one is described below. Note that "an
application" will here mean either the information
base(s) or the remote application(s) connected
with the information base(s) through the lB.

e 3
•·5
'0 2

~•
~•..l

Ph)'Jl<'Ij nf!lwor

Figure 5 - lB's three layers (hatched area).

The lower layer of the 18 :Contains at most six
layers corresponding to the 7 layered ISO's Open
Systems Interconnection (OSI) reference model
[7]. In the lB they are: the presentation, session,
transport, network, link and physical layers from
top to bOllom. The problem with this layer of the
lB is that network (and transport) services may
support different solutions from one installation to

(

(

(

•
(

an other. They are named Connection-mode
Network Service, CONS, and the Connection
less-mode Network Service, CLNS. The CLNS is
described in an addendum [8] to the OSI reference
model. There are gateways which can interconnect
networks of different types, but these are not at all
standards. The CLNS was first defined by
DARPA6, and are supported by most of the
computer vendors, known as the TCP/IP
network.

The application communication layer:
Corresponds to what the OSI names as the
application layer, layer 7 of the reference model.
This layer provide communication services to the
application systems. A DARPA protocol also
contains this layer, but does not include the layers
5 and 6. These services are also named value
added network services (VANS), e.g. filetransfer
(FTP, FTAM), mail systems (MHS, X.400,
EAN), MAP, TOP, etc..

The crucial point at this level of an IB rises two
possible decisions concerning the VANS:

• The first concerns whether the organization is
connecting its own IB to a global lB. Then the local
IB must at least support (some of) the services
which is supported by the global lB.

• The second reflects only an internal inslllllation,
from scratch or as extension, of a local lB. Here the
question is: how can one oblllin more and better
functionality between applications? Some services
may in some cases give more overhead because of a
lot of human interaction in the point to point
transmission, e.g. performing file transfer by a mail
system. Therefore, the organization will be better off
with a critical analysis on the possible services to
choose.

The application interface layer: Is illustrated in
figure 1 as the plus signs of system A+and system
B+ after the integration. This interface specifies the
special purpose or the extended functionality of
the application. The openness of a system decides
if a system can be integrated with some other
system(s) or not [9]. The decision whether the
system is "open" or not can be investigated
according to the following criteria:

• Does the system have functions/commands to
external system(s)?
• Docs Ule system have operating system commands?
• Docs the system supporl s~1Ildard exchange formats?
• Does the system support some other known
format(s)?
• Is the internal information format described in the
manual, and may Ule

infonnation be read in ~omc way or an other?
• Is the system able to read and to manipulate
infonnation from

an extemal system/device?

4

• Docs the system support some kind of extension for
user specific commands?
• Does the system support any communication
services?

At this stage the analysis only concerns the
application requirement input. And these
requirements will be described in temlS of services
and information. When an information base is
considered, the services are on the form store,
retrieve and update.

The framework support these services as the basic
services to the applications. Be aware that these
services have an additional description, and
should not be mixed with typical DBMS
operators, [10], with the same names.

• STORE (INSERT): This service acts as
follow: The user has scnt a write request for some
information object to be stored into the information
base, i.e. a new entry. The service will then call
upon the information base store mechanism, which
store the informalion object if OK.

• RETRIEVE: This scrvice acts as follow: The
uscr has sent a read request for some information
object. The service will then call upon the
information base retrieve mechanism, which returns
Ule desired infonnation object if OK.

• UPDATE (MODIFY): This service aCls as
follow: The user has senl a request for an update of
some entry in the information base. The service will
Ihen call upon Ihe informalion base updale
mechanism, which update the entry if OK.

The framework does not consider how the user,
here the remote application, actually performs a
request. But the framework intend to address the
connection, which the IB serve, between an
information base and a remote application. The
application interface virtually connects the
infOlmation base(s) and the remote application(s).
That· is the horizontal connection named as the
object protocol, e.g. aDA and EDIFACT object
protocols.

The application interface layer of the lB is now
desclibed by three possible services. At this stage
we may for simplicity say that the above services
include the object protocol and the object
transmission services, i.e. both the horizontal and
vertical integration aspects. We will later in this
paper show that the services on this layer in fact
are defined with these aspects and give a Jllore
clear distinction betwcen different objects handled
by the specification methodology. (So fare we
have distinguished between two types of objects.)
The conceptual specification, based on the
analysis, must include additional properties of
each service. These properties are:

• Functionality, described above.
• Primitives, what kind of system specific
mechanisms are used, botll input to and output from
application and communication systems.
• Parameters, what type of information is handled,
both input to and output from application aud
communication systcms. The returned rcsult is
positi ve or negative. i.e. success upon request or
nOlo

A more technical and detailed description of the
application interface layer is given in chapter 3.

2.3 The Client . Server concept

In the previous section the application interface
layer of the I.B was described. This interf~c~ giyes
the descripuon of the conceptual speclflcauon
(based on the object protocol definitions) of the
information the remote application and the
information base may exchange. This leads to
view the remote application and the information
base as the client and the server respectively,
exchanging information objects.

There may be different ways to implement the
interaction between a client and a server. The best
known mechanism of such an interaction is the
"Remote Procedure Call" (RPC), first described in
[11] based on ordinary program-language
proc~dure calls. Here, the main idea is that it is
transparent to the user or the calling
program/process whether the execution is
performed locally or transferred to a remote
process.

All client-server interactions (of the specific
application area in this paper) can be viewed as
illustrated in figure 6.

Client Server
Remote Information

Appllcntlon Base

~"'''\>,' k""",
Figure 6 • Client and Servcr intcraction

The server-client concept within the framework is
chosen because it provides the transparency for
client(s) when interacting with the server. The
object-orientation may well be applied as a
conceptual extension to the server-client concept.
A wider description of the client and server
communication and interaction is found in [12].

5

3. The Methodology
The previous chapter presented an informal
description of the IB. In this chapter we first
present the integration analysis and then an object
oriented methodology for the conceptual
specification of the application interface.

3.1 The Integration Analysis

One of the objectives of the framework was to get
a better understanding of the complex environment
faced by system integrators and that the integration
analysis should support the decision making. The
previous chapter has described the layered IB and
the cmcial points of the integration process.

The output of the analysis is the strategic and
technical decisions (including the network
interconnection, VANS and application interface.)
The analysis takes into account each layer of the
IB, but the most critical bottle-neck is the
"openness" of the end-systems, shown as the
application in figure 5.

The three different layers of the IB require four
major analysis steps of the integration process. A
natural language description of the analysis steps
of the methodology is given below:

• Arc tllCre diffcrent nctworks in the cnvironmcnt
and is it possible to connect dlcm?
Renects thc lowest layer of the lB.
• What types of serviccs (and which VANS) do the
networks support?
RcneCIS dlc second layer of d,c lB.
• What kind of application rcquiremcnts are dlcre?
ReneclS the upper layer of the lB.
• Is thc conccptual spccification of the lB's
application interface possiblc?
Renccts the coordination of thc previous sleps.

A breakdown of the analysis into tasks can be
done with help of introducing a flowchart like
symbolism as shown in figure 7.

o Identification or Task

o Task Decision

o Input IO/Output from Task

~ Flow

Coordirwtioll between tasks

Iteral ion? llacklmckingfTcrminaLion

Figure 7 - Symbols of an analysis flowchart

Figure 9 - Network analysis

The diagram of the network analysis are shown in
figure 9.

OUIPlH lo

rcq. spec.
analysis

Req. Input

iteration? _--.<? ")-_~I

The task of the network analysis is to decide if the
involved networks and computers can cooperate in
an environment. The output from the network
analysis is used in the requirement specification I
analysis which ends up with a decision if it is
possible to integrate the desired systems.

The integration analysis steps can then be
described with these symbols as shown in the
diagram of figure 8. In figure 8, there are four
steps indicated with the task symbol. Each of
these tasks will in turn be described by other
diagrams. That is, a breakdown into input/output,
task and flow symbols etc.

(

(

Figure 8 • Steps of the integration analysis 3.1.2 The VANS analysis

Oulput 10

)-_1 rcq. spec.
Uld)'sis

Ilentlo,,?---<

Hentlon1--<

Figure 10 - The application interface analysis

The input requirements to this part analysis are of
the type; types of VANS supported by the
different networks and computers. The effort here
is to find out if the different VANS provide the
same functionality and may they be used on the
different computers.

" Rcq. Input

3.1.3. The Application requirement
analysis

This'analysis has input as follows: description of
the application(s) requirements, information and
system (operation) requirements.

A diagram for this analysis step will be the same
as that shown in the figure 9. The output is input
to the requirement specification analysis,

3.1.1 The Network Analysis

This step has input requirements li~e: which sites
should be interconnected, which networks are
involved, available computers, network and
transport service solutions, mjssing or available
gateways between networks, etc.

In figure 8, the question marks indicate each
decision to be made. That is, should the next
task(s) be performed. If not, one must decide
whether the analysis should be continued by some
backtracking to the previous task(s) or the
termination of the analysis. This is marked
Iteration? in the diagram of figure 8. An iteration
may as well include an evaluation of the
requirements. The output of this analysis may be
used for the conceptual specification. (The output
from each step is implicit in figure 8.)

The integration analysis is a bottom-up analysis.
(On the other hand, the conceptual specification is
top-down.) That is, all the decisions are based on
separate parts of the IB, and the analysis ends up
with a common conclusion based on the part
analysis decisions. Below each part of the analysis
are described with input/output, and task
decisions. A breakdown of tasks to any level of
detail within the analysis is possible. A task then
gives rise to a more detailed analysis part. We
only show the main task(s) of each part analysis in
this paper.

(

6

The first task of this analysis part is to find out if
the end-systems are open, in the terms of the
criteria described in section 2.2.2. The second is
to an alyse the information and the desired
operations and give an output on this. The output
of this analysis will be used in the requirement
specification analysis. We will later in this chapter
give a detailed description of the application
in terface.

3.2.1 The Functional levels

The functional levels of the IE's application
interface is the mapping between the application
services and the communication services.

There are three levels of the application interface,
see figure 12.

Figure 11 - Requirement specification analysis

3.1.3. The Requirement Specification
Analysis

The requirement specification analysis is based on
the previous part analysis outputs. The main effort
here is to decide whether a coordination of the
analysis outputs give the basis for an integration
of the systems. The output of this part analysis
will be used in the conceptual specification of the
application interface which we present a
methodology for in the next sections. This part
analysis is shown in figure 11.

(

(

~
Application

~service level

~
AppJ./Com. 1'-
service level ~

Communication
service level

~

Application

In the application interface the services for the
three levels are:

VANS

• The application service level. Supports
mapping to and from the information base
mechanism.
• The application /communication service
level. Supports mapping between the
application and communication service
levels.
• The communication service level.
Supports mapping to and from the VANS.

Figure 12 . Levels of the application interface
Output to

conceptu.l
spcculC.um

llenlion1

Her.lIon!

The output of this analysis gives an informal input
to the conceptual specification, which is the next
part of the methodology. The input must be on the
form: types of information (see section 3.2.2),
operations on the information and transmission
services.

• Application service level:
* Store
* Relrieve
* Updare

• Application/Communication service level
* MapUpwards
* MapDowllward~

3.2 The Application Interface

• Communication service level
* ReqlleslSelld
* ReqlleslReceive
* ReqlleslRelll1'll

In this section a more detailed description of the
IE's application interface is given. All details will
as far as possible be described in terms of object
oriented concepts.

The list of services above is not complete, it
indicates the main services of the application
interface.

7

(

3.2.2 Information objects

Information objects are what the systems
exchange. The information object definitions
contain the user or application specific conceptual
scheme of the Universe of Discourse (UoD). The
UoD is the part of the real world we are
modelling. The methodology does not give a
conceptual schema description in the sense of a
traditional database schema found in [10].

An information object is containing the
infonnation and the representation definition,
explicit or implicit, of that object. The
representation can according to a predefined model
be included in the class definition of this type.
Each infonnation object has a class definition.

The infonnation representation could use many
types of formats or models, we have already
mentioned two: aDA and EDIFACT. Other
fonnats are also possible. Infomlation objects may
also include operations such as conversion
between an application specific representation and
the communication specific fonnats.

Information objects could be composite or
complex objects, consisting of any level of object
abstractions (ref. [13], [14]). The lowest level of
information abstraction is elementary data (or
elementary infomlation objects), objects which are
not described by means of other information
objects. The elementary infonnation objects could
be modeled by use of traditional data models such
as the relational or network model ([10]), or the
entity-relationship model [15]. The complex or
composite infonl1ation objects are in this context
aggregates of other objects. For the methodology
we have two levels of abstraction for the
information objects. The first level is the
identification of the objects. The second is the
modelling of the objects by means of existing data
modelling techniques.

Because we let the info..mation objects be
described by means of diffe..ent data models, there
must at least be two constraints which are
satisfied. The info..mation objects which a..e
composite or complex objects must fulfil the
following two const..aints [16];

• Completeness - An information object is
complete when it represents aspects expressed
in the requirement specification analysis
output. Thus, every composite or complex
object refers to concepts that appear in the
elementary definition(s).
• Correctness - An information object is
correct when it uses the concepts of the
model(s) to represent the output of the
requirement specification analysis.

8

3.2.3 Object description

In section 2.2.2 three main prope..ties fo.. a service
were desc..ibed, the functionality, the p..imitives
and the parameters (attributes).

The Service type is the generic type of all objects
described in the application inte..face. An object is
an abst..act object, and the technique permits
desc..ibing:

I) The characte..istics of objects which
co....espond to static aspects of the
application interface.
2) The handling of these objects
which correspond to the actions of the
va..ious se..vices of the application
interface.

The abstract objects described in a specification of
the application inte..face will imp..ove the.
unde..standing of the ..ole and the actions of the
!B's application interface. This leads to two partial
descriptions for each object, or abstract entity:

I) the cha..acteristics of this entity, and
2) the operations of this entity.

From the above we have divided into to three
types of distinctions. The first is the functional
description, called the services. The second
desc..ibes the cha..acteristics (semantics) of an
object, also named as the object p..otocol. The
thi..d is the set of operations which perform the
t..ansmission, also named as the object
t..ansmission services. Note that we distinguish
between operation on the information and
ope..ation for transmission of infomlation.

,
The first of these distinctions is a generic type
which we shall see includes both the object
protocol and the object t..ansmission. '

3.3 The Object-Oriented
Implication

The idea of an object-oriented approach is the
mapping of a human's understanding of a real
world phenomena into a computer-based
description [17]. That is, the mapping of the UoD
into some sort of a conceptual scheme. The use of
an object-oriented approach makes the mapping
more in terms with real-world phenomena and
concepts. A real (or imagina..y) part of the world
(phenomena and concepts) behaviour may then be
simulated as a physical model [18].

The object-oriented approach presented herein is
not based on any specific object-oriented language
or method. The way of introducing it here is the
top-down mechanism and its "close to real world"
static and dynamic structuring. The static
structuring will be focused in this paper. For
dynamic structuring the use of evaluation net
description can be applied. An evaluation net is an
oriented graph using three types of nodes (states,
reques ts and transitions), and can be a supplement
to the object-oriented approach.

3.3.1 An Object-Oriented Approach

The methodology applied uses the following basic
object-oriented properties [18], related to
specification (and design) rather than
progranuning techniques:

• Phenomena aspects: The physical matter
that we identify in the DoD. These phenomena
can be given properties. And transformation of
these properties are possible.

• Concepts aspects: For the modelling
aspects of phenomena it is necessary to use
abstractions or concepts. A concept notation
has the following elements:

* Name: Denoting the concept.
* IlIlelllioll: The properties
characterizing the phenomena covered by
the concept.
* Extellsioll: The phenomena covered

by the concept.

• Abstraction: Is the process of creating the
concepts. Three main abstraction mechanisms
are shown, they all focus on similar
properties of phenomena:

* Classificatioll: Phenomena covered
by the same concept.
* Aggregatioll: Concepts defined by
means of other concepts.
* Gelleralizatioll: Concepts may be
organized in a classification hierarchy.

In classical object-oriented notation a phenomena
is denoted as A Class or A Generic Class, rhe
latter as the generic classification abstraction of the
former. A Class is described by attribute types,
i.e. properties of the phenomena, and (sequence
of) actions, i.e. the u'ansformation of phenomena
properties.

An Object is an instance of A Class. The
characteristics of the instance is that a class is
instantiated by means of Class and Instance
Attributes issued from the generic class.
However, this is outside the scope of this paper.

A class can further be a subclass of an other class
(denoted superclass), where the subclass inherits
the properties and transformations from the
superclass. This is called generalization.

Where a class is described by means of other
classes, the class is an aggregate of the other
classes. The aggregates only concern the
information objects of this methodology.

3.3.2 Object - Syntax Description

A Generic Object is defined as followed:

Generic Object: (name of the generic class
of the objcct)

Example:
Genedc Object: SERVICE

(generic object associated to a service)

A Class is defined as followed:

Object: (name of the class of the object)

Example:
Object: SERVICE (class associated to a named

service)

A Class reference is defined as followed:

Object: (name of the class of the object)
{

Attribnte: '(name of referenced class)
Key.Attribute: (key-allribute name)

}

A key attribute identifies, uniquely, an object, a
class or a generic class

A SubClass is defined as followed (single
inhetitance):

Object: (name of the class of the object)
{
Attribute: (attribute name)
Attribute: Inherit f"om (name of superclass)
}

A Class method is defined as followed:

Object: (nmne of the class of the object)
(
Functionality: (0 a description of the object's

functionality 0)
Attribute: '(class name) I (attribute name)

(default values optional)

(

Primitive: (. types of primitives to be used·)
[
Condition:

(attribute name) = h(value object class name)
(primitive name) (Input, Output)
Input:

h(class name) I (attribute name)

Output:
h(class name) I (attribute name)

Do
#
(. actions described in terms

of imperatives .)
IF (Condition)

(·imperatives·)
ELSE

(·imperatives·)
#

}

The different parts of the object are enclosed as
followed: object body by {} brackets, the object
primitives by [] and primitive imperatives by ##.

The characteristics of the object is described by a
number of Attributes and the operations on
objects are described by a natural language
(Functionality:) and service primitives
(Primitive:).

The primitive will only be executed if the
Condition: holds, i.e. true. However, the
condition is optional. The condition refers to a
single attribute of this class. The value object is a
specific object containing the possible values
which can match the attribute value.

Note that the output and input parameters indicates
which attributes or other objects are transferred or
received by this object definition. This is done by
p'athing a message (contents of an attribute or
reference to an object) or receive a message.

The methodology uses the common terminology
of objects, attributes and methods (primitives),
and type notation of such.

3.3.3 Examples

To exemplify the use of the object-orientation part
of the methodology for the conceptual
specification we will use the services for an
information base application listed in section
3.2.1, and relate it to the example of section 2.1.

In section 3.2.3, we said that all three levels of the
application interface are defined as objects

I 0

instantiated of an generic type (see GellericService
below). Each of these objects are in turn
superclasses for the service listed in section 3.2.1,
e.g. Siore is a subclass object of the superclass
object ApplicatiollService, and therefore inherits
all its properties and primitives.

A few examples on the definitions of some
application interface objects are given. These
examples show how the methodology
incorporates the analysis output directly into the
definitions of objects. Where the different parts of
the analysis output such as functionality, primitive
and information object descriptions are formalized
in the object definitions.

Example 1:

Generic Object: GenericSen'ice
{
Functionality: (. Serve the needed support of

mappings in the application iJ1lerl'acc *) •
Class AII";butes: (* class specific *)
Instance AII";butes: (* instance specific *)
)

Example 2:

Object: ApplicaliollService
{
Functionality: (* provide an action upon request

10 the information base and returns
the resull of the request*)

Allribute: SlaillS (default error valuc)
Allribute:
Primitives: (* Store, Retrieve or Updalc

at this level·)
[
III/a (Output)
Output:

Slallls (. returns a status value .)
Do

#
Slatlls :. hlll/obaseSlallls
MapJ)olVlIlVards (Slatlls)
#

}

Example 3:

Object: Store
(
Functionality: (* call upon the information base

store mechanism if ok *)
AII";bute: Inherit frolll ApplicaliollSel'l'ice
AII";bute: lIeq.N/lllle
AIl";bute:
Primitive: (. information bnse store *)

I .
Conditiou:

Req.Name = 'IlIfobaseUserlisl
JllfoSlore (Input, Output)

Input:
'Illformatioll (0 object containing

info to storc 0)
Output:

Slallls (0 inherited from
ApplicatiollS ervice 0)

Do
#
(0 calls upon thc information base routine and
unpacking of the Illformatioll object 0)
IF (Condition)

IllfobaseS lore (A I Ilformatioll)
Illfo (SlaWs) (0 return status of call 0)

ELSE
MapDowllwards (Slalus)

(0 return default status 0)
#

}

From the examples above the generic object
GellericService definition is straight forward. The
ApplicatiollService has a more detailed definition.
This service is defined by means of a Class
Instance of the GellericService. The
ApplicatiollSenice has a Slalus to return after
termination. All services which are subclasses of
the ApplicaliollService therefore inherit this
Sla/us assigned by the primitive Illfo.

The S lore service is a subclass of the
ApplicatiollService, and has inherit its
description. Attribute Req.Name of Slore must be
assigned a user name before this object will
execute its primitive IllfoSlore. In this case the
user name is for the authorization mechanism of
the information base interaction, i.e. the user name
of the remote application. The input to IllfoS/ore
is an information object called Illformatioll. This
object contains the specific information to be
stored. The information is defined by the
identification shown in the example above and
with some basic data modelling technique referred
to in section 3.2.2.

As an illustration the information object
Illformatioll could be an aDA or an EDIFACT
object, which include the structure and contents of
a specific aDA or EDIFACT document. On the
other hand the information object could be simply
a SQL like INSERT statement ([laD, which
include both information and operation.

The examples above are describing objects at the
server sile. The same set of objects must also be
defined for the client site. But, some differences
exist, such as a request upon the store service.
The client site will MapDowllwards the
Illformalioll the server site will MapUpwards the
Illformalioll. The same is true for the

I 1

RequeslReceive and RequeslSelld services.
However, the information object definitions must
respect the constraints described in section 3.2.2.

From the above definitions we may show how the
sequence of actions are taken place for a clienl
store request.

Actions at client site:
Slore (AIllformatioll)

(Ole information object store request)
MapDowll wards (AIllformatioll)

(mapping between levels)
R equ esIStIId (AClielll-idtlll)

(transmit the identification object first)
R equeslSelld (A I IlfOrmalioll)

(transmit the information object)

COlTesponding actions at the server site:
R eq ueslR ecei ve (ACIi til I· it/til I)

(receives first the identification object)
R equ eslR eceive (A JIlformatio 11)

(receives the information object)
MapUpwards (Req.llame:- AClitlll-idelll)

(mapping between levels)
MapUpwards (AIllformatioll)

(mapping between levels)
Slore ('Illformalioll)

(store if condition holds)

4. The DIMUN project

The DIMUN project is a project in the Usage
group within the RACE program. The project is
focusing on applications of Integrated Broadband
Communication (mC) and utilization of these in
distributed manufacturing. The project has broader
objectives than those addressed by the framework
and the methodology described in this paper [6].
DIMUN is divided into several workpackages,
and one of these concerns integration of
infomlation base(s) and remote applications of tire
manufacturing process. The methodology
presented In chapter 3 IS based on the need of a
tool to specify such an infOImation base interface.

In this workpackage the analysis and requirement
specification of the information bases and
interfaces were executed in '88. The outcome was
an identification of information and interfaces of
such an environment. The analysis did not
concentrate on the lower layers of an 1B, only on
the application layer. A brief description of the
results and future work are presented below.

An information base is grouped into three main
logical units [19]:

• Customer DB . contains information
from/to/for customers, e.g. customer name,

Figure 13 . A remote application - DlMUN information
base interaction

address, request, offers, orders, public
relation documents, etc..

• Product DB - contains information of
products, e.g. product structure, technical
drawings, design data, calculated data, etc..

• Manufacturing DB - contains
information about the manufacturing
process, e.g. structure of the distributed
manufacturing process, planes/schedules,
monitoring information, reports, etc..

The connection between a remote application and a
DIMUN information base is shown in figure 13.

s. Discussions
The framework presented in chapter 2 .gives an
informal description of the comple~ env~ronment

faced by integrators, when Il .In.cludes
information exchange and transmlsston of
information. We have distinguished between these
two aspects and showed that the aspects reflects
two areas within integration. That IS, the
horizontal and vertical aspects. Therefore, we also
include both aspects within the framework. They
are both part of the methodology, first in .the
analysis and later in the conceptual speclflcallon.
To our knowledge there are no other framework
or methodology that addresses both the aspects of
integration of heterogeneous systems.

These two topics are not necessary a twofold of
the same integration process. In the former case
we may only need some kind of standard
exchange formats such as IGES7, ODA or others,
and corresponding pre/post processors..In the
latter case it is a matter of an automatic and
physical transmission of the information. This is
done without concern to the lnformallon
semantics, as in most of OSl's application
services.

Remote
Application

(

(

The methodology is used to specify the static pans
of the application interface. It has also Improved
the understanding and stnlclliring of the Intelligent
Enterprise Interfac.e, and wip be used as the
technical documentallon of tillS lI1terface.

The methodology presented in chapter 3, includes
different data models for the definition of the
information object contents. This part of the
methodology makes it possible to descnbe the
integration of existing heterogeneous systems.

Acknowledgements: The frame,,:,ork presented
here is mainly a result of the author s parllcipalion
in the DIMUN project. A thank to all panners for
interesting discussions. as werecomments by Lise
Arneberg and Heikki Hammiilnen on an earlier
draft, and by Per Anton Fevang on the last version
of this paper.

(

For each site in the distributed manufacturing
process there may be one l<;>gical informatio.n b~se.

Each one is interfaced wIlh the commul1lcallon
systems with a so called Intelligent Enterprise
(Server) Interface (IEI). The levels of the
application interface in chapter 3, are also p~esent

in the lEI. The information base interface IS one
service of the IEI and is descri bed by the
methodology presented in chapter 3. Thus, the lEI
is more than an information base interface, it is a
concept which interfaces all the services of the
enterprise [19].

The first prototype of the lEI will be implemented
summer/autumn '89. The lEI prototypes wtll be
installed by the pilot partners in other
workpackages of this project.

The IEI prototype is planned to exchar.lge and
transmit technical infonnation (CAD drawmgs and
images) as well as business like information
(orders and offerings) between different partners
of the project.

For each type of information there is three objects
to be defined and specified. The first is the
application service, which gives the basis of
handling of the information. The second IS the [I]
information objects (i.e. object protocols) I1sted
above for the three logical units. The third is the
transmission (i.e. object transmission service)
which in DIMUN are ordinary VANSs.

References:

Towards a Dynamic European Economy, Green
Papcr on thc Dcvclopmelll of ~le Common Market
for Telecommunications Services and EqUlpmenl;
Commission of the European Communities, DO
XII. May t987.

12

(2)

[3]

[4)

[5]

"'UK- GOSIP, The Government Open Systems
Interconnection Profile", HMSO Publications
Centre, London, ISBN Oil 3305176 and ISBN Oil
3305184.

KA. Bringsrud, E. Mj~vik and T. Grimsllld
"'National Plan for OSI-net in Norway", Norwegian
text, NCC·note DTEK/08/88, Norwegian
Computing Centre, Oslo, Norway.

"ISONET-S", a IT4-project in Sweden
Wolf Arfvidson, Sllldskontoret, Stockholm, Sweden.

"COSINE, Cooperation for Open Systems
Interconnection Networking in Europe", Cosine
Policy Group, Commission of the European
Communities, DG XIII-A2.

[16] G. Di Battislll and C. Batini
"Design of Sllltistical Da~~bases: A Mcthodology for
The Conceptual Stcp", Information Systems, Vol.
13, No.4, pp. 407-422, 1988.

(17) Trygve Recnskaug
"A Methodology for Design and Description of
Complex Object-Oriented Systems", Version 0.1, SI
publication no. 87 01 26 - I, Oslo, Norway, 1988 ,
© 1988 Centre for Industrial Research, ISBN 82
411-0103-1.

[18] O. Lehnnann Madscn and B. M~lIcr-Pedersen
"What Object-Oriented Programming May Be- and
What It Docs Not Have to Be", Proceedings
ECOOP'88, pp.I-20, Oslo,Norway, Eds. S.
Gjessing and K. Nygaard, © Springer Verlag Berlin
Heidelberg 1988, ISBN 3-540-50053-7.

(6) "Analysis of Status quo and Communication
Requirements", DIMUN, project no. 1039,
Deliverable DI-2 to RACE Office, Commission of
the European Communities, DGXIII-F, Tele
communication, Information Industries and
Innovation.

[7] Open Systems Interconnection - Basic Reference
Model, ISO 7498

[8] Addendum to Open Systems Interconnection
- Basic Reference Model, ISO 7498/DAD I

[9) Skjellaug Bj~m and Solbakk Svein Arne
"Integration of Heterogeneous Systems", Norwegian
text, SI publication no. 87 762 - 2, Oslo, Norway,
1987, ISBN 82-7267-952-3.

[10] C. J. Date
"An Introduction to Dalllbase Systems"
Third Edition, © 1981 Addison-Wesley Publihing
Company, Inc.

[II) Bruce Jay Nelson
"Remote Procedure Call", Dr. Thesis, May 81,
Xerox Palo Alto Research Center, report no. CSL
81-9, Palo Alto, CA, USA.

[12] Gro OCtedal
"The use of Remote Applications from a Smalltalk
Workstation", Master Thesis, Jan. 87, Centre for
Industrial Research (SI), Oslo, Norway.

[13] K.R. Dittrich, A.M. Kotz, J.A. Mulle
"A Multilevel Approach to Design Database
Systems and its Basic Mechanisms", Proceedings
IEEE COMPINT, Montreal 1985.

(14) D.S. Batory and A. Buchmann
"Molecular objects, abstract datatypcs, and dala
models: A framework", Proceedings of VLDB, pp.
172-184,1984.

[IS] P.P. Chen
"Thc Entity-Relationship Modcl: Towards a Unified
View of Data", ACM Transactions On Database
Systcms, 1:1, pp. 9-36,1976.

13

[19] "Specification of Information Bases and Interfaces"
Ed. Bj~rn Skjellaug, SI publication no. 89 01 06
I, Oslo, Norway, 1988, ISBN 82-411-0129-5.

1 ISO. International Standards Organization
CenT - Camite Consultatif lnternational Tclcgraphiquc ct

Tclcphonique.
2 Computer Integrated Manufacturing.
3 Qistributcd International Manufacturing 1!.sing CltiSling and
developing public lictworks. Partly supported by the
Commission of the European Conu11unities (DOXIlI.F). NTNF
. The Royal Norwegian Council for Scientific and Industrial
Research - (granl no. IT.3.31.22917) and The Finnish
00Ven1l11ent's Technology Development Centre (project no.
4200/87), and partly by the projeci members.
4 Opcn Document Architccture. Standard by ISO and CelTT
5 Electronic Data Interchange For Administration, commerce
and lIade. Standard by ISO and CCITT

6 Defence Advanced Reseach Projcct Agency· US Department
of Defence
7 Initial Graphics Exchange Specification, published by U.S.
Department of Commerce. NBSIR 88·3813.

(

(

