The Role of Knowledge Based Systems
to Enhance User Participation in the
System Development Process

Gian M Medri, PKBanken, Stockholm

Summary: Computers are a fact of life today, even for the public in general. User participa-
tion in the system development process is made easier by the present development of technol-
ogy. Acceptance of the users’ claim to control their computer systems is mandatory not only
from a moral, but also from an economic point of view.

It’s obviously helpful to structure the problems related to the development of a new system
in a reasonable way, for example by dividing them into inherent problems, non-inherent
problems and symptomatic problems. Examples are provided.

There are, at present, three main technologies of application development. Of these, expert
systems represent the highest level. .

As a conclusion an outline of the ideal knowledge based system development tool is
presented. This tool does so far not exist in the form of a CASE package, but it would be quite
feasible to make one.

The main problem today is certainly not the lack of visions and results in the field of tech-
nolgical development. It is rather that most data centers work for and with third generation
software. A CASE tool of the kind outlined here would provide the possibility of enhancing
user participation in the system development process. One important reason for this is that it
might be of great help in cleaning out obsolete technologies and working methods from the
data centers we have at present.



Background

Computerization has already brought
about profound changes in everyday life. No
doubt the new technologies of Artificial Intel-
ligence will be reflected in new social struc-
tures., This is, however, a slow process, due
to social inertia, and we know very little
about the outcome.

What we know, instead, is that, partly as a
consequence of the development of fourth
generation languages, new tools for prototyp-
ing, the widespread use of personal com-
puters etc, there is a growing claim from
people working with computerized systems
to participate actively in the design and solu-
tion of their systems.

The computer is today a common tool,
used even in private homes. Only a decade
ago we counted the computers in the world
in thousands, now we count in millions.

This means that almost everybody has
some contact with computers. The computer
does no longer appear as something out of a
science fiction novel. An increasing number
of people do not accept to be told that it’s
the computer’s fault, when errors appear in
their bills or bank statements. They know
that the error generally is caused by the
people who made the program. This is, of
course, a very positive development.

Earlier, computer systems appeared
mysterious to the man in the street. Users
needed special intermediaries, in the form of
system analysts and programmers, who inter-
preted and coded the knowledge necessary
to solve the user’s problem.

Today, with the introduction of spread-
sheets, 4GL, WYSIWYG (what you see is
what you get), WIMPS (windows, icons,
mouse, pulldown menus) and knowledge

based systems, the handling of computer sys-
tems has become much easier.

The acceptance of the users’ claim to par-
ticipate in the development process and con-
trol their computer systems is today man-
datory, not only from a moral but also from
an economic point of view., Nobody can work
efficiently and be satisfied with obsolete tech-
nologies. Experience shows, for example,
that users of a word processing system find it
difficult to go back to the typewriter, almost
as if they were offered a clay tablet or a
piece of calfskin instead of writing paper.

Possibilities and problems

Rapid changes in the market place deter-
mine the need of both active user participa-
tion in the application development, and a
rapid development process. This means that
the user must understand the whole process.

Knowledge based systems seem today to
be the best way of meeting the requirements
of easy-to-understand system design and of
quick solutions, provided that proper tools
and methods are connected to the expert sys-
tem for system development.

Some of the CASE (computer aided sys-
tem engineering) packages in use today are
excellent tools in the hands of system
analysts with many years of experience. But
in the hands of system analysts whd lack suffi-
cient experience they can create more
problems than they solve.

I have seen several cases where such tools,
improperly used, produced hundreds, in
some cases thousands, of nice laser printed
logical diagrams describing functions, proces-
ses and information relations. After that,



nobody understood what to do or how to con-
tinue. to get a workable system off the
ground. This was due to the fact that there
was too much information and too many
people to get a proper structure. In some
cases the project was stopped after many per-
son-years of work.

In the world of manufacturing, we are
used to handling concrete things like boxes,
wheels, engines etc. When we try to
transpose the construction process from clas-
sical manufacturing to software we often
make mistakes.

There are, for example, still many Informa-
tion System managers who think that when a
project is late, it is sufficient to put more
programmers or analysts to work, just as a
production manager would do. When he has
to double the production of nails, he doubles
the productive resources. If one person
produces 1000 nails per hour, then two per-
sons should produce 2000 nails per hour.

This linear relation between workforce
and production is generally correct in the
case of hardware. It is absolutely wrong
when it comes to software. In many cases we
can observe the strange phenomenon that
the input of more resources into a project
will slow down if not kill the project itself.

Structuring the problem

Before deciding which is the best way to
develop a new system we must structure the
problems related to the process. The
problems can be divided into:

e inherent problems
e non-inherent problems

e symptomatic problems

The inherent problems are those created
by the application itself. For example, a bank
with 500 branches is to develop a system for
updating balances. The inherent problems in
this case are the matching of balances and
the amount withdrawn, the interest calcula-
tion and so on.

By non-inherent problems I mean
problems that are created by technology,
policies or environment. An example is that
500 branches generate 100 transactions per
second and that the actual balance is in a
subrecord of a hierarchical data base. The
amount of transactions generate the problem
of response-times and special solutions must
be found to make them acceptable. Complex
solutions are also needed in order to
navigate through the data base to find the
right subrecord.

The symptomatic problems could be that
the development is slow, the project costs ex-
ceed the estimates, and that a specialist for
the response-time optimization is not avail-
able.

In this example we can eliminate the non-
inherent problems by distributing the data
base to the branches, diminishing the transac-
tions rate to one per five seconds, and sub-
stituting a relational data base for the hierar-
chical one. We can perhaps use a fourth
generation language, so we won’t have to
bother too much with technicalities, and con-
centrate our resources on the application.

By doing this we also eliminate the
symptomatic problems. This situation, espe-
cially in more complex form, is fairly normal
in the system development environment.

Knowledge based development systems
can deal with this kind of problems, if a very
experienced system analyst is available.




Who is the expert?

To avoid misunderstandings, I must ex-
plain that i call "experts", those who are ex-
perts in the field covered by the application,
or those who represent the end-users. "Sys-
tem analysts" are obviously those who are
specialists in system development. Further-
more, I call "system tools" those systems or
packages that help system analysts and ex-
perts to develop systems for the end-user
and "application" the object of the system
development.

Very often the non-inherent problems are
of technical nature. They complicate not only
the system but also the user’s understanding
of the solution. The power of a CASE pack-
age based on an expert system is among
other the possibility to help the system
analyst to simplify each stage of the system
development process, while at the same time
the expert can follow and determine the
rules that govern the application. The almost
natural language used for the application
development is similar to the language used
in the tool that governs the methodology for
system development

The Importance of Flexibility

The system development process consists
of many phases that are not cleary defined
and change in time and space depending on
the technology used, the kind of industry and
the local environment.

This means that system tools must be very
flexible and adaptable. A knowledge based
system tool can easily be adapted to any
working place, because the knowledge base
is understandable and furthermore separated
from the inference engine.

Normally, there is a common base of
knowledge for system development that
doesn’t differ from place to place or time to
time. For example, the rules that govern nor-
malization of information are the same inde-
pendent of the country, the industry or the
technology used in a particular development
process. Perhaps in the future someone will
find some new normalization forms, but the
fundamentals are there and will not change.
Furthermore, many rules of the thumb in
such a system tool will not be subject to
change.

Rules of thumb

Just to give an idea of such a rule of
thumb I will mention what happened when a
new system was taken into production and
after running a few weeks showed that many
numerical fields did not balance. When we
looked at the system specifications we didn’t
find anything like balancing the sum of
numerical input fields with the correspond-
ing changed fields. When we asked the sys-
tem analyst why there were no balancing
checks in the different modules and
programs, he answered: "We have been
taught that the computer never makes mis-
takes. It is a waste of time and other resour-
ces to include these unnecessary controls."

It is true that undetected hardware errors
are very rare, but it is not the same for
software errors. It is far from unusual that a
program has fifty or more two-ways
branches. This means that the number of
combinations is a figure with fifteen digits.
Consequently, it is impossible to run a full
test of a program of this kind.

The system tool should contain the rules
of thumb that handle this kind of problem
and advise the system analyst and the expert
at the proper phase of system development.




The examples described above are of a
general kind and can be standardized in a
package, but there are other aspects that can-
not be generalized because they depend on
the country, the kind of industry and ul-
timately the individual company.

The knowledge system tool should be
made in such a way that it is easily com-
pleted by the individual company, so as to in-
clude their own particular rules.

The most obvious adaptation is the lan-
guage of the country. The next is the par-
ticular business language used in the in-
dustry. For example, the terminology of bank-
ing differs from that of engineering or in-
surance.

The language and terminology aspects are
very important for the communication and
the understanding between the system
analyst and the expert. If the system develop-
ment tool is easy to understand, this charac-
teristic will usually hold even for the applica-
tion developed by means of the tool.

Another domain where the adaptation to
the policy of the individual company is very
important is the security and auditing fea-
tures. The knowledge system tool should em-
phasize this sadly neglected problem. Part of
the rules can be generalized, part of them
must be adapted fo the individual company.

Three technologies

At present, there are three main tech-
nologies of application development:

1. The old one, with static life cycle, with
COBOL or some other programming lan-
guage at the same level, and hierarchical or
network data bases.

- 2. The fourth generation packages, with an
iterative life cycle, a very high language
level, form, graphic, and report facilities and
a relational data base.

3. Expert systems with an iterative life
cycle, knowledge bases (rules, demons, facts
and frames etc.) and a relational data base.

The system tool should support all the
three types. Since the highest form of ap-
plication development is knowledge based, it
seems obvious that the best support will be a
knowledge based system. This combination -
system tool and application development
made with knowledge based technologies -
will greatly facilitate the communication and
understanding between the system analyst
and the expert, and this will contribute to a
better system quality.

The second alternative is also acceptable,
because the expert can follow the iterative
development process and see what happens,
so he can check that the system will be what
he wants.

The first alternative is not so good, since
there is no way to make the system easy to
understand for the expert. It is impossible
both for the expert and the system analyst to
foresee all the logical consequences of the
system design.

A knowledge based tool will help the sys-
tem analyst and expert to formulate the re-
quirements in the form of rules and facts
that can be tested preliminarily in an expert
system and then translated into COBOL or
other similar languages.

In this case, the knowledge should be
limited to rules, demons and facts. Frames,
probabilistic reasoning and other advanced
knowledge techniques should be avoided, be-
cause it would be difficult to implement
them in COBOL. Relational data bases




should be preferred to hierarchical or net-
work data bases. The more the expert under-
stands the application development, the
greater will be the final usefulness of the
production system.

Conclusion

Since applications are systems that support
human beings at work, whether they be bank
officers, medical staff, or spare parts service
clerks, the usability of the system must be
the highest possible.

To reach this goal, those who are really ex-
perts in the field to be covered by the ap-
plication should participate in and control
the application development. The ideal
knowledge based system tool would give the
best support to application development, for
the following reasons:

e High flexibility with the possibility to
implement local specialized rules and
facts, language and terminology.

e High adaptability to different kinds of
development that depend on the
environment.

e Rules of the thumb extracted from a
very experienced system analyst.

o Advice to the expert and the system
analyst on very complex matters.

e Calculations of the risks of omitted or
limited security.

e Fuzzy and probabilistic methods that
can be used when the boundaries are
unclear, for example the question
whether a system is complex or not.

e Easily understandable development
process, due to the use of rules and
local terminology. The decision makers
and the user representatives can follow,
understand and control all the phases
of the development process.

e Possibility of explanations for every
advice and decison.

As far as I know, there is at present no
CASE package that really covers all the
points mentioned above. It is, however, per-
fectly feasible to make one, and better tools
will certainly be forthcoming within the near
future.

There are many visions about future re-
search and development in the computer
world. The sixth generation already exists in
the minds of some researchers.

Unfortunately, there are not many visions
about the use of existing technology. Most
data centers of some size are doing more
than 90 percent of their work with and for
third generation software.

Would a knowledge based system tool of
the kind outlined above help to bring the
computer community up to date?

My answer is: not totally, and not at once.
But it would certainly be a step - maybe a
giant step - in the right direction.






