
(

(

A GENERIC MODEL
FOR DIALOG SPECIFICATION

Laurence ROUILLE, Patrick BOSC, Alain CHAUFFAUT

Campus Universitaire de Beaulieu
35042 RENNES Cedex - FRANCE
Telephone: 99 36 20 00 (p. 495) - Telex: 950'173F
Telecopy : 99383832 - Network: chauITauirisa.irisa.fr

Abstract :

This article deals with the dialog specification for interactive applications. Most of exist­
ing models are based on transition diagrams, but they give too attention to implementation
considerations. Therefore, we reconunend a new model completely independent of any im­
plcmentation problem. The dialog is broken down into a serics of queries, responses, results.
This generic model is the main tool for the dialog specification in EREDlA, a new inte­
grated environment for the user interface development of interactive applications. EREDIA
discerns three steps: design, which is the definition of the logical dialog, layout which is the
translation of the logical dialog into the physical dialog dcdicatcd to an access method and
programming which is the integration of thc application functions. EREDIA is a friendliness
environment, it takes into account the graphical aspects of thc generic model on bit-mapped
workstations.

Keywords:
user interface, user interface managcment system, transition diagrams, graphical specifica­
tion

1 Introduction. 2 Analysis of the extant.

An interactive application is an application
which communicates directly with the user to
obtain the data necessary to its execution. Two
parts may be discerned as regards interactive
application: the interface which ensures commu­
nicatio n between the application and the user,
and the functions of the application.

The interface serves as a showcase of the ap­
plication. A favorable reaction on the user's part
garantees success. Its design therefore occupies
a preponderant position. It must be up to users'
expectations.

An application may be used by several kinds
of users, beginners or experts, in which case
the interface must be suited to user's knowledge
level, without the processing of the application
having to change. In addition, the application
may be set up on different types of equipment,
thereby influencing its communication with the
user. Therefore, it is better to provide several
interfaces for the same application, whenever
there is not standardization in the use of the
application.

The design of an application is a plmi­
disciplinary undertaking, which involves psy­
chology, ergonomy... Moreover, with the cur­
rent tendency towards optimal exploitation of
graphic possibilities with access terminals, con­
sulting a layout specialist is advisable. Conse­
quently, the functional design of the application
and that of the user interface need distinguish­
able qualities and will not necessarily be imple­
mented by the same persons.

All the above motives make it essential to dis­
tinguish between the development of the inter­
face and that of the application functions. The
present article primarily deals with the analysis
of methodologies and the development of user
interface for interactive applications. We then
outline a new development environment, termed
SH.SD IA, and based on a generic model for in­
terface specification.

1

2.1 Towards dialog management
systems.

With the technological improvements in the field
of I/O, bit-mapped display, videotex, mouse, ... ,
the interactivity between the application and
the user has been made more concrete. Its be­
comes truly a dialog. Nowadays an interactive
dialog is a series of basic exchanges constitued
with three steps: the application makes a query,
the user keys in a reply and then the application
provides him with a result. The first interfaces
often allowed applications to be independent of
all management of the physical terminal, by fos­
tering a degree of abstraction in communication
by means of the notion of virtual terminal. But
this first stage was not sufficient to ensure a well
laid-out display. Management tools for elemen­
tary dialog exchanges display came into being.
They dealt with the display of query, result, or
user responses, by grid management, state edi­
tors ... Today, another problem has come up the
coherence in the series of dialog exchanges.

It is what dialog management systems try to
come to grips with. Dialog management sys­
tems attempt to obtain a entire specification
of the dialog. On the one hand, there is the
syntax of I/O. One may distinguish two spec­
ification levels; concrete syntax (basic commu­
nication display) and abstracted syntax (distin­
guished by its application). On the other hand,
there is a description of the communication dy­
namics between the application and the user.
It is dialog management. From these specifica­
tions, dialog management systems generate the
execution core and establish links between the
interface and the application functions.

2.2 Presentation of some models
for dialog specification.

The transition diagram were used very at a
very early date in the specification of interfaces.
We prefer diagrams because they facilate un­
derstanding with their graphical representation,
which is not t.rue of grammars or object-oriented

(

languages. A graphical representation is espe­
cially worthwhile if a specification model is to be
usable by non-specialists of computer-science.
"Ve present some examples of models which seem
us representative

2.2.1 Parnas

Parnas [5] was one of the first people who sug­
gested a use for command language specifica­
tion. These languages infer restricted dialog,
the application query is always the same im­
plicit query: "What is your command?". Inter­
face specification problems are simplified. Nodes
represent the application states. Arcs contain
the user response and the application result.
Through syntact analysis of the conunand, Par­
nas determines what terminal operation has to
be run and what the updated state of the ter­
minal is like. It is a preliminary definition of
the use of diagrams for language specification.
IIis model is too succinct, but it is a widespread
reference for the topic.

2.2.2 Kieras and Polson

As a result of their work in the field of com­
mand languages, Kieras and Polson [4] have in­
dicated that a semantic analysis of the user re­
sponse is essential. Then they added conditions
to transitions. The application result is defined
by the user response, but also by the semantic
interpretation which can be deduced. However,
they do not recommend any method to achieve
a rigorous and coheren t analysis of the user re­
sponse. They recommend a description of the
theoretical functionning of the condition eval­
uation. Several conditions can be true at the
same time. They test them one at a time until
reaching an exit node. However, the dialog can
end up in a dead-lock (no passable route to an
ultimate state). Moreover, they added an essen­
tial element whenever more important dialogs
must be specified: that is the sub-diagram. A
sub-diagram can be integrated to several levels
(condition, action, state). This notion allows
them to structure the dialog. In particular, the
sub-diagrams are used to carry out the concrete

2

syntactic analysis of the dialog. They are in­
tegrated into the principal diagram, which rep­
resents the dynamics of the dialog and the ab­
stracted syntax. In their model, the notion of
application query is treated superficially. The
nodes are more or less classified by the input
mode which they expect from the user: key­
board entry, function key...

2.2.3 Wasserman

In the Wasserman model [6] this notion of query
is explicit. Besides, he does focus solely on com­
mand languages, but also recommends a broader
model. Wasserman uses the transition diagram
to specify the dynamics of dialog exchanges.
There is no specification of abstracted syntax; he
directly favours specification of concrete syntax
with a language for the application and control
characters as regards user inputs. His model is
oriented towards an inunediately ded uced spec­
ification production. The operator who uses his
model must prove his competence in all fields
involving interface design. His diagram defini­
tion is very different from the afore-mentioned.
Nodes represent application ouputs, queries and
results. Arcs contain user inputs and applica­
tion actions. An action is a condition or any
other way of processing the application. He in­
troduces the notion of sub-diagram structuring
the dialog, as well his model allows a series of
ouputs, responses, actions to be built. The oper­
ator must deliberately use the model to specify
a coherent dialog. For this purpose, the model
does not warrant a breakdown of the application
dialog in query, user response and application
result.

2.3 Analysis of the presented
models.

There is a development of the recommended
models through an increasingly more subtle
analysis of the dialog, which approaches the def­
inition that has previously been given. However,
they do not solve all the problems brought up
in the first part of the introduction. We have
infered the conclusion that for the same appli-

(

An example of dialog.

The generic model.

eral public interactive applications. EREDIA is
a design for logical dialog completely indepen­
dent of physical dialog. As a matter of fact, sev­
eral physical dialogs may refer to a same logical
dialog. Lastly, we finish with the perspectives
that offered by our model faced with new work­
stations, including multiple windows, as well as
new designation devices like the mouse, icons...

3.1

The model is concerned with the specification of
a dialog composed of basic exchanges. It shows
the dynamics process communication and the
abstracted syntax of dialog. It allows a large
position for the graphical representation of the
specification.

';Ve take the example of the interactive applica­
tion (server) "leisures". This server offers the
user the choice between several services : "cin­
ema", "theater", "concert". The function of the
service "cinema" is to inform him about the cin­
ema, timetables, films. To that purpose, the
user chooses among four criteria of selection:
"cinema", "timetable", "filn1", "type". The
combinations of these criterions lead to differ­
ent responses. The combination "cinema" and
"film" will give the list of the timetables of the
film for the cinema, "film" and "timetable" all
the theater where the film is showing at that
time... The combinations of the two criteria
"film" and "type" lead to an illicit query. For
this purpose, we cannot ask at one and the same
time, information about a particular film and
type of films. When the list of the responses is
displayed to the user, he can interrupt at any
time to obtain an abstract of the film, by giving
the corresponding number. We do not detail the
other services, "theater" and "concert".

Our solution.2.4

Our solution to these problems lies in a generic
model, which describes the dialogs in terms of
queries, responses, results, accessible by non­
computer scientists. It suits the addition of spe­
cific informations the description of different as­
pects of the dialog, logical and physical. The ba­
sic model is independent of any implementation.
We give a description of this model in the chap­
ter III. Afterwards, we evoke in the chapter IV
its use in the framework of EREDIA (Environ­
nement de REalisation des DIAlogues) for gen-

calion several interfaces must coexist according
lo hard ware, or to the user's experience. By sev­
eral interfaces, we mean the form which changes
with regard to the physical display of the dialog
or a mode more or less condensed according to
tbe user. Even if the form of the dialog should
change, the logic is always the same. In a dialog
two points of view stand out: the logical dia­
log independent of any implementation problem,
and the physical dialog specially dedicated to a
material environment and a grade of users. The
models that we have studied closely blend the
design of the logical dialog and the appearance 3
of tbe physical dialog. Only one physical dialog
is adapted to a logical dialog. The whole speci­
fication must be revised if the display layout is
to be changed. This separation is possible with
the model of I\ieras and Polson, but it does not
seem to be one of their objectives. Moreover,
t.his separation is particularly desirable, because
a proper display can be ensured only by a spe­
cialist.

The recommended models are designed for an
immediately deduced specification production.
Within this framework, they do not attempt to
reason at a sufficiently abstracted level to be
used by non-computer scientists. That aside,
the necessary abilities for the specification of an
interface are varied and not exclusively comput­
erized. The dialog breakdown in term of series
of queries, responses, results, is never explicit.
Nevertheless, this definition expands the model
to thereby include the specification of any type
of dialogs.

3

(

(

(

l

3.2 The basic dialog exchange.

3.2.1 The questionnaire.

The application query may have different forms,
it may be especially implicit as we have already
seen in command languages. The application
waits for a user request or data. When the di­
alog is guided by the application, it decides to
recommend menus to him, or to query him. In
some case, both can be combined. For instance
(fig. 1), in a menu which gives the user the
choice between several leisure activities, he may
be asked to give the name of the theater at the
same time as he gives his selection of a service.
Therefore, to each request are associated data
fields which can have possible initial values. A
questionnaire is composed of a collection of re­
quests. In particular, when the application puts
a single query to the user, the user request is the
choice of answering this query. Later on, we in­
dicate that it is sometimes interesting to have at
one's disposal a classification of questionnaires,
and to attach a type to the questionnaire.

For instance, the first exchange asks the user
to choose a type of leisure activities. The ques­
tionnaire is called "leisures", its type is "menu"
and it has three requests: "cinema", "theater",
"concert". Anyone of these three requests needs
a data field. In the second questionnaire the ap­
plication asks the user for his criteria of selec­
tion. That questionnaire is called" criteria", its
type is "grid" and it has two requests: "selec­
tion" which corresponds to giving the criteria
and "return" which corresponds to a return to
the first menu. In the first request are asso­
ciated four data fields: "cinema", "timetable",
"film", "type". \Ne consider that they have no
initial value. On the other hand, the user's op­
tion to interrupt an edition or the result to ask
ror an abstract of the film cannot be modelized
by a questionnaire. We will come back to this
problem subsequently.

4

cinema

theater

concert

return

Figure 1 : The questionnaires

3.2.2 The interpretation of the user re­
sponse.

The user response consists or a possible request
with data. We need a semantic analysis of this
response, whatever the type of the dialog con­
sidered. The model of Kieras and Polson has
brought to the fore the risk of the dialog lock­
ing. We want to avoid this at all costs.

The semantic analysis depends on a context:
request choice, user's previous data or perma­
nent application data. This analysis can be
more or less complex, that is why we have cho­
sen to break it down into a combination of el­
ementary conditions. This breakdown works in
ravour of a methodical analysis, but also assures
us against a possible locking in the dialog. A
elementary condition can be written under the
rorm or a boolean function on data. So as to
provide always a single true global condition, a
solution is a binary tree or the interpretation. A
boolean function gives back two values" true"
and "false", these two possibilities must always
appear in the analysis. Then, there is no locking
in the dialog, the branch with non-conditions
is a way out of this situation. On the other
hand, at any given time just one interpretation
is thrue, but this seems to us to rerIect reality.

The solution that we come lip with, seems
suitable to us and not too impractical, as can
be seen rrom its application to the example.

In the example, the choices or the requests or

the firs! questionnaire do not need particular in­
terpretat ion. To this purpose, we do not ask the
user for data and we do not consider that the re­
quests depend on certain context, like the num­
ber of times the user has demanded this service
during a session... On the other hand, the "se­
lection" request of the "criteria" questionnaire
necds an interpretation of data provided by the
user, to determine what the new actionis and
the pursuit of dialog. The user has the possibil­
ity of entering four data "cinema", "timetable",
"film", "type". Nevertheless, the combination
of the fields "film" and "type" leads to an illicit
qucry. In this case, we must vcrify if this com­
bination exists, and if the contrary were true,
consider if there are responses to satisfy the re­
qucst of the user. In this example (fig. 2), there
are five possibilities, that we can translate into
the conjunctions of following boolean functions:

film (F) and t.ypc(T)
fum (F) and no (type(T)} and responses (C, 1-1, P,
T)
film (F) and no (type(T» and no (responses (C, H,
F, T»
no (film (F)) and responses (C, H, F, T)
no (flhn ([0'» and no (responses (e, H, P, 'I)

So, we have the previously desirable binary
tree, so that there is no locking in the function­
ning of the diagram.

film(F) 'ypo(T)

~ 'ype(T) rcspOllSC(C, 1-1,F,T)

..., respollse(C,H,F,T)

~ film(F) rcsponsc(C,H,F,T)

-. respollsc(C,H,F,Tl

Figure 2 : Interpretation of multi-criteria in
the" leisure" server

3.2.3 The result.

An interpretation of the response of the user
leads to a result of the application. The result is
composed of two parts: processing and edition.
It is symbolized by a segment.

In the intcrpretations of thc "selection" re­
quest, the results are the sending of warnll1g

5

messages such as "the query is illicit" or "there
is no response", but also the display of a list of
data, when there are responses.

3.3 The dialog.

3.3.1 The start questionnaire.

This is the starting point of the diagram, it cor­
responds to a singlc fictitious questionnaire. It
is defined by an identifier and a request which
corresponds to thc user's wish to conned to the
server. The request can have several interpre­
tations, if there are several contexts of connec­
tion: proprieties linkcd to a user, connection
constraints ... The start questionnaire is sym­
bolized by a square.

3.3.2 Dialog pursual.

Once the application has answered the user re­
quest, the dialog goes on through another basic
dialog exchange, or stops. It is a statically dcter­
mined continuation of dialog. It is graphically
modelized by the link of a result object with a
state object.

We have added some dynamic dialog pursuits
(fig. 3). "Ve do not find thcm in the other mod­
els.

We have introduced the typed-return which is
worthwhile when several paths in the diagram
lead to a same state. If a return to an anterior
questionnaire is desired, which depends on the
path followed by the user, it is better to indicate
just the type of the questionnaire. On exccution
of the last questionnaire put to the user, which
has the type required by the typed-return, will
be the new state. In the example we have given
types to questionnaires: " menu" , "grid"... but
there is no restriction to the classification of the
questionnaires. A typed-return is determined by
the type of the questionnaire. It is symbolized
on the diagram by a hexagon.

The second element we have introduced, is the
event-salvage. The elements that we have given
up to now partly allow us to deal with the sys­
tem events. A system event can be treated as a
particular request of the questionnaire or as an
additional level of the interpretation of the user

(

(

In the example (fig. 4), we can assume that
there are three sub-dialogs: "cinema", "the­
ater" and "concert". There are two possible out­
puts for each sub-dialog, we can come back to
the first questionnaire to choose a new servIce
or stop the dialog.

response. A event salvage enables taking into
account a system event during the display of a
result.

A event-salvage is defined by an ident and by
the set of events. An event is defined as a re­
quest. The event-salvage is symbolized by an
oval.

}--- +jlYPCj)----_~_-<

cinema
cinema

rcsearch

slop

(

(

\

e- ...
evll

Figure 3 : The dynamic dialog pursual

3.3.3 The final mark.

This means the end of the dialogs. It can be
duplicated on the diagram. It is characterized
by an identifier and symbolized by a triangle.

3.3.4 The sub-dialog.

This is a concept that we find in all models.
Beyond their methodical aspect, the sub-dialogs
by allowing concision in writing contribute to an
improvement in the legibility of the diagram.

A sub-dialog can be composed of all the el­
ements of the model; it can especially call an­
other sub-dialog. The difference between a prin­
cipal dialog and a sub-dialog is that for the lat­
ter there may be several output contexts. The
final marks possess moreover semantic informa­
tion. A sub-dialog is a pseudo-questionnaire at
the level of principal dialog. That's why it has
requests (or pseudo-requests) which are its fi­
nal marks. They can be interpreted according
to the context of the principal dialog. A sub­
dialog is symbolized by a rectangle at the level
of a diagram.

G

Figure 4: The integrated "cinema" sub-dialog
in the principal dialog

3.3.5 A particular result: intervention.

Intervention is an original element in our model.
It is a particular result, used for editions liable
to be long. In this case, the application stays
open to the user. The long editions can be cut
into elementary results. That cutting up serves
as a landmark for the application, which is in­
formed of a possible intervention of the user as
soon as the latter receives an elementary result.
If the user does not intervene, the next result is
displayed. In this particular case, the user has
a condensed version of the results. Any inter­
vention of the user except a display stop request
is a digression of the edition (a sub-dialog). At
the output of this sub-dialog, the iteration of
the edition goes on, or can be abandonned ac­
cording to different contexts. In an intervention,
the iteration is not disturbed at each edition of
an elementary result to put a query explicitly
to the user. The user knows the requests which
are possible. During an intervention, it is the
user who has the initiative of putting a request.
Intervention is a possibility in the dialog, which
is not already feasible to implement. It depends
on the access method available.

User interventions are definyed in a manner
similar to the requests of a questionnaire. In all
cases, there is a standard request which is" non­
intervention". We associate a cutting up of the
edition with an intervention. The intervention
is modelized by a rhombus.

In the example (fig. 5), the intervention has,
as well as the standard request the request" ab­
stract" which has a data field, the number of the
film "number", and a request "stop".

(

the
the

The uses in EREDIA.

The conceptual schema.

Uses of the model.

The conceptual schema must account for
logical dialog between the application and

The notion of logic in the series of exchanges
is not always perceptible, because the number
of scenarios is too vaste. Our model seems less
adapted to the specification of this type of di­
alog. We obtain very important diagrams, but
it is not without interesting. As a matter of
fact, the notion of series is still presen t; all the
possible actions of the user are not continuously
permitted.

The multiple windows allow parallelism at
physicallfO device level and at the level of given
services by the application, which then can be
used simultaneously. We have not looked for
this new possible aspect of the dialog. We think
it is important to study the possibilities of our
model to solve this problem.

We now consider the use of the model In the
framework of EREDIA, [1], [2J. EREDIA rec­
ommend to develop an interactive application
around the definition of its dialogs with the user.
Therein, EREDIA discerns three phases in the
development of an interactive application: de­
sign of the logical dialog, layout(definition of the
real dialog) and the programming. These three
steps of the development are entrusted to ex­
perts: the designer, the model maker, and the
programmer. Although all three work on the
same dialog, but they have not the same per­
ception, because they have not the same inter­
est. Later on, we going indicate how the same
model can be used for the specification of dialogs
for the three operators. The model is a core.
Supplementary specifications must be added to
elements, to specialize the model in the descrip­
tion of a particular aspect of the dialog. Having
a basic model is interesting: it allows a com­
munication between the different operators, who
have then the same references to work from.

4.1

4.2

display

-.response

abslracl display

response-. inlerv.

slop

.\bslracl

Figure 5 : The intervention

Conclusion.3.4

Our model gives the possibility of specifying all
dialogs in term of query, response, result. It
docs not refer to any computerized pre-requisite
and so it is easily accessible to non-computer
experts. Moreover, it is independent of any
problem of implementation, presentation or pro- 4
grammll1g.

Our model is an extension of transition dia­
grams, representation of finite state machines.
We have modified the structure, but neverthe­
less there are analogies. In the transi tion di­
agrams, a node represents a state of the ma­
chine and a transition allows the passage from
one state to another, it has an input and an
output. For us, it is not a question of consider­
ing the states of the machine any more, however
we can recognize some points in the dialog as
being steps in the dialog user. At these steps,
the user has the possibility of intervening, or
these are radical changements in the dialog. In
our model, we have assimilated some elements
as being states of dialog. These are the question­
naires, the interventions, the sub-dialogs, but
also the start questionnaire, the final marks, the
event-salvages and the typed-returns. We can
say that we have broken down the transition di­
agrams into three elements: the request, the
interpretation and the result.

The dialogs which can be studied with our
model are numerous and various; dialogs of
queryfresponse, command languages and why
not object-oriented dialogs. These last types
of dialogs are user initiative. This is a capital
feature which may modify the design of the in­
terface. The user has at a given time a lot of
possibilities, because he can direct of the dialog.

7

(

user, without being preoccupied with any phys­
ical representation of the exchanges. It presents
their semantics. It is the first of the three
schemas which is established and it is therefore
the reference through the development of the ap­
plication.

Designing a conceptual schema reverts to find­
ing what the exchanges between the applica­
tion and the user are. It means indicating
what the characteristics of the questionnaires
are, suggesting a set of requests, putting queries,
analysing the user responses and the application
results. There is neither reference to the ex­
changes presentation, nor to the programming
of the interpretations and application results.
It is the approach which has been presented all
through the model description with the presen­
tation of examples.

4.3 The presentation schema.

From this conceptual schema, several schemas
of presentation can be deduced, wbich integrate
physical attentions on the dialog. There may
be several representations, because there can be
different types of available equipment or several
kinds of users to satisfy and who do not expect
the same characteristics from an interface.

Changing from the conceptual schema to a
presentation schema consists of a translation of
logical exchanges into physical exchanges ac­
counting for the real dialog between the applica­
tion and the user. Therefore, there is a modifi­
cation of the structure of the conceptual schema,
elements are added and the specifications of the
elements are completed. This transformation
is carried out in two parts. First, there is a
translation of conceptual requests into physical
requests. In the example, for the first ques­
tionnaire the user has the choice between three
requests: "cinema" l "theater", "concert". He
can have access to these requests in different
manners according to the choice of the model
maker; by typing a number between 1 and 4
or the iden t of the request, by using function
keys, by clicking in a menu ... If for a same func­
tion key, there are several values to determine
a choice of request, (1 + envoi = Cinema, 2 +

8

envoi = theater. ..) supplementary interpreta­
tion levels are created. Moreover, the choice of
an access method (terminal management) adds
some secondary exchanges to the principal dia­
log descri bed by the designer. For instance, in
the case of videotex access methods, every func­
tion key must be affected to at least one action.

In addition, a presentation format must be
joined to every questionnaire and to every re­
sult. The model such as it is defined docs not
integrate elements of presentation specification.
According to the possible complexity of the pre­
sentation it is certainly desirable to dispose of
a specification language, which gives a direct
view. For instance, in EREDIA there is the LCF
(Langage de Composition de Formats) to spec­
ify videotex pages [31.

4.4 The programming schema.

For each presentation schema corresponds a pro­
grarruning schema. It is an extension of the pre­
sentation schema to which we add routines to
elements, state routine, interpretation routine,
result routine. The programming of the core of
the application is deduced from the program­
ming schema. The programmer must give in
addition subroutines for the functions of the ap­
plication.

4.5 The help of EREDIA III the
specification

EREDIA recommends a set of integrated tools
and methodologies for the development of an in­
teractive application. The friendliness in ERE­
DIA shows itself through several choices: bit­
map workstations, a graphical specification of
dialog by "graphical echo", dialogs with the op­
erator through a set of adapted menus according
to the operator's work ... The graphical echo is
a new concept totally different from computer
aided drawing tools. The operator builds the
interface in the concrete terms of dialog: ques­
tion, response, result. EREDIA gives him back
a graphical echo of his specifications in the form
of a diagram. The graphical echo has several
advantages. It J'reseves in all cases a lisible

drawing; the elements are placed according to
rules. It allows for the interactive verification
of some of the consistency properties of the dia­
gram. EREDIA runs a checking process and can
lead the specifications of the operator, by refus­
ing hi m incorrect choices. Lastly, for a same
dialog between EREDIA and the operator, we
can have several forms of echos adapted to the
operator.

4.6 Conclusion.

We have presented an use of our model in the
framework of the EREDIA environment. We
develop a prototype of EREDIA on SPS7/BULL
with a bit-mapped workstation. But as we have
just shown the model is sufficiently broad to be
integrated to another context of use. We simply
have to change the textual specifications linked
to each element.

is simple and does not refer to any computerized
knowledge.

On the other hand, the model must allow
for the specification of different viewpoints of
the dialog while preserving a coherence. In our
opinion, it achieves its purpose being an generic
model independent of any implementation prob­
lem, to which some elements of textual specifi­
cation must be added to specialize it.

Up to now, the model has been principally
used to specify query/response dialogs of video­
tex application in the framework of EREDIA.
However, we think that its definition allows
the more general specification of any dialog
(query, response, result), in which the series of
exchanges need a description. Its modularity
makes it easilly adaptable for applications of
which the presentation differs from this one for
the videotex applications. Thus, it is the speci­
fication of I/O languages which evolves, but the
design of logical dialog, is always the same.

5 Conclusion. References

The separation between the user interface and [1]
the functions of the application is one of essen-
tial guidelines for the design of interactive ap­
plication. We have particulary focused on the
problem of the user interface development. An
interactive dialog is a series of basic exchanges,
which consists of three components: the appli­
cation query, the user response and the applica-
tion result. The interfaces management systems [2]
fit together to give a coherence in the series of
exchanges. The basis to put this guideline into
practice is to dispose of a specification model of
the conununication dynamics.

First, the model has to be understood and
used by non computer experts. This is the prin- [3J
cipal motivation that made us choose a graphical
representation with our extension of the transi-
tion diagrams. The originality of our model lies
in the transitions represented by the tree-like
arcs and the addition of new elements to extend [4]
the power of the diagrams, such as typed-return,
intervention, event-salvage.

On the one hand, our definition of the dialog,
(questionnaire, response-interpretation, result),

9

Patrick BOSC, Alain CHAUFFAUT, and
Bertrand HARDY. EREDIA: a system
to develop servers including text process­
ing technics. In PROTEXT IT (BOOLE
PRESS LIMITED), pages 133-144, 2nd In­
ternational Conference on Text Processing
Systems, Dublin, 23-25 october 1985.

Bruno CHERON and Laurence ROUILLE.
Etude et realisation d'outils d'aide ala spec­
ification graphique pOll!' Ie concepteu1' ct Ie
progmmmeul' de I'atelie/' EREDJA. DEA
Report, University of RENNES I, september
1985.

Christian COUEPEL and Colette TAN­
GUY. EVA: Le Logiciel de Composition
de F01'mats. Technical Report 78, INRIA ­
RENNES, februar 1987.

David KIERAS and Peter G. POLSON. A
generalized transition network - represen­
tation for interactive systems. In Proceed­
ings of CHI'83, Human Factors in Computet'
Systems, pages 103-106, 1983.

(

(

[5] David L. PARNAS. On the use of transition
diagrams in the design of a user interface for
an interactive computer system. Proc. 24th
National Confel'ence A CM, 379-383, 1969.

[6] Anthony 1. WASSERMAN. Extending
state transition diagrams for the spec­
ification of human-computer interaction.
IEEE Transaction on Software Enginee7'ing,
SE.ll(8):699-712, august 1985.

10

I,

