INFORMATION SYSTEM ENGINEERING =
THE RUBIS SYSTEM

C. CAUVET %, C. ROLLAND x, J.Y. LINGAT XX

X Universiteé Paris 1 UFR 06
17, Rue de la Sorbonne
795231 PARIS Cedex 5 FRANCE

¥ THOM & 33, rue VYouille
75015 PARIS FRANCE

ABSTRACT :

The paper aims to present a CASE system which is an integrated
computer aided tool so—called RUBIS, for designing and
prototyping Information Systems.

RUBIS is organized around the R—-schema (RUBIS—-schema), which
is a declarative specification of the Information System (IS)
content, based on a conceptual model which emphasizes equally
the IS structure and behaviour.

After a brief overview of the RUBIS architecture, we present
through examples how to construct the R-schema using PROQUEL:

the formal specification language of RUBIS. Then, we
concentrate on two different aspects of RUBIS: the expert
design tool, which helps the designer to produce the R-schema
for a given application domain, and the prototyping tool,

which allows the execution of specifications on test case
data.

1. INTRODUCTION

The paper aims to present an integrated computer aided tool so-called
RUBIS [33], for designing and prototyping Information Systems (I1S).

RUBIS works on a R-schema (RUBIS-schema) which 1is a declarative
specification of the IS, made using the formal specification language
called PROQUEL (PROgramming QUEry Language) [34]. The R—-schema
provides a conceptual description of both the static and dynamic
aspects of the IS to be built. It is based on the REMORA model [1l].
The static IS aspects are modelled by relations while operations
(elementary actions on an object) and events (elementary state
changes triggering one or several operations) allow the modelling of
the dynamic aspects of objects. Thus, the R-schema is a collection of
relations, operations and events specifications. In this schema the
temporal aspects of the application are also taken into account; they
are modelled by wusing the time types and functions provided by the
RUBIS Time Model.

RUBIS includes three different interfaces as computer aided design
tools:

- a Graphic Interface using an icon-based representation of the
R-schema concepts.

- an Expert Design Tool working on a semantic network, and
helping the designer to create, validate and improve the
conceptual schema.

- a Menu Interface based on the PROQUEL language.

The Graphic and Menu based interfaces are both devoted to
experienced designers while the Expert Design Interface can be
used by relatively unexperienced analysts or designers.

Prototyping in RUBIS is achieved by the Temporal Processor which
manages temporal aspects of the specification and by the Event
Processor which manages event recognition and synchronization. Both
Processors use the PROQUEL interpreter.

Thus the PROQUEL Interpreter, the Event Processor and the Temporal
Processor are the key tools for prototyping information systems with
RUBIS. They have been implemented as extensions of a Relational DBMS
(20

The paper is organized as follows:

The global architecture of RUBIS is given in section 2 with a brief
description of the different RUBIS system modules.

Section 3 presents how to specify the R-schema using the PROQUEL
language. Then, the paper focusses in section 4 on one of the three
interfaces, namely the Expert Design Interface. The Event Processor
is detailed in section 95.

2. RUBIS ARCHITECTURE

The architecture of the RUBIS system is presented in figure 2.1.

This displays the three major aspects of the system, which are:
1. The (meta) data mananagement tools which handle the prototype
database and the specification database (containing the R -
schema).

2. The R-Schema design interfaces and the Validation Module.

3. The prototyping tools - the Application Monitor, the Event
Processor and the Temporal Processor.

Each of these three aspects is introduced in turn.

specification experimentation

query
9N SN | e
N ™ N\ L APRLCATION
| INSRACH \pasbNy | [St Bt
\m\ L& D\k e e wirnid A SO WA a L i b

\\\W pvEntoo] [TEMPORAL
& v 'PROCESSOR | | PROCESSOR

PROQUEL INTERPRETER

RELATIONAL D.B.M.S.

SPECIFICATION PROTOTYPE

DATABASE DATABASE

Figure 2.1 : Architecture of the RUBIS system

2.1 The R—-schema and the specification database

The R-schema 1is a modular description of the conceptual schema for
the Information System being developed. This schema is based on the
model of the REMDRA methodology [1] [3], and describes both static
aspects (structure) and dynamic aspects (behaviour) of the IS.

The static aspects are modeled using relations representing entities
or entity associations in the real world (e.g. client, invoice, loan,

etc.).

The dynamic aspects are modeled using:

X Operations which represent elementary actions on an application
object (e.g. add a new client, modify an order, etc.).

x Events which represent elementary state changes in the system at
which time certain operations must be triggered (e.g. when an order
arrives, insert the order into the database, reserve the requested
goods, and prepare for delivery). The description of the conditions
for the state change is defined in the event predicate. A
distinction is made between external events (which represent
messages received from the real world), internal events (which
represent elementary state changes of a relation within the
database), and temporal events (which represent temporal conditions
under which certain processing is triggered).

The temporal aspects of the application are likewise modeled, using
the functions and temporal types of the RUBIS Temporal Model. Due to
space limitations, the temporal aspects of RUBIs are not presented in
this paper and the reader is invited to refer to [32].

The R-schema is therefore a collection of relations, events and
operations. The content of the R-schema can be illustrated using a
graph (fig. 2.2)

external message

external event
wndicafing the arrival
of o message
triggering condition
for operation op!3
relation modified by
operafion opl3

nternal event indicating
a state—change for R2

s e e i i

exemple of
dynomic transition

Figure 2.2 : Graphic Representation of the R-schema

Such a representation introduces the dynamic transitions of the IS,
showing their sequence and precedence. A dynamic transition is

composed of (1) an event (2) all the operations triggered by the
event (3) all the relations modified by these operations. This
corresponds to an elementary database transaction, since by

definition a RUBIS transition is atomic, and must pass the database
from one coherent state to another. Notice that the triggering of an
operation by an event can be conditionnal (using a triggering
condition) and iterative (using a triggering factor)

THE META-BASE

The R-schema is stored into the specification database, also called
meta-base. The IS specifications are called metadata to distinguish
the context of the meta-base in a relationmal form defined by a meta-
schema.

It is extremely important, during conceptual design, for the designer
to get support from the RUBIS system to access to the meta—-base. This
support is provided both by the three computer based interfaces which
allow the designer to insert, modify and delete meta-data. The
PROQUEL language allows to directly interact with the tuples of the
meta-base and 1is used by the three design interfaces. For example,
the designer can modify the specification text of an event predicate
or an operation. Notice that such modification doesn’'t imply
recompiling the application; it does not even imply stopping the
user’'s activities if the text is not used at the moment.

In addition, the meta-base contains major project management
informations (e.g history of R-schema elements, sessions and
designers references ...).

Finally the meta—-base is used to store informations used by the
system itself during the prototyping phase.

All the meta-data are stored in a relational form and are accessible
through the PROQUEL query language.

2.2 The Aided Design Tools

X The Graphic Interface generates the R-schema from a graphic

expression of both the static relations schemes and the dynamic
transition graphs.
The tool is a user-friendly interface based on windows and icons for
displaying information and on pop-up menus, keyboard and mouse for
entering data. It provides graphical facilities for changing the
drawings of graphical representations. In addition it allows the
designer to simultaneously see on the screen several graphical
descriptions of the R-schema.

¥ The scope of the Expert Design Tool (EDT) is to provide the
designer with an active and intelligent support during the IS design
process, leading to the R-schema.

The EDT is intended to behave like an expert designer using its own
knowledge base, which is partly formal and partly composed of
experimental design rules.

The EDT starts with an Object Oriented description of the application
domain and progressively helps the designer to correct, complete and
make this description coherent before generating automatically the R-
schema.

¥ The Menu Based Interface provides the designer with a guided
interaction to enter the R-specifications into the meta-base.
Insertion, modification, deletion of metadata are driven by sequences
of menus, thus decreasing the designer effort in specifying the meta-
data to be inserted, modified or deleted from the meta—-base.

¥ The Consistency checking module aims at anmalysing the meta-base
and detecting the presence of undesirable features i.e specifications
not satisfying general design criteria. Checks are of three types:

- correctness checks verify that all R-schema elements are
correct with respect to the RUBIS modeling concepts and with the
PROQUEL syntax.

— completeness checks detect missing elements in the R-schema.

— accuracy checks are the most sophisticated checks. They detect
possibly inconsistencies in the R-schema and interact with the
designer in order to decide if corrections are needed or not.

Consistency checks are performed on the specifications at various
moments of the conceptual design process. Part of the checks are
included in the designer interfaces. Global consistency checks are
automatically performed upon completion of one conceptual design
session. They can be initiated by the designer at any moment either
on the global content of the meta-base or on a subset.

2.3. The prototyping tools

¥ The application monitor is the end-user interface. For each

external event specification, a corresponding Application Program
(AP) 1is generated. The AP construction is based upon the event
structure . The application monitor executes Application Programs

according to end-user reguests. In fact, executing an AP corresponds
to a message acquisition and wvalidation. When the AP is correctly
finished, the application monitor sends the valid message into the
message queue of the Event Processor.

Since the external event predicate is verified by the corresponding
AP, one may consider the reception of a valid message in the Message
Queue as an external event occurrence. Each time a user is connected
to RUBIS, a process containing an application monitor is created.

¥ The Temporal processor works independently. It sends a message
into the Message (Queue each time it recognizes a temporal event.
The Temporal Processor is fully described in [32].

¥ The Event processor recognizes internal events, takes into
account extermal and temporal events, processes and synchronizes all
events. The event Processor is detailed in section 5.

¥ The PROQUEL interpreter executes all texts written in PROQUEL,
by sending queries to the DBMS and managing local variables, control
structures and parameter passing. It has been developed using LEX and
YACC tools of the UNIX system. Queries (expressed in relationnal
algebra) are send to a small Relationnal DBMS called PEPIN [2].

3. SPECIFYING THE R-SCHEMA

In this section, we detail the R-schema specification using the
PROQUEL language. First, we can remark that the description of the R-
schema can be made incrementally:

- first, the static sub-schema can be described with relation
specifications (introduced by DEFINE RELATION),

- second, a first version of the dypamic sub-schema can be
obtained by specifying dynamic transitions (these specifications
are introduced by DEFINE EVENT),

=i Ehird s the dynamic sub-schema can be completed by operation,
condition and factor specifications (respectively introduced by
DEFINE OPERATION, DEFINE CONDITION and DEFINE FACTOR).

We illustrate this process by considering the framework for an
automated subscription-library management system. The examples
introduced center around the following relational schema:

BOOK (BOOK#, PUBLISHER, TITLE)

COPY (BOOK#, COPY#, ACQGDATE, PRICE, CP_STATUS)

SUBSCRIBER (SUBSC#,NAME,ADDRESS,SUBDATE ,SUBSC_STATUS,NUMCOPIES)
REQUEST (REQ#, SUBSC#, REQGDATE, REQTYPE, BOOK#, REQ_STATUS)
LOAN (LOAN#, LOANDATE, BOOK#, COPY#, REQ#)

NOTICE (NTC#, NTC_DATE, LOAN#, SUBSCi#)

The meaning of the attributes (when not obvious) will be given in the
examples.

Figure 3.1 associates: (1) the current loan agreement in force at the
library, (2) the graphical representation of the corresponding dynamic
transition, and (3) the PROQUEL specification.

The specification is a translation into the PROQUEL language of the
dynamic schema, which is itself a natural model of the loan agreement.
The specification of the external event "loan request arrival" is
composed of three parts:

¥ The message "LOAN REQUEST" is described in PROP. It consists of a
request number, a book number, the subscriber number, and the
request type (immediate, or hold).

X The event predicate is specified in PRED. In the example, the
"LOAN REQUEST" message is acceptable only if both the requested book
and the subscriber are present in the database.

¥ The TRIGGER specifies the result of the arrival of the loan
request. Three cases are possible:

1) The request can

be satisfied (cd : a copy of the book is

available), and the subscriber is in good standing (el s his
subscription is up to date, he has no outstanding late notice, and he

has less than three books
created (opl), the reques

currently on loan). In this case, a loan is
t is accepted (op2), the status for the book

is set to "ON LOAN" (op3), and the number of copies on loan for this

subscriber is incremented

(op4d).

TEXT SPECIFICATION

¥ a subscriber may not borrow more than three books simultaneously;

X a loan request is receivable if the subscriber is valid (his
subscription 1s up to date and he has no overdue books);

¥ if a request is type "hold", the unavailability of the requested
book causes the request to be put on hold.

GRAPHIC SPECIFICATION

LOAN REQUEST

NOT of OR
(of AND NOT c3 AND

@ op4 op3

PROQUEL SPECIFICATION

DEFINE EVENT evl IS request_arrival
ON MESSAGE
COMMENT "Arrival of a loan request"
PROP { num_req : INTEGER;
num_book : INTEGER;:
num_subsc ¢ INTEGER;
type : (IMMEDIATE, HOLD)j; 3}
PRED { (EXISTS book WHERE book# = CONTEXT.num_book)
AND (EXISTS subscriber WHERE subsc# = CONTEXT.num_subsc)}
TRIGGER { IF cl AND c3 THEN { opl ON loan;
op2 ON request;
op3 ON copy;s
op4 ON subscribery;)
IF €1 AND NOT c3 AND c4 THEN opS5 ON request;
IF NOT c1 OR (cl1 AND NOT c3 AND NOT c4)
THEN opé ON request; 1}

Figure 3.1 : Dynamic Transition Specification

2) The request cannot be satisfied (there is no available copy),
but the subscriber is in good standing and wishes to leave his request
on hold. The demand is put on hold (opS).

3) The subscriber is not in good standing, or the request cannot
be satisfied for an immediate request. In this case, the request is
refused, but is still added to the database for statistical purposes

(opb).

The specification of an event in PROQUEL defines the structure of the
associated dynmamic transition. The elements defined in the TRIGGER
(conditions and operations) are defined separately. This allows a
progressive and modular description of the application. In addition,
the same condition or operation may be shared by several dynamic
transitions.

For example, figures 3.2 and 3.3 show the specification of condition
cl and of operation opl.

DEFINE CONDITION cl IS good_standing
COMMENT "The subscription is up to date, no pending late notices,
and less than three books on loan"
TEXT { VAR $status : STRING;
VAR ¢$ncopy : INTEGER;
VAR $nolate : BOOLEAN;
SELECT UNIQUE subsc_status, numcopies INTO %$status, $ncopy
FROM subscriber WHERE subsc# = CONTEXT.num_subsc;
$nolate := NOT EXISTS notice
WHERE subsc# = CONTEXT.num_subsc;
RETURN ($status="VALIDE" AND %$ncopy<3 AND $nolate) };

Figure 3.2 : Specification of a Trigger Condition

DEFINE OPERATION opl IS ins_loan
COMMENT "Create loan"
TYPE insert IN loan

INPUT () (% no explicit parameters x)
TEXT { VAR %copy, $max : INTEGER;
$copy := SELECT FIRST copy# FROM copy
WHERE book# = CONTEXT.num_book
AND cp_status = "AVAILABLE";
$max := SELECT UNIQUE MAX(loan#) FROM loan;

INSERT INTO loan ($max+1l, current_date,
CONTEXT .num_book, %$copy, CONTEXT.num_req);

13
Figure 3.3 : Specification of an Operation
Each specification is a module independent of the others. The
variables declared in a module have scope within that module. All

modules receive an 1implicit call parameter referenced by the keyword
CONTEXT. This parameter designates the message/tuple for which the
arrival/state-change generated the event. In the specifications of
evl, opl and cl, CONTEXT represents the loan request message.

When a distinction i1is necessary between the old and new value of the
context (in the case of an 1internal event, for instance), the
prefixes OLD and NEW are used.

The "context" of a dynamic transition 1is in fact an implicit
parameter passed to all PROQUEL texts which it contains. Not having
to declare each passage of the context by parameter clearly
simplifies the developer’'s specifications.

A condition corresponds to a boolean function. Its text is
terminated by the RETURN statement, which determines the return value
of the condition.

Each operation possesses an implicit exit parameter : the two
successive values of the tuple it modifies. If the state change
generated by the execution of the operation generates an internal
event, this parameter serves as the '"context" for the dynamic
transition of the generated event.

Figure 3.3 illustrates the contribution of the combined usage of

variables and SQL queries. In the usual application development
environment, the developer must resort to a language using "embedded
SQL", with all the awkwardness this implies.

The meta—-base 1is incremented progressively with the arrival of new

specifications. The relational mapping of the R-schema is thus
automatic, and the meta-base can be manipulated using the PROQUEL
query language. The designer can also use the programming aspects of

PROQUEL to construct his own procedures and tools for often used
queries, validation checks on the meta-base, and so on. In RUBIS,
PROQUEL constitutes one of the main factors of integration.

4. THE EXPERT DESIGN TOOL

4.1. Why an Expert Design Tool ?
The design of large IS i1s a complex, iterative, long and tedious task
that must be supported by tools. The idea of computer aided design

tools is not new [22], [231, [24].

Such tools provide help to memorize the results of the modelling

activities, to check consistency and completness, to produce
documentation and inform the design team on the status of design.
They help in the management of schemas, but little in their

production. Recent researches have stressed the models used for
building schemas and the languages used to specifying them. But none
progress has been made on the process of producing these schemas.

We believe that a step forward in the design of IS requires an effort
of formalization of the intellectual process of construction of
schemas in order to build software tool which brings a more effective
help in design.

We are conscious of the fact that design 1is a non algorithmic
activity. It 1is a complex task which is not very formal and is full
of incertainity. The experienced designer masters the task of design
because he uses, on the one hand, his formal knowledge of the models,

10

and on the other hand, his experience which enables him to recognize
typical cases and to treat them by analogy, to be attentive to
certain delicate aspects...

The nature of the task of design, therefore requires an effort of
formalization of, on the one hand the algorithmic part of the design
(for example algorithm of normalization) and on the other, the
heuristic part (experimental rules of designers).

In addition, if we wish to support the design process by a tool, it
must be able to include both formal knowledge and experimental
knowledge.

For all these reasons an expert system approach seems appropriate.

This approach will allow us to reproduce the expert’'s attitude, to
exploit experimental knowledge necessary to the mastering of design
by combining it with more formal knowledge.

Our hypothesis was to define an expert system for aid to the design
process. The help supplied by the tool relies on a knowledge base
where the concepts and the formal rules governing their use are
grouped together with the rules of experimental know—how of design
experts. The quality of the expert system depends on the richness of
its knowledge base.

To define this knowledge base we have sought to analyse the reasoning
processes carried out by the designer during the design process in
order to reproduce them in the expert system.

4.2 Expert design tool architecture and functions

In order to help designers in the R-schema production, we have chosen
to develop a tool which allows them to start with a semantic view of
the application domain, which provides quidance and tutoring to
improve and detail it and finally maps it onto elements of the R-
schema.

The overall architecture of the expert design tool (EDT) is
illustrated on figure 4.1.

It shows that the EDT is organized around a semantic network which
represents the conceptual schema content at the different steps of It
shows that the EDT 1is organized around a semantic network which
represents the conceptual schema content at the different steps of
its design. It initially corresponds to a rough semantic view of the
application domain, progressively corrected, completed and detailed
before it can be mapped onto relations, events and operations of the
R—-schema.

The manipulation module allows the designer to create, modify or
delete elements of the semantic network.

Using the query module, the designer can be inform on the current
version of the conceptual schema.

11

DIALOGUE MODULE

Y

MANIPULATION QUERY TRANFORMER
MODULE MODULE
\
{
SEMANTIC
NETWORK

Figure 4.1 : Expert design tool architecture

The Semantic Network Transformer (SNT) is the most intelligent part
of the interface. The SNT 1is intended to behave like an expert
designer. Using its own design knowledge, it detects inconsistencies,
incorrectness and incompletnesses, infers decisions and provides the
designer with alternative solutions for improving the current version
of the conceptual schema.

The SNT is organized as an expert system with a knowledge base and an
inference engine. The knowledge base transformer includes a fact base
(which 1is the semantic network) and a rule base including diagnosis
rules, mapping rules and improvement rules. As the interface is
implemented with PROLOG, the inference engine is the prolog
interpreter.

We focus 1in the following on the SNT. We introduce in turn the
semantic network and the transformer knowledge base.

4.3 The semantic network
The semantic network 'is an oriented and labelled graph. It comprises
5 types of node and 3 types of edge. Nodes and edges can be labelled.

The 5 types of node correspond to the 5 predefined objects on which
we suggest designers to concentrate on.

The 3 types of edge represent the 3 predefined associations among
objects we propose to investigate during the design process.

The two main design principles underlying the semantic network
architecture are the following:

a) reality can be easily percieved in a causal way as
illustrated on figure 4.2.

12

EVENTS
trigger

have particular
state changes OPERATIONS

regarded as
modify
\ ENTITIES

Figure 4.2

Event, Operation and Entity are 3 predefined types of node of the
semantic network. We added domain and text types node in order to
deal with properties of event, operation and entity.

b) reality 1is composed of complex objects. A way to deal with
the complexity of complex objects 1is to wuse aggregation,
generalization and grouping abstraction forms. They correspond
to the 3 types of edge of the semantic network.

Aggregation, generalization and grouping apply on event, operation,
domain and entity nodes. This means that the semantic view of an
application domain we propose to describe through the semantic
network is a hierarchy of complex events, operations, domains and
entities.

Let us detail and examplify the semantic network types of node and
types of edge using the following graphical notation.

THE NODES THE EDGES
“ d 1 d ti dge
omain node aggregation e
D __a_ aggreg 9
entity node r roupin edge
S Y g p1ing g
operation node g generalization

> edge

E
Zi:::;? event node
L

text node
4.3.1 Semantic meaning of nodes
- A domain node represents a data type. It is used for the

representation of entity properties, operation parameters and event
contexts. A book number, a subscriber name are examples of domains.

- An entity node modelizes an entity type of the application domain,
such as a book, a request, a subscriber...

- An operation node represents an action type. The action of a given
type modify entities belonging to the same type. For example a
request analysis, a new book insertion are described in the semantic
network with operation nodes.

- An event node describes state changes of the real world that
trigger executions of similar operations. A book is just arrived, an
instance of book becomes available, are examples of event types.

13

- A text node 1is a predicate declaration that completes the
description either of an operation (triggering condition of an
operation for instance) or of an event (event predicate) or of an
entity (entity constraint). If the real situation is that a copy can
be loaned only if (a) "the copy is available and the subscriber is in
good standing", the condition (a) should be described in the semantic
network using a text type node.

4.3.2 Semantic meaning of edges
The aggregation, grouping and generalization abstraction forms are
respectively represented by the "a", "r" and "g" edges. "a", "r" and

"g" edges apply to domain, entity, operation and event nodes.

- An aggregation edge (edge a) may be defined either between two
nodes of the same type or between two nodes of distinct types.

On example 1, subscribers are described as aggregate objects with 3
components: SUBSC#, NAME and ADDRESS.

SUBSCRIBER
/1 \
(a,id) a a
NN bR ST TR
SUBS&b <}NAM ‘\ BDDRESS
ALY Y% AN N

Aggregate components can be domain nodes or entity nodes. The "id"
label precises the aggregate identifier (SUBSCH# in the example).

- A grouping edge (edge r) 1s defined between two nodes of the same
type. In the example below, a book 1is defined as a complex object;
one of 1ts components (STOCK) is a collection object. Every member of
the collection is a copy. This means that a book in a library has
usually several copies.

////,1 BOOK
(a,id) a “\\e a
=
BOOK# TITLE AUTHOR STOCK

COPY

- A generalization edge (edge g) is used for the representation of a

"is-a" relationship. An edge of type g is defined between two nodes
of the same type. For example a copy can have three possible states;
used, available and reserved described as 3 object nodes related to

14

the copy node by three '"g" edges.

COPY

g 94 g

CORY [COPY l COPY

USED AVAILABLE RESERVED
e e

NOTE: In order to reach a good conceptual schema (criteria for "good"
schema are presented in L3013, we have associated constraints (or
norms) to nodes and edges of the semantic network which are part of
their definition. We illustrate some of the norms with examples.

N1: Object identification
We consider as a good design discipline to identify each object of a
conceptual schema. Thus, any entity node must have an in—-going "id"

labelled edge (see example 1).

N2: Operation atomicity

Operation atomicity (one operation is defined as acting on one and
only one entity type) is required in the semantic network. Operation
atomicity avoids redundancy in process description and thus

inconsistency in process execution. Conseguently an operation node is
always origine of one "a" edge with an entity node as target node.

N3: Node / edge types compatibility norms
These norms avoid inconsistencies in the object constructions. The

following figure represents the autorized edge types between two node
types.

DOMAIN ENTITY OPERATI. EVENT TEXT
DOMAIN ar g a
ENTITY ar g a a
OPERATION arg a
EVENT ar g
TEXT a a - a

Figure 4.3

15

N4: Cardinality norms

Cardinality norms are based on an extended notion of cardinality as
introduced in the E/R Model [31].

Let f be a funpction coupled with a "a" or "r" type edge. For two
entity nodes (called A and B in the following), the f and f-1
functions can be characterized by the three following properties.

-~ totalness. A function f is total (t) if and only if each instance
of A 1s associated with at least one instance of B at any point of
time, else the function is partial (p).

- wvaluation. A function f is single (s) if and only if each instance
of A 1is associated with at most one instance of B at any point of
time, else the function is multiple (m).

- permanency. The function is permanent (p) if and only if the set of
instances of B associated to an instance a of A, at a time t is
included in the set of instances of B associated to a at a time t~
(t'>t), else the function is variable (v).

All combinations of properties are not allowed. The matrix on figure
4.4 summarized valid combinations of cardinalities. For instance the
<tmp, tsp> couple of cardinalities for a "r" edge 1s allowed. Let us
take an example, the function between the nodes STOCK and BOOK is
total (t), multiple (m) and permanent (p), its opposite is total (t),
simple (s) and permanent (p). This function can be associated with an
"r' edge in the network.

tsp tsv tmp tmv psp psv pmp pmv

tsp a a a a

tsv a a a a

tmp r

tmv

psp

psv

pmp

pmv

Figure 4.4

4.4 The transformer base of rules

In order to help the designer to progressively improve the content of
the semantic network during the design stage, the semantic network
transformer uses essentially three classes of rules: diagnosis
rules, improvement rules, mapping rules.

16

Let us concentrate and examplify the two first classes (mapping rules
are used to map nodes and edges of the semantic network onto R-schema
elements and are quite usual).

4.4.1 Diagnosis rules

Diagnosis rules play a double role; they automatically detect errors
in the semantic network and propose one (or several) solution(s) to
correct each type of error.

Thus, using diagnosis rules, the tranformer is both a preventive and
a creative tool.

Error detection is based on six design aspects, to which we have
associated six groups of diagnosis rules.

- (a) object identification,

- (b) entity structuration,

- (c) event and operation structuration,
— (d) semantic network consistency,

- (e) semantic network completeness,

- (f) semantic network correctness.

Rules of type (a) and (b) are illustrated by examples.
Figure (1) describes part of a semantic network which will be

detected as incorrect because of the non-identification of the AUTHOR
entity node (the object identification norm N1 is violated).

4//4 BOOK \\\\\

/// BOOK /gqgkii ;35}55;

w
F
a
[
/
N

NE
NI
O
PN

(a,i1d) = a
'6,%7- T //// BOOK
00K # TITLE AUTHOR
- = (a,id) a a_ (3)
>
//'/ 7 -// o A
Booﬁﬁf TITL AUTHOR
(1) & i A
t(a,id)
Ad?H#
e b

Thus, the SNT will propose two alternative acceptable solutions:
- Either to transform AUTHOR into a domain node (2),

- or to leave AUTHOR as an entity node, but necessarily
identified by a domain node (AUTH#) (3).

The diagnosis / correction process 1is an interactive one. The SNT

17

will for ipnstance in the previous case, explain to the designer (if
required) that in the first solution authors will be considered only
as property of books and not as independant entities.

In the following example the semantic network content illustrated in
(1), means:

COPY LOAN
<pmv, psv> h a a a
T
SUBSCRIBER CarPy SUBSCRIBER
a a
(1) (2) a a

SUBSCRIBER is an aggregate entity node and a component entity node
for the object COPY. The cardinalities of the relationship are as
follows:

- <psv> a copy may be used by any subscriber,
a copy may be used at most one subscriber,
a copy may be used by distinct subscribers at distinct times.

- <pmv> a subscriber may borrow any book,
a subscriber may borrow several books,
a subscriber may borrow different books.

This content 1is detected as incorrect (the type of the arc is not
valid according the cardinality norms).

Thus the GSNT proposes an alternative description (2). The new entity
LOAN is introduced as an aggregate entity with the two COPY and
SUBSCRIBER entity nodes as components. The cardinalities of the two
new edges are <pmp,tsp> and <{pmp,tsp>; that is acceptable according
to entity structuration rules.

Of course the interactive process will be activated in order to
complete the description of the new node LOAN.

4.4.2 Improvement rules

These rules aim at giving facilities to improve the semantic network
content. Contrarily to diagnostic rules, improvement rules apply on
valid parts of the semantic network.

Basically these rules are formalization of design expert heuristics
infered from the designer practical experience. They are based on
pattern recognition and suggest for each initial pattern of the
semantic network a more sophisticated one (or several alternative
ones) according to some specific design discipline.

For instance as we will illustrate later the SNT can try to
sophisticate the representation of entity classes using

18

specialization; or 1t can suggest a more complete representation of
entities based on temporal reasoning; or even combine these two
aspects.

Improvement rules relate to:

- historization of entities and relationships,

- specialization (of entity, event and operation types),
- behaviour completion,

- domain structuration.

Similarly to diagnosis rules, improvement rules identify a specific
pattern in the semantic network and propose to the designer one or
several improved representations pointing out some, may bej forbidden
or undertaken design problem. Let us give two examples of semantic
network transformations.

Situation (1) corresponds to a pattern identified with a <tsp, psp>
couple of cardinalities.

REQUEST| REQUEST
{tsp,psp> 1 a \\\?
LOAN WAITING
REQUEST
1)
LOAN (2)

In this example, two entity nodes REQUEST and LOAN are aggregated in
such a way that:

- a loan 1is associated with one and only one reqguest;
furthermore a loan 1is always associated with the same request
Chspl),

- a request may be "not accepted"; thus it is not associated to

a loan (psp).

The SNT proposes to improve the description presented in (1). This
solution suggests to distinguish '"accepted requests" and "waiting
requests" that have, probably, different and specific operations and
events. Following this 1line the designer can complete the new
network. For instance he can add the operation node ACCEPTANCE
WAITING REQUEST. This new operation node is defined on REQUEST
WAITING. In this context, the designer must find the event type that
triggers this operation type. In the example, the event type is COPY
BECOMES AVAILABLE. Finally the designer reaches a more complete and
precise description of reality summarized as follows:

15

P O
REQUEST COPY BECOMES
a AVAILABLE
e]
g \\\g a ACCEPTANCE OF
//”—"‘~wAITING REQUEST
—
ACCEPTED, WAITING
REQUEST REQUEST
The following example relates to behaviour completion and

historization of entities. Let us consider situation (1):

BOOK BOOK

(&,3d) a \\\? 8 (a,id}/‘h

Wy NG BT T
\BbOK# \QUTHdE\ STOCK BDDk;W AUTHOR
tﬁa_:;_: b o < b\ N

b N Sy 4
\
S 5 REMOVE _COPY

ETITLI—E\ r QI TLE\

b N Y

COPY COPY a
(1) (2) LOST_COPY
L/

(a) This rule suggests to the designer to describe the behaviour of
the entity type STOCK. STOCK is a collection object. Every member of
the collection is a copy.

The representation (2) proposes two modification events on STOCK:
LOST_COPY and NEW_COPY.

(b) On this new representation, the SNT can apply a new improvement
rule which suggests to the designer to memorize the lost copies. The
new proposed representation {3) uses the generalization/
specialization structure.

BOOK
(a,id) a
o
N N N \\
BOOK# \\IITLE
PR N NN
REMOVE COPY
g
j a
(3) LOST _COPY CURRENT _COPY
= L = _ o
LOST_COPY
(i i————

20

During the design process, the EDT drives actively and intelligently
the designer, and progressively improve the semantic network until
reaching a satisfactory solution for the designer and for the EDT.
Then, the semantic network can be mapped onto R-schema elements,
which can be used by the prototyping tools.

5 PROTOTYPING TOOLS

Information System prototyping is based on an automatic management of
the database dynamics specified in the R-schema.
This involves :

- automatic recognition of events;

- automatic triggering of appropriate operations when an event

OCCUrs;
- operation execution controlj
- event synchronization.

To attain such an automation, we have chosen to :

a) use a relational DBMS to deal with :
- managing the relations of the meta—-base corresponding to the
R-schema specification;
- executing operations texts and evaluating factors, conditions
and predicates : this requires an interpreter more powerful
than a simple SQAL interpreter.

b) develop a mechanism able to :
- recognize an event;
— determine which operations to executes
- trigger and control operations execution;
- synchronize event—-chaining.

This mechanism is similar to the inference engine of a forward
chaining expert system, whose cyclic function is to :

- test the rule premisses;
- choose a candidate rule;
- execute the action-part of the rule;

and which possesses a rule—-chaining strategy.

The mechanism we propose is composed of four units managing all kinds
of events.

— the temporal processor recognizes temporal events;

- the event processor recognizes internal events and processes
all events and their synchronization;

— the PROQUEL interpreter executes all texts of predicates,
conditions, factors and operations when required by the event
processor;

- the application monitor allows to introduce instances of
external events as test cases for prototyping.

21

We focus now on the event processor which is the key part of the
prototyping tool.
The event processor fulfils three main functions :

— takes into account external and temporal events;
— processes events;
— orders them.

The first function 1s based on a FIFO management of the Message
Queue. The second function consists of a meta-base search for
appropriate conditions, factors and operations that will be evaluated
or executed by the relational DBMS. These two functions do not
present any major difficulties, as opposed to the third function,
presented in the following section.

The chosen strategy for event synchronization 1is based on the
induction notion, and on the use of the induction graph, which is
derived from the R-schema.

9.1 The induction notion

The induction notion 1s used to point out the ordering of events from
the R-schema.

DEFINITION :

An event EVi inducts an event EVj, if and only if :
- EVi triggers OPn which modifies the relation recognized by EVjJ,
- an occurrence of EVi, followed by the execution of OPn can
produce an occurrence of EVJ.

Graphically, the situation is the following :

o= OPn
\-./ \\

~

TS

OPn
The notation used to represent an induction is : EVi—>EV]
5.2 The Induction Graph construction
The Induction Graph uses the above notation. It contains :
- nodes representing R-schema events,
— directed edges representing inductions,
- weights on the edges, which represent operations and are used
as "induction conditions".
The Induction Graph construction is accomplished in two steps :
— an automatic step, producing the Maximal Induction Graph,

— a manual step transforming the Maximal Induction Graph into
the Induction Graph.

2

&

1st STEP

The Maximal Induction Graph can be automatically deduced from the R-
schema :

- "a priori possible chainings" are obtained by analysing the ON,
TYPE and TRIGGER parts of event and operation specifications.

For a given event EVi, the chain is composed of all those events
ascertaining relations modified by the operations triggered by
EVi,

- in order to keep only "structurall ossible chainings", the
occurrence of each operation’s TYPE (INSERT, DELETE, UPDATE) is
checked within the ON part (i.e the category) of the internal
event(s) it seems to induce. So, impossible chainings like "a
product deletion produces a new availability" will be removed
from the graph.

Figure 5.1 presents the induction graph corresponding to our case
study.

EV1 EV2
— ~
opl op2 op2,0p3 opi\\
EV3 EV4“op2 EVS
opS op7 opB8 op8 op9 oploO
EVS \b
EV6 op7 EV7 EVY EV10
Figure 5.1 : A Maximal Induction Graph

2nd STEP

The designer then manually modifies the Maximal Induction Graph,
until he obtains the final Induction Graph.
During this step, the designer removes all the chainings that seem

impossible to him from the graph. For example, EV4 ("loan request")
seems to induce EVB ("copy availability"). This 1is because EV4
triggers a modify operation on COPY (opB8) and EVB recognizes
insertions or modifications of the COPY status.

In reality, an EV4 occurrence will never generate an EVB8 occurrence

since op8 always put the COPY status to "LOANED", and EVB only
recognizes modifications setting a COPY status to "AVAILABLE".

This kind of "false induction” cannot be detected automatically since
it involves a semantical interpretation of predicates, conditions,
factors and operations.

The finmal Induction Graph is an optimized and generally non-connected

graph, which contains only "semantically possible chainings'". Figure
5.2 presents the Induction Graph corresponding to the Maximal
Induction Graph of figure 5.1.

If there are cycles in the Induction Graph, they are detected

automatically, and the designer is asked to a confirm an "impossible
endless loop".

23

EVZ2

P4
opS \ op8 %
9

(o]
EV6 EV7 EV

EV1
EV3 EV4 EV
op7
EVB

=
N
oploO
\

EV10

Figure 5.2 : Induction Graph

5.3 Internal event chaining strategy

Given an extermal or temporal event to be processed,
strategy is based on a ‘'"breadth-first" traversal of
Induction sub-graph.

the chosen
the event

¥ The induction sub-—graph of an event is the maximal connected

component, whose root is the event concerned.

By using this kind of sub-graph when an external or temporal event

EVI DECUrssy the Event Processor can learn immediatel

y what "the

set of internal events it will probably have to process" is. This
set of intermnal events is called the EVi Induction Class and is
written C(EVi). For example, referring to figure 5.2, the EV1

Induction Class is :

C(EV1) = { EV3, EV4, EV6, EV7, EVB }

¥ The internal event sequence construction is based on a breadth-
first traversal of the Induction sub-graph.
(EV1) 1st cycle
/ op2
(EV3* EVa) 2nd cycle
op?/// \\\\\337 op8
7
(FV& <EVB EV7) 3rd cycle
Figure 5.3 : Internal event sequence
For example, 1if EV1 occurs, the complete processing cycle will

include
1st cycle: EVI
2nd cycle: EV3I + EV4
3rd cycle: EV6 + EV7 + EVB

It means that within each cycle, all events from the same level are

processed.

24

The "breadth—-first" strategy (e.g EV1, EV3+EV4, EVHLH+EV7+EVB) has a
real advantage over a ‘'depth-first" (EV1, EV3, EV6, EV4, EV7) or a
"random” strategy (EV1, EV3, EVB, EV4, EV7, EV6). In fact, this
strategy permits optimal management of the input/output implicit
parameters. Idle time between :

- generation of an "operation output parameter”,
— and its use as input parameter to process the event

induced by this operation, is minimal.

Internal events are recognized as soon as "noticeable state changes”

occur (in fact : Jjust after all operations triggered at the same
level have been executed); and these events are processed as soon as
they are recognized (i.e during the next basic cycle of the event
processor).

In this manner, there is no parameter waiting for use during a
complete basic cycle. This is not true with other strategies; for
instance, in the ‘"depth-first" strategy, the EV4 input parameters

must be kept in memory as long as EV3 and EV6 are still being
processed.

The purpose of the Induction Graph is an optimization of the Event
Processor work. For example, refering to figure 5.2, during the
processing of ev2, if OP4 isn’'t in the list of operations to execute,
a whole part of the EV2 Induction sub-graph can be pruned off :

EV2
op3 op4
EV EVE\\\
DDB\\\ op9? oploO
EV7 EV? EV10

So it permits :
-- avoidance of useless predicate tests (EVS5, EV?, EV10),
- avoidance of useless parameter recording,
- an earlier freeing of resources ("read—-locked" relations for
predicate, condition and factor evaluation; "write—-locked"
relations for operation execution).

1t appears that an external or temporal Induction Class will become

smaller and smaller after each basic cycle, and will finally reach
the empty state. (another external or temporal event will then be
processed.)

At any moment, the Event Processor knows what it is processing and

what 1t must deal with next; so it controls the whole process fully.

USING THE PROTOTYPE

During the experimentation of the prototype, the Event Processor
displays a trace of what it is doing : which events are currently
processed or waiting, which conditions are true, which operations

25

have to be executed, and so on.

Analysing this trace, the designer can easily detect if things are
going wrong (bad result for a condition, database error on a
predicate evaluation, occurrence of a wrong event, e . and

immediately correct the errors, modifying the specifications through
one of the design interfaces.

Applying an iterative strategy, the designer will progressively
refine his specifications until the bebaviour of the prototype is
fully correct for him and for the end-users.

6. CONCLUSION

In this paper, we have presented an integrated computer aided tool so-
called RUBIS, for designing and prototyping Information Systems.

The RUBIS-schema is a declarative specification of the IS, made using
the formal specification language called PROQUEL (PROgramming GUEry
Language). The R-schema provides a conceptual description of both the
static and dynamic aspects of the IS to be built. The static IS
aspects are modelled by relations while operations (elementary
actions on an object) and events (elementary state changes triggering
one or several operations) allow the modelling of the dynamic aspects
of objects. Thus, the R-schema is a collection of relations,
operations and events specifications. In this schema the temporal
aspects of the application are also taken into account; they are
modelled by using the time types and functions provided by the RUBIS
Time Model.

RUBIS includes three different interfaces as computer aided design
tools: a Graphic Interface, an Expert Design Tool working on a
"complex object" description of the application domain and a Menu
Interface based on the PROQUEL language.

The Graphic and Menu based interfaces are both devoted to experienced
designers while the Expert Design Interface can be used by relatively
unexperienced analysts or designers.

Prototyping in RUBIS 1is achieved by the Temporal Processor which
manages temporal aspects of the specification and by the Event
Processor which manages event recognition and synchronization. Both
Processors use the PROQUEL interpreter.

A first wversion of RUBIS is running on SUN Workstation, under the
UNIX system. Prototyping tools are written using the C language, and
design tools are wusing the X-Windows system. The expert design
interface is partly written in Prolog.

Current developments are leading towards :

- the development of a fufnctional debugger for the prototyping
aspects;

- the extension of PROQUEL to a real persistent language;

- the provision for the implementation of code generators which
will translate the PROQUEL specifications into a target
"embedded language" (Pascal/SQL, C/QUEL, ...);3

26

- the development of a graphical interface to manipulate the
Semantic Network; g

- the extention of the expert design interface to include
tutorial functiomnnalities.

REFERENCES

f1] C. ROLLAND, C. RICHARD: The Remora methodology for information
systems design and management in IFIP WGB.1 working conference on
"Information systems design methodologies: a comparative review"'" 1982 |
[2] BOUCHET and al. : "Databases for Microcomputers : the PEPIN
Approach" ACM SIGMOD/SIGSMALLS, Orlando, Florida, Oct.1981.

[3]1 ROLLAND C, BENCI G, FQUCAUT OQ : "Conception de Systemes
d’'Information : La Méthode REMORA", Eyrolles 1987.

[4] BUBENKO J.A. : "The temporal dimension in Information Processing"
in Architecture and Models in Database Management, G.M. NIJSSEN, ed.
North-Holland (1977).

[5] WIEDERHOLD G., FRIES J.F., WEYL S. : "Structured organization of

Clinical Databases" Proc. of AFIPS National Computer Conf., Anheim,
1975.
[6]1 BOLOUR A., ANDERSON T.L., DEKEYSER L.J. and WONG H.K.T. : "The

role of time in information processing : A survey' ACM SIGMOD RECORD
val. 12, n* 3, April .1982.

[7] SNODGRASS R. : "The +temporal query language TQUEL" ACM |
Transactions On Databases Systems, vol. 12, n° 2, June 1987.
[8] NAVATHE §.B., AHMED R. : "TSQL : A language interface for history

databases" AFCET-IFIP WGB.1 TAIS Conf., Sophia-Antipolis, France, May
1987.

[?] CODD E.F. : "A Relational Model of Data for Large Shared Data
Banks" Communications of the ACM, vol. 13, n° &, 1970.

[10] M.R. GUSTAFSSON, J.A. BUBENKO T. KARLSSON: "A Declarative
Approach to Conceptual Information Processing'” in IFIP WGEB.1 Working

Conference on "Information Systems Design Methodologies: a
comparative review" 1982.

[11] ANDERSON T.L. : "Modeling time at the conceptual level" Proc.
2nd International Conf. on Databases, Jerusalem, June 1982.

[12] SNODGRASS R., AHN I. : "A taxonomy of time in databases'" Proc.
of ACM SIGMOD 85, Mar. 19B85.

[13] ZLODF M:iM. : "Query By Example : a database language" IBM
Systems Journal, vol. 16, n° 4, 1977.

[14] OVERMYER R., STONEBRAKER M. : "Implementation of a time—-expert
in a Database System" ACM SIGMOD RECORDS, vol. 12, n® 3, Apr. 198B2.
[15] ADIBA ™., BUI QUANG N., PALAZZO J. : "Time concepts for
generalized data bases" ACM Annual Conference, Denver, Colorado,
H:8:R:5 Bt 1985,

[16]1 AHN I., SNODGRASS R. : "Performance evaluation of a Temporal
Database Management system" Proc. of ACM SIGMOD Conf., 19B6.

171 DADAM P., LUM V., WERNER H.D. : "Integration of Time Versions
into a Relational Database System”" Proc. of 10th VLDB, Singapour,
Aug. 1984.

[18] ADIBA M., BUI QUANG N. : "Historical multi-media databases"
Proc. of 12th VLDB, Kyoto, Japan, Aug. 1986.

[19]1 BARBIC F., PERNICI B. : "Time modeling in Office Information

Systems" Proc. of ACM SIGMOD Conf., Austin, Texas, May 1985.

[20] CLIFFORD J., RAO A. : "A simple general structure for temporal

27

domains" AFCET-IFIP WGB8.1 TAIS Conf., Sophia-Antipolis, France, May
1987.

[21] BOLOUR A., DEKEYSER L.J. = "Abstractions in temporal
information" Information Systems, vol. B, n° 1, 1983

[22] DBE : Data Base Engineering review vol 17, n®4, Special issue on
data design aids methods and environment, Dec. 84

[23] S. CERI: "Methodologies and Tools for Database Design" ed, North
Holland Publ Co 1983.

[24] R.P. BRAGGER, A. DUDLER, J. REBSAMEN, C.A. ZEHNDER: "GAMBIT: An
interactive Database Design Tool for Data Structures, Integrity
Constraints and Transactions'" in Database Techniques for Professional
Workstations, ETH Zurich 1983.

[25] J.M SMITH, C.P. SMITH: Database Abstractions : Aggregation.
Communications of ACM. June 1977.

[26] J.M. SMITH, C.P. SMITH: Database Abstractions : Aggregation and
Generalization. ACM TRANSACTIONS on Database Systems. June 1977.

[27] M.L BRODIE, E. SILVA : Active and Passive Component Modeling:
ACM/PCM in IFIP WGB.1 working conference on "Information systems
design methodologies: a comparative review" 1982.

[28] KAHN K., ' BGORRY G. A. : "Mechanizing Temporal Knowledge"
Artificial Intelligence, Vol.9, N°1, Aug. 1977.

[29] MITTAL S. : "Event—-based Organization of temporal Databases"
Proc. CSCSI/SCEIO Conf. B2, Saskatoon, Saskatchewan, 17-19 May 1982.
303 EAUVET Ca 3 "Un modele et un outil d'aide & la conception des
Systémes d’' Information" Ph. D. Univ. of Paris &6, Nov. 19B88B.

[31L1Y EHEN: - Pl : "The Entity/Relationship model : towards a unified
view of data", ACM TODS, Vol 1, n® 1, 1976.

(32] NOBECOURT P., ROLLAND C., LINGAT J.Y. : "Temporal management in
an extended relational system" 6th British National Conf. on

Databases, Cardiff, G.B., July 1988.

[33] LINGAT J.Y, NOBECOURT P., ROLLAND C. : "Behaviour management in
database applications” VLDB 1987, Brighton, G.B., Sept. 1987.

[34] LINGAT J.Y, COLIGNON P, ROLLAND C. : "Rapid prototyping : the
PROQUEL language" VLDB 88, Los Angeles, USA, Sept 88.

28

