
(

(

EDITION OF STRUCTURED
DOCUMENTS IN A HYPER­
TEXT ENVIRONMENT

Christine Buors
Jean-Louis Vignaud

Cap Gemini Sogeti Group
Cap Sesa Research Center
Chemin du vieux chene
ZmST 38240 MEYLAN
FRANCE

Abstract

This paper presents the TWlST (Technical Writer's Integrated Support
Tool) project. The system developed within TWlST can be viewed as a
high level hypertext system intelface, as well as an environment for the
edition of structured documents. This paper explains in which way the
two points of view are addressed. In particular, it describes TWIST ob­
jectives and the means carried out to reach them. This presentation will
led us to introduce the hypertext and stmctured edition concepts

Key words

Documentation! document! role! stl1lctured edition! hypertext

1. Introduction

Documentation is one of the key compo­
nents in any project, and particularly in
the software production domain. Indeed
documents are often the most suitable
and the most reliable communication me­
dia. Even if some people agree with the
idea that we generally write too much,
we cannot avoid the production of a mini­
mum set of documents. The current sys­
tems carried out in most companies,
leave the user feeling uncomfortable: ev­
erybody has experienced, at least one
time in his life, the agony of the poor
lonesome writer. We can easily imagine
that a good documentation sUpp0l1, or en­
vironment, is really a need in any activity
domain (and therefore in the computer
based activities).
In the context of ESF (Eureka Software
Factory) this problem has been ad­
dressed. ESF is an Eureka project
whose major interest is the management
of large projects (that means, projects in­
volving a lot of people). In this context,
problems such as activity management
and control, integration, and man-ma­
chine interface design are addressed. The
aim of the project is to provide companies
with a way to design their own software
environment, according to their specific
needs and resources.
ESF is a very large project divided into
sub-projects according to different
themes. TWIST - Technical Writer Inte­
grated Support Tool - is one of these
sub-projects. As indicated by its name,
TWIST deals with documentation man­
agement problems. Its two main objec­
tives are:
- to improve the quality and the produc­
tivity of documents within a software
project;

- to provide some help in writing and ns­
ing the documentation during the whole
project life cycle.
To meet these objectives an environment
is under specification. This paper pre­
sents the main functionalities which will
be supported and the underlying con­
cepts. The choice of the functionalities to
be provided has been based on an inves­
tigation of users' needs and on our own
unf0l1unate experiences.

2. The documentation
problem

Management of documents is a well­
known problem in any domain. There are
generally many kinds of worries:

- the problem of writing: a lot of people
still dream of a fancy editor allowing the
use of bold characters without using bar­
barous signs such as \\f-, $(, and so on,
not to mention the luxurious versions al­
lowing the "What You See Is What You
Get" !

- the problem of homogeneity: how is it
possible to avoid, in the same project,
the use of anarchical document formats,
other than doing a visual control?

- the problem of consistency: when docu­
ments share information (for example a
schema), how is it possible to control the
evolutions of this information in all the
documents?

- the problem of organization: when docu­
ments are finally written (phew!), the
last problem is to localize each document
among others. This work is really impor­
tant: particularly in that it introduces a

(

reading order.

- and the last problem (but not the least
1), how to manage a document all along
its life cycle (versions, archiving, etc.) ?

In the domain of computer science the
problem is particularly important since
any activity is sanctioned by a document.
The set of the documents produced with­
in the whole life cycle of a project there­
fore constitutes a mountain! In the con­
text of large projects, all the problems
previously mentioned are increased.

The documcntation of a project is the
set of all the documents produced dming
the project life cycle. To be easily man­
aged these documents must be classi­
fied. This classification generally de­
pends on the organization of the compa­
ny, and on the method used to develop
the project. The method, also indicates
which role is responsible for the creation
and the update of a set of documents (or
a specific document) and indicates which
roles may consult or modify this set.

(
Before going further, let us introduce a
few vocabulary that will be used in this 3.. TWIST functionalities
paper.

\

.3

A rolc corresponds to the representation
of people functions in the organization of
the production process. For example, in
the software production, we may identify
the following roles: secretary, support
manager, project manager, programmer,
analyst, sales manager, system engi­
neer, etc. With roles are related activi­
ties, responsibilities and ability to per­
form actions to access (more or less
"confidential") information. The different
roles in a company are identified by the
method used for the production. Obvious­
ly, roles are played by physical persons
named actors.

A documcnt is an organized set of text,
graphics, formulae, etc. For TWIST, doc­
uments are structured and constituted of
three types of information: the structure,
the presentation and the content of the
document. The content is updated by the
user while editing the document. The
structure and the presentation corre­
spond to a standardization of the docu­
ment.

The aim of TWIST is to prove that the
current technology in computer science
allows the design of an efficient solution
to all the problems described above.
We think that the improvement of docu­
ments quality and productivity goes with
methodological support for organization
of documentation, standardization and re­
use of documents, automatic generation
of documents, archiving capacities and
maintenance help.

For doing so, TWIST will provide some
functionalities that could be classified in
three large classes:
- those dealing with the organization of
the documentation
- those dealing with the management of
the documentation of a specific project
- those dealing with the manipulation of
content of documents

Each of these functionalities corresponds
to the need of a particular role within a
company or a project. Each of the specific
roles allows the definition o(an environ­
ment in which concerned functionalities

will be implemented by tools.

3.1 Management of documenta­
tion OI'ganization

Design of the organization of a documen­
tation consists in combining documents
in sets, describing all the relationships
between these sets, defining standards
of presentation and structure for the doc­
uments contained in these sets, and as­
sociating a list of roles with their rights
on each set.
TWIST provides the possibility to de­
scribe several structures of documenta­
tion. These suuctures will be used as
models for documentation of projects:
each time a project starts, the best
adapted structLU'e of documentation is
chosen, and then duplicated. A project
documelltatioll can therefore be consid­
ered as an instance of a model documell­
tatioll
Documentation models manipulations
and creation of instances for projects are
attributed to the same role (for example,
the method engineer) and grouped in an
environment named administrator envi­
ronment.

3.2 Management of a specific
project documentation

A project documentation is therefore an
instance of a model of documentation.
This instance may be particularized to fit
special constraints bound to the project .
For example, a set of documents defined
in the model may be obsolete for a specif­
ic project, or a set of documents may
need a particular presentation for a typi­
cal project. TWIST allows this kind of ad­
aptation. In this case, the modifications
performed are local to the concerned

project documentation.
Unlike documentation models, project
documentations have a content: the docu­
ments realized during the project life cy­
cle. Documents belonging to a library
may be included in a project documenta­
tion. On the opposite, documents belong­
ing to a project documentation may be
stored in a library.
When created (see section 3.1.3), docu­
ments may be archived or moved from a
set of docnments to another one. These
manipulations me also available for sets
of documents.
Otherwise, TWIST allows automatic
generation of a document providing that
its content has been desclibed.
All the manipulations described in this
section me generally performed by the re­
sponsible of documentation within a
project, and grouped in an environment
named document manager environment.

3.3 Management of documents'
content and versions

As soon as a project documentation has
been defined, one can create documents.
Creation, destmction, and consultation of
documents are obviously realized using
an editor. Nevertheless, TWIST provides
new functionalities concerning co-author­
ing, information sharing and inter-docu­
ment references. These capacities are al­
so supported by the editor. Additional
functionalities concern versions of docu­
ments (listing versions, purging ver­
sions), and impression of documents
(printing facilities).
These manipulations are grouped in an
environment named writer/reader envi­
ronment or editing environment.

(

(

l

4. How these functional­
Hies meet TWIST objec­
tives

Since we mentioned TWIST objectives in
the introduction of chapter 3, we must
now examine in which way the functional­
ities proposed will ensure them.

4.1 Methodological support

The organization of the documentation
and the association of role/rights upon
each set of documents depend on the
method used to develop the project.
Providing a way to descxibe documenta­
tion models, TWIST therefore ensure a
methodological support for the develop­
ment of any project.
If the scheduling of document production
is not a goal for TWIST, any component
able to perform this capacity can be inte­
grated to TWIST (in the context of soft­
ware factory).

4.2 Standardization of documents

We have seen that structure, presenta­
tion and content of documents can be con­
trolled independently. Using TWIST envi­
ronment, the work of a the author of a
document is reduced to writing its con­
tent. That is good way to increase the
productivity. Moreover the use of the
same structure and the same presenta­
tion for all documents of a same set war­
rant at least an equal quality of presenta­
tion.

4.3 Reuse of parts of documents

TWIST allows information shaJing
among documents of a same documenta-

tion. Another way to increase the produc­
tivity is in reusing documents existing in
other documentations. Generally in a
company some reference documents
could always be used to make new docu­
ments (for example, contract, quality
plan, etc.). This con'esponds to the cul­
ture (or experience) of the company.
These kinds of documents should be in
free access libraries: one can then import
any document desired in his own docu­
mentation, eventually attributing some
specific properties to it (for example, new
roles and access rights).

4.4 Automatic generation of docu­
ments

Generally in a company, many software
environments are used assisting people
in their work. Each of these environ­
ments manages its own data. For exam­
ple, an environment supporting project
management has the data needed to pro­
duce monthly reports. Generally this en­
vironment is able to produce these kinds
of documents. The problem is that the
documents produced are not managed by
the documentation support environment,
and therefore they are not consulted,
printed or archived like the other docu­
ments of the project.
In the context of software factories,
where environments or tools are able to
communicate easily, all the documents
may reside in the documentation environ­
ment. In particular, TWIST is able to gen­
erate documents providing that their
structures and presentations are de­
scribed, and pJincipally their content is
specified. Describing the content of a doc­
ument consists in providing the paths to
find some data in another environment. A
special mechanism is then able to inter­
pret them, generating the specified docu-

ment.

4.5 Editing support

TWIST provides capabilities of:
- managing the co-authoring, in indicat­
ing the part of documents reserved by au­
thors
- sharing parts of documents. in main­
t.aining the consistency between the dif­
ferent documents sharing an information
- inter-document referencing. in manag­
ing links between parts of documents.
These functionalities are not managed by
the editor: this allows the possibility to
integrate to TWIST any editor (providing
that it manages structure and presenta­
tion standards).

4.6 Archiving capacities

Documents have to be archived in the life
cycle of the project. Archiving a document
means that this document is considered
finished and no more modifiable.
TWIST allows the definition of an ar­
chiving property which will be attached to
documents. The management of relations
between archived documents and non-ar­
chived ones is ensured.

4.7 Maintenance help

Documentation maintenance help re­
quires at least two capacities:
- brownsing of the documentation
- maintaining consistency within the doc-
umentation.

Using the documentation structure, a us­
er may be able to find (more or less easi­
ly) a specific infOimation. This action is
more difficult to realize since the expres­
sion of the request is not very precise but
corresponds to a semantic information
(for example, request as "I would like to

find a quality plan concerning real-time
applications in the nuclear domain").
These kinds of request may be assumed
by TWIST providing that documents are
annotated with comments or specific in­
formation.

TWIST manages infOlmation sharing and
references between documents. It allows
archiving and versions control.

5. Concepts used to im­
plement TWIST

The two main underlying concepts of the
TWIST implementation are structured
edition and hypertext stmctures and ma­
nipulations

5.1 Structured document edition

There are two kinds of documents manip­
ulation system based on two document
models. A possible model consists in de­
scribing documents as characters flows
containing special control characters (line
jump. page jump, spaces...). Another kind
of model consists in taking into account
the logical stmctures of documents: in­
stead of only desclibing their physical
presentations. it describes their organi­
zation in telm of chapters. sections, sub­
sections, titles. etc. The physical repre­
sentation is described separately.

We have chosen to use this second ap­
proach. A document is defined by two ge­
neric descriptions: its logical structure,
its default presentation. These descrip­
tions allow the classification of docu­
ments in classes.
The logical structures are essentially

5.2.1 Graph

A graph is a set of nodes, including links
and reference links. For example, G, set
of nodes NI, N2, N3, reference link RLI
and including link ILl, is a graph

(

(

tree structures: nodes are components of
the logical structure (chapter, section,
etc.), and links represent inclusion rela­
tions among nodes (e.g., section I ->
sub-section I.1). The structure is de­
scribed using rules. The brows of the doc­
ument is equivalent to a path in the tree.
The physical presentation is attached to
the logical structure. The presentation is
defined by a set of 11Iles. It allows the
definition of multiple views of a same
document (e.g., the document is viewed
as a whole or as its table of contents).
The content of the document is dis­
patched among its nodes.

G

5.2.2 Context

Use ill TWIST:
A project documentation 1Il TWIST is a
graph.

A context is a part of a graph. It is a set
of nodes, including links and reference
links. For example C = {Nl, N3, ILl}
means that C is a context of the graph G

\.... : reference link

" : including linko :graph

D : node

Property:
All the graphs are disjoint (i.e., two dif­
ferent graph - which have different
names - cannot include the same node,
or the same link).

An Hypertext abstract machine (or
HAM) allows the manipulation of five
types of objects: the type-graph, the
type-context, the type-node, the type-in­
cluding-link and the type-reference-link.
Objects of these types are, respectively,
graph, context, node, including link, and
reference link.
An object is identified by a name. Each
tinle an object is modified a new version
of it is created.
Each class of object may own at­
tributes/values pairs. The amibutes and
the values are either imposed or speci­
fied by the user (i.e., the user can create
all the attributes/values pairs he needs).
The manipulations provided by the HAM
are creation, destruction, modification of
all these objects.

5.2. Hypertext concepts

We can now described more precisely
the different objects introduced below,
and explained in which way they can be
used within TWIST.

Property:
Contexts do not have intersection. There­
fore, they can be used to create a parti­
tion of the graph.

Use ill TWIST:
A context may have an intersection with
another one, particularly a context may
include other contexts.
A document (or a set of documents) in
TWIST is a context.

... c
. ----/....

o :graph \ :including link

o : node \..: reference link

():context
'of

G

the first node in the associated pair of
nodes. (I.e., if NI belongs to C and ILl
relies NI to N2 then ILl and N2 belong
to C)
If a link (reference or including) is associ­
ated to two nodes belonging to the same
context, then the link belongs also to the
context (i.e., if NI and N2 belong to C
and L connects NI to N2 then L belongs
to C).
If a link (reference or including) belongs
to a context then its two associated
nodes belong also to the context. (I.e., if
L belongs to C and L connects NI to N2
then N I and N2 belong C)
If a link (reference or including) is associ­
ated to two nodes, and one of the two
nodes is destroyed, then the link is also
destroyed.

Use ill TWIST:
Including links in TWIST are used to re­
alized documents structures, and refer­
ence links are used to realize references
between documents or parts of docu­
ments.

5.2.4 Node

5.2.3. Including link, Reference link

A link is associated to a single orderly
pair of nodes. It is the only a way to con­
nect nodes in a graph. For example the
including link IL I, in the graph G I, is as­
sociated to the (NI, N3) pair.
An including link defines an including re­
lation between two objects. A reference
link defines a simple relation between
the two nodes.

Properties:
An including link and its two associated
nodes belong to the contexts including

From the HAM point of view, a node is
an atomic object characterized by its con­
tenl.

Use ill TWIST:
Within TWIST, the content of a docu­
ment is stored in nodes.

5.2.5 Attribute

An attribute is a property bound to an ob­
ject (graph, context, node, including link,
reference link). This object is character-

(

ized by the value of its property. An ob­
ject may own several (attribute/value)
pall's.
Attributes are not pre-defined one may
create any property desired.

Use ill TWIST:
Within TWIST, atu'ibutes are used to
specify special properties. For example,
the pair (author/J.Smith) bound to a spe­
cific node N3, means that J.Smith is the
author of the content of the node N3.

The hypertext concepts [Con 87] associ­
ation is a "plus": it allows a large range
of manipulations among documents and
set of documents. Using HAM concepts
[Del 86], [Del 87]" the documentation
can be viewed as an hyper-docl/mellt.
The shating and reference (among docu­
ments) functionalities can be easily car­
ried out. The functionalities provided for
the administrator and responsible of a
project documentation users are essen­
tially supported using hypertext mecha­
nisms ..

The two concepts previously described
concern respectively the two types of ob­
jects manipulated by TWIST: the docu­
mcnts, and the set of documents
(documentation).

The structured edition clearly allows an
easy manipulation of parts of a document,
the definition of any kind of link inside the
document. The structured edition concern
esscntially the reader/writer user. The
edition in TWIST is supported by GRIF
[Quint 86], [Quint 87].

6. Conclusion

The starting point of our work has been a
functional description of TWIST. This
first approach assured us that providing
the user with an integrated documenta­
tion support is not an utopia. Moreover
the concepts carried out are well-known.
The CUITent step consists in specifying
atld designing a storage component
based on the HAM concepts, aiming at
providing, for September 1989, a proto­
type which will support the three environ­
ments described in this paper.
We expect that before the end of 1989, at
least one project in our company will use
TWIST.
We hope that this prototype will be the
starting point of further investigations
both in the improvement of the edition
functionalities and in the extension of the
use of hypertext concepts to other stor­
age components within ESF.

G

\ : including link

\. : reference link

~ : attribute

0: node

0: graph

5.3 Summary

author/smith

References:

[Con 87]: J. Conklin. Hypertext: An Introduc­
tion and Survey, IEEE Computer, September
1987

[Del 86]: Delisle N. and Schwartz M. - Nep­
tune : A hypertext system for CAD applica­
tions, Proceedings ACM SIGMOD '86
(Washington D.C., May 28-30, 1986), 132­
142.

[Del 87]: Delisle N. and Schwartz M. - Con­
texts : A panitioning concept for Hypertext,
ACM Transactions on Office Information sys­
tems 5,2 (April 1987), 168-186.

[Quint 86]: V.Quint, I.Vatton,. GRIF: An In­
teractive System for SU'uctured Document
Manipulation, Proceedings of the Internation­
al Conference, J.C van Vliet, ed., Cambridge
University Press 1986

[Quint 87]: V.Quint. Vne approche de
l'edition structuree des documents, These
d' eta!, Universite scielllifique Technologique
et Medicale de Grenoble, Mai 1987

