
(

SYSTEMS DEVELOPMENT

Basic flaws in the current culture
Ideas for rectifying some of the problems

H A KINGSBURY
formerly Principal Lecturer

Department of Computing
Staffordshire Polytechnic

England

Abstract

Systems Development: - Basic flaws in the current culture
- Ideas for rectifying some of the problems

It is nov 21 years since the term 'Software Engineering' vas coined. In
this time relatively little progress seems to have been made in getting
the development of computing systems under control. This paper identifies
three basic flavs in computing systems development cUlture, it tries to
identify the reasons for the flaws and suggests some ideas for rectifying
them.

The flays identified are:

(i) A lack of a quality culture in computing systems
development.

((ii) Application domains not clearly defined/understood/
researched.

(iii) Too often computing research and development seems to be
fragmented and heading in all directions simultaneously.

An example of the lack of an understanding of quality and its consequence
is as follows:

"The perception and assessment of the quality of things vith which ve are
familiar is an accepted and natural skill, eg clothes, cars,
accommodation, engine components, videos, literature, etc.

Also the people responsible for developing these products normally know
hov to achieve the required quality level.

Abstract (Contd)

With respect to computing systems, in general the doers and supervisors do
not appear to have developed the skills of assessing the quality of a
software product and/or its components. Hence hov vill then deficiency
affect the selection of alternative sources of reusable code?

["It is not enough for everyone to do his best. Everyone is already doing
his best." Dr U E Deming.]"

(,
Much, probably most, research and development in computing systems is
computing or softvare technology led (eg The Alvey Program).

The paper suggests that more research and development should be
'Application domain' led. Initially to identify the domains and the (
particular tools/skills/design needed, both technically and managerially.

If the 'Application domains' are understood then it is· possible that
softvare engineers vill be able to move from being mechanics or
technicians (equivalent to 1880 engineers) to engineers who understand the
application area in which they work (equivalent to 1990 engineers). Also
if research and development is application domain led then it is probable
that the development of quality cultures in specific domain areas may
accelerate.

\

Contents: Section 1
Section 2

Section 3
Section 4
References

Introduction
Possible/Probable reasons for the failure
of the Software Engineering Industry
Potential Areas of RAD
Conclusions

-1-

(

1. Introduction

It is now 21 years since the term 'Software Engineering' was coined.
I believe that the Software Engineering task is to produce the

right' product
on time
within budget.

In other words to produce software (or system) products of the
correct quality level; using as a definition of quality -

fitness for purpose (right product on time)
and value for money (within budget)

Unfortunately, from personal observations and articles in the
technical and national press, it would appear that the software
development industry in losing the confidence of its customer base
because, all too frequently, it cannot deliver goods of the correct
quality level.

"A, recent survey showed that 28% of the clients of
the UK's top accounting firms had suffered a computer
disaster within the last 5 years

Research from the US shows that 90% of firms
which suffer a major computer disaster have gone out
of business within 18 months

..... in the hands of a bunch of roving mercenaries
hired by a department with a track record of failing
to deliver to time or cost ••. "

THE TIMES
3 May 1988

The purpose of this paper is to:-

(a) Identify some of the reasons for the failure of the
industry, these are probably familiar to most of us.

(b) To suggest some areas for research and development.

(c) The stimulate discussion.

-2-

I

2. Possible/Probable reasons for the failure of the Software
Engineering Industry

Probably the prime causes for the problems facing the industry are:

2.1 A lack of a quality culture in the computing systems
development industry.

2.2 Application Domains not defined/understood/researched.

2.3 Too often computing research and development seems to
be fragmented and technicality led. ({He} flung
himself upon his horse and rode madly off in all
directioni."

Stephen Leacock}

(

2.4 Education and training is primarily aimed at producing
technicians, not software engineers.

2.5 Lack of education in design.

2.6 The expansion and growth of applications and
application areas.

2.7 Lack of management skill and/or knowledge.

2.8 Staff turnover

'Some sections of the IT industry have to replace
almost 25% of their staff every year because of the
high turnover rate "

" it has been estimated that it could cost the
IT industry up to half a billion pounds every year to
replace staff."

THE TIMES
19 January 1989

2.9 Resistance to change both technically and managerially.

2.10 Little knovledge transfer from other areas/industries.

2.11 Poor record keeping.

-3-

(

3. Potential Areas for R&D

Hopefully the following areas for R&D cover 2.1 to 2.11, also it is
probable that current R&D is already tackling some/most of the
problems.

3.1 Lack of a Quality Culture.

("It is not enough for.everyone to do his best.
Everyone is already doing his best." Dr WE Deming)

3.1.1 This lack of a Quality Culture has probably been
brought about in the UK because:

(a) The growth of the industry has been sustained by
recruiting young people, frequently new graduates.

(b) Historically it appears to me that Universities
have been primarily interested in research and
that quality has been equated mainly with
excellence. [Perhaps this is one of the reasons
vhy ve as a Nation think we are gOOd at research
but not so good at development ie turning research
into marketable products.] To a large extent
POlytechnics have imitated Universities.

Thus it is probable that undergraduates in
computing vill receive little or no education in
quality; and will also gain little practical
experience in it. [This is also probably true of
the tutors].

Solution

Project A (i) - R&D activities within Universities/
Polytechnics vhich are funded by
outside sources such as ESPRIT say, to
be carried out under some defined
QUALITY CONTROL SYSTEM (based on
BS5750, MOD or NATO requirements say)

Project A (11) - Computlng departments wlthin
Universities/Polytechnics carry out
their functions under a QUALITY
CONTROL SYSTEM.

Experience gained from (i) and (ii) would naturally be
fed back into undergraduate education, this should help
to resolve 2.1, 2.4 and 2.9 ..

[Note. A QUALITY CONTROL SYSTEM defines what has to be
achieved within an organisation, not how to
achieve it.]

-4-

I

Potential Areas for R&D (Contd)

3.1.2 The perception and assessment of the quality of things
with which we are familiar is an accepted and natural
skill, ie we have a 'black box' .assessment skill for
clothes, cars, accommodation, engine components, films,
videos, literature etc.

Also the people responsible for developing those
products normally know how the quality is achieved
(ie white box assessment).

With respect to software, again we probably have
reasonable skill in assessing black box quality (as do
our customers), it is unlikely that we are very
skilful in 'white box' assessment of the product
ie requirements definition, design, code, verification,
validation. .

Project 5 More R&D into software metrics,
hopefully supported from installations
using IPSE's.

This could help to resolve 2.1 and 2.9.

-5-

3.2 Application Domains

Probably one of the largest areas of ignorance is
understanding the boundaries of, or knowing the
definition of, application domains; in any case they
vill not be absolute. Also it is probable that too
much R&D is bottom up driven, that is development
routes/tools/management control systems are designed
for general purpose use in all (or most) application
domains.

It is possible, that more cost effective software
development systems capable of producing products to
defined quality levels could be devised if we defined
and understood the application domain, then designed
the software development system together with the
Quality Control system.

In a recent Cardiff Business School paper,
"Manufacturing and Personnel Strategy in Western and
Japanese owned Companies in Britain" by Nick Oliver and
Barry Wilkinson the authors observe· that:

"Traditionally Japanese companies put their
personnel strategies into practice at the
same time as the new manufacturing and
working methods."

" the Japanese are introducing far
more of the personnel practices for which
they are renowned - highly selective
recruitment, direct communication, long
term employment for core workers "

etc

This really confirms the need for total quality
control, not just quality control of the technical
activities.

Solution C (i) - Let us assume that Computing Departments in
Universities and Polytechnics are an
application domain area. One year after
the start of solutions A (i) and A (ii)
carry out a survey of the domain to
confirm, or otherwise, that it has clear
characteristics and a boundary; identify
a 'best fit' quality control system;
identify a 'best fit' software development
route and personnel functions. (See fig
1) •

Solution C (ii) - From experience gained from C (i) and/or in
parallel vith C (i) develop and produce
domain definitions, domain specific quality
control systems, software development
routes and personnel management activities.
(See fig 1).

Solutions C (i) and C (ii) may help to resolve 2.2, 2.4, 2.6,
2.9 and 2.10.

-6-

I

Application Domains (Contaj

APPLICATION DOHAIN
ana Quality Control system

/

./

- recruitment
- staff aevelopment

etc

(

Domain
tasks
ana

functions

Personnel
Management

Software
Development

route

i,

(

Pig 1

-7-

(

(

(

(

App11cat1on Do~a1ns (Conta)

3.3 Other poss1ble areas of R&D

3.3.1 Project D - Invest1gate how aes1gns can be capturea,
comparea and understood so that software
eng1neers can ga1n from 1mplemented
successes ana fa11ures.
(Help to resolve 2.5)

3.3.2 Project E - Stuay the management ana quality techn1ques
of other 1ndustr1es wh1ch face or have
faced s1m11ar problems to the software
1ndustry eg f1lm ana TV program proauct10n,
c1v11 eng1neer1ng, bu11a1ng trade,
arch1tecture etc.

3.3.3 Project P - Stuay, rev1ew ana compare the management
control and qua11ty methods and techn1ques
used 1n software development 1n all
cultures 1e Western Europe

North America
USSR/Eastern Europe
Pac1f1c R1m

3.3.4 Project G - Study and apply the developments 1n safety
cr1t1cal software.

-8-

•

4. Conclusion

It seems to me that currently software engineering is roughly
in the position that traditional engineering had achieved in
the 1880's, that is when engineers were mainly mechanics and
technicians. For software engineering to move into the
1990's I believe that quality cUltures, management methods
and technical knowledge in specific domain areas needs to be
developed.

If section 2 is substantially correct, then people who
educate, train, employ and/or are software engineers should
consider why this is happening, is it important, what can be
done to rectify the situation.

If section 2 is sUbstantially incorrect and the customer base
is substantially satisfied then there is no case for the
industry to answer.

-9-

(

References

THE TIMES

THE TIMES

THE TIMES

17 March 1987

3 May 1988

19 January 1989

(

(

(

Manufacturing and Personnel
Strategy in Western and
Japanese ovned Companies in Britain - by Nick Oliver and

Barry Wilkinson,
Cardiff Business School.

-10-

