Knowledge-Based Support for
Requirements Engineering

P. Loucopoulos and R.E.M. Champion

Department of Computation,
UMIST,

P.O. Box 88,
Manchester, M60 1QD,
United Kingdom,

Tel. 061 236 3311.

ABSTRACT

The accurate capture and representation of user requirements plays a critical role in the
construction of effective and flexible information systems. However, despite the
introduction of development methods and CASE tools in the Froject life-cycle, the
process of developing a requirements specification remains problematical.

This paper proposes that future development in CASE environments should provide
facilities which more closely match the activies of expert system analysts. These
activities include: the creation of informal models and scenarios about the modelled
domain prior to the formalisation of captured concepts in a schema according to the
chosen dcvelSPmcnt method's model; extensive use of domain knowledge; use of
method specific knowledge; consideration of multiple views about the modelled
domain; the creation of hierarchies of concepts; formulation of hypotheses about
modelled structures; and resolution of different hypotheses and decision formulation.
To this end, the paper reports on a prototype system which provides facilities for the
support of these activities by exploiting knowledge-based techniques for the capture
of concepts about an application domain and their specification in JSD constructs.

ACKNOWLEDGEMENT

The work reported in this paper was conducted as part of the Analyst Assist project.
This is a collaborative project involving Data Logic, UMIST, Scicon, MJSL, MOD(ARE)
and Istel. The work undertaken by the authors of this paper is supported by the UK
Science and Engineering Research Council Grant No. GR/D 72648 - SE/113 as part of
the Alvey Programme of Research and Development.

1. Introduction

In recent years there has been a growing
realisation that the development of large
information systems is becoming increasingly
more difficult as user requirements become
broader and more sophisticated. The complexity
which is exhibit by most contemporary
application domains and the subsequent problem
of developing automated information systems for
these domains has proved that the traditional,
informal approach is no longer feasible since the
gap, between initial requirements statement and the
verification of these requirements in terms of the
implemented system, is too large. An alternative to
the traditional approach has been the adoption of
paradigms which attempt to establish appropriate
management procedures within a systematic
framework which recognises well identified tasks
and milestones. Examples of such methods are
Information Engineering [MacDonald, 1986], JSD
[Jackson, 1983], NIAM [Verheijen & van
Bekkum, 1982], SADT [Ross, 1977], SASD
[DeMarco, 1978], STRADIS [Gane & Sarson,
1979] and a plethora of other more or less similar
methods (cf [Layzell & Loucopoulos, 1987] for a
bibliography).

These proprietory methods and their associated
CASE tools pay particular attention to the
construction of a high level specification of a
system before the implementation of software.
Emphasis is placed in establishing a clear
understanding of the functional requirements of
the information system, since it has often been
reported that over 50% of software malfunctions
have their origin in the process of requirements
capture, the effect however not being detected until
later stages thus giving rise to a figure of 80% of
personnel resources being committed to the
debugging and testing of source code [Chapin,
1979, van Assche et al, 1988].

Despite the increasing use of these methods,
however, users continue to experience major
difficulties [Morris, 1985]. From the viewpoint of
requirements specification, a major criticism
levelled at contemporary approaches is their poor
handling of the capturing and modelling of the
knowledge of the universe of discourse
[Greenspan, 1984; Balzer et al, 1983; van Assche
et al, 1988]. These shortcomings can be attributed
partly to the inherent nature of the process of
capturing, modelling and verifying concepts of the
modelled domain and partly to inadequate
formalisms used for the representation of these
concepts.

This paper argues that future development
methods and CASE environments must support the
early stages of requirements specification by
providing modelling formalisms and functions
which permit the development of informal models

and experimentation prior to developing a
specification according to the constructs of the
chosen method. To this end, the paper reports on a
prototype system which is used as part of a larger
CASE environment in the context of the Jackson
System Development (JSD) method [Jackson,
1983]. Section 2 discusses the process of
capturing concepts of an application domain and
derives a set of desirable features of a
requirements engineering support system. Section
3 introduces the prototype system in terms of its
underlying formalism and functions and section 4
describes the way the system may be exploited in
terms of the system's three main facilities of
concept elicitation, concept resolution and decision
tracing,.

2. Requirements Specification

A requirements specification represents both a
model of what is needed and a statement of the
problem under consideration [Rzepka and Ohno,
1985]. The activities involved are long and
iterative, and involve much informality and
uncertainty. Consequently, many of the problems
associated with requirements specification can be
attributed to the nature of the task itself. The
following are key characteristics of the task of
requirements specification [Vitalari & Dickson,
1983]:

+ because the task is carried out at the early
stages of the development lifecycle it is often
difficult to define the boundaries of the
universe of discourse in an exact way

 because there is little structure of the problem
domain before hand there is a considerable
degree of uncertainty about the nature and
make-up of the possible solutions

« analysis problems are dynamic that is, they
change while they are being solved because of
their organisational context and the multiple
participants involved in the definition and
specification process

« solutions to analysis problems require

interdisciplinary knowledge and skill

o the process of analysis itself, is primarily
cognitive in nature, rquiring the analyst to
structure an abstract problem, process diverse
information, and develop a logical and
internally consistent set of models.

Within requirements specification two basic
activities take place: modelling and analysis
[Dubois et all, 1986]. Modelling refers to mapping
real world phenomena into basic concepts of a
requirements specification language. These basic
concepts serve as the means of building various

structures which, in their totality, constitute the
requirements specification for a problem domain.
Analysis refers to techniques used to facilitate
communication between requirements engineers
and end-users using the developed requirements
specification as the basis of that communication.

Following this view, requirements engineering can
be defined as the systematic process of developing
requirements through an iterative process of
analysing the problem, documenting the resulting
observations and checking the accuracy of the
understanding gained.

In order to manage this process there is a need for
support in three areas. Firstly, an analyst's
reasoning process must be guided by some
underlying process which is appropriate to the task
as well as the problem domain. Such an
underlying process must be generic in nature, so
that all analysts may use its constructs, and must
represent a standard approach within an
organisation, so that a specification generated by a
development team is achieved in an integrated
way. Secondly, facilities must be provided for
locating information about an evolving
specification, Many facts are gathered during the
process of constructing a - requirements
specification and these facts must be correlated,
irrelevant ones discarded and appropriate facts
organised in meaningful structures. Thirdly,
assistance is needed in the communication between
analysts and end users during the phases of facts
acquisition and specification verification.
Capturing and verifying requirements are labour-
intensive activities which demand skilful
interchange between those that understand the
problem domain and those that need to model the
problem domain.

Contemporary approaches provide support in all
three areas through the use of method steps,
project encyclopedias, and diagramming tools.
Certainly, these approaches are a major
improvement on the ag-hoc traditional approach.
However, further major benefits can only come
about if the three areas of design discipline,
documentation and communication are
supplemented by support facilities which closely
match the behaviour of expert analysts.

A number of empirical studies have been carried
out in an attempt to better understand the process
of developing a requirements specification. The
differences in behaviour between high and low-
rated analysts were investigated in three separate
projects [Vitalari & Dickson, 1983; Fickas, 1987;
Adelson & Soloway, 1985]. Based upon the
results of these studies, it is possible to identify
several major (not mutually exclusive) types of
working practices by system developers, as
follows:

a. Use of Analogy

Developers use information from the
environment to classify problems and relate
them to previous experience. On the other
hand lack of information provides triggers to
search for missing data. Empirical studies have
shown that experienced developers begin by
establishing a set of context questions and then
proceed by considering alternatives. One basic
prerequisite for using analogy during
requirements elicitation is the knowledge that
the analyst has about the domain under
examination. Loucopoulos and Champion
[1988] argue that such knowledge is crucial to
the development of a requirements
specification.

b. Hierarchies of Models

Expert developers tend to start solving a
problem by forming a mental model of the
problem at an abstract level. This model is then
refined, by a progression of transformations,
to a concrete model, as more information is
obtained. Developers are aware of the various
levels of policy within a domain and use this
knowledge to guide a .user during a
requirements capture session.

¢. Formulation of Hypotheses

Hypotheses are developed as to the nature of
the solution, as information is collected. An
experienced developer uses hypothetical
examples to capture more facts from a user but
also to clarify some previously acquired
information about the object system.
Experience in the application domain seems to
be an important factor in formulating likely
outcomes of the solution space.

d. Summarisation

Developers almost always summarise in order
to verify their findings. It has been observed
that during a typical user-analyst session the
analyst will summarise two or three times and
each time the summarisation will trigger a new
set of questions. Summarisation may be used
in order to clarify certain points from previous
discussions or to encourage participants to
contribute more information about the
modelled domain.

e. Domain Knowledge

Expert analysts normally have a good
knowledge of the concepts involved in the
business processes of the organisation being
investigated. Some concepts will be common
to information systems, regardless of the
underlying organisation. This common

knowledge enables an expert analyst to
approach a familiar analysis problem in a new
domain with some expectations, which can be
used to guide the investigation.

A further important finding of a study on the use
of the JSD method which has implications on the
use of development methods at the early stages of
the project lifecycle is the use of informal models
before any captured concepts are formulated
according to the method's prescribed formalism
[Gibson & Harthoorn, 1987]. The first step in the
JSD method is the derivation of the entity stucture
model which considers entities of the modelled
domain and actions suffered by each entity. The
investigation on the use of the method by
experienced analysts revealed that, in their attempt
to structure the problem domain and identify what
are appropriate entities and actions for modelling,
these analysts consistently used informal models
(or even models of other methods with which they
were familiar). As shown in figure 1, these
informal models, were considered along with
domain expertise and JSD method expertise in
deriving a first-cut JSD entity model.

initialfactgathering

INFORMAL
MODELS

build model build model

PULLIL LI LTI PP LT eP Ty v
R [

1’!

User
[nteraction

P—— i
BRI HORE JSD expertise
4
SYSTEM

Figure 1: Working Method of Expert JSD Analysts

On the basis of the findings of these studies a
proto tool known as the Requirements
Elicitation Support Tool (REST) has been
developed in order to provide assistance at the
very early stages of requirements capture. This

tool has been developed within the context of the
Analyst Assist system [Loucopoulos et al, 1988]
and attempts to provide assistance in capturing
informal requirements, specifying and
documenting requirements using the Jackson
System Development Method (JSD), and validating
the specification by prototyping and animation.
REST provides facilities which:

+ encourage the development of informal models
in the form of scenarios about the modelled
domain

* maintain many different views about captured
concepts

» enable the tracing of decisions taken by
analysts about discarding or accepting
particular scenarios

 assist the identification of candidate concepts
by exploiting domain knowledge and

assist in the mapping of informal models onto
JSD model structures using JSD knowledge.

3. The Requirements Elicitation
Support System

3.1 The System Architecture

An abstract architecture of REST is shown in figure
2.

The user fact base (UFB) is concerned with the
storage of application dependent concepts before
these concepts are interpreted in terms of JSD
constructs. This database 1s populated using a Fact
Input Tool. This tool is guided by an Elicitation
Dialogue Formulator which makes use of the
domain knowledge base and the current state of
the UFB. It is feasible for the UFB to contain
several different and possibly contradictory views
of the concepts pertaining to the modelled domain.
At any stage, one of these views is considered to
represent the current view, that is the view which
most closely reflects the analysts opinion about the
modelled domain (but may be replaced at any point
by any of the other views should the analyst's
opinion is modified).

The JSD specification holds an evolving system
specification in terms of JSD structures for the
model and network stages of that method. This
specification is developed via the REST (making
use of the UFB) and with the assistance of two
diagramming tools shown in figure 2 as the JSD
Input Tool component.

The JSD Method Advisor acts as an assistant on
the method steps of JSD and provides consistency

Fact Input

Tool
Analyst I
Elicitation | FactBase JSD
Dialogue to JSD anlltl.ve
Formulator | Translator Identifier D
------------- REST |55
Domain | Method
Knowledge | F%ggﬁse Advisor e
Exploiter { Eacili & 1 Model&
! ¥ 1 Network)
I -Analyst
Domain "JSD Input
owledg Tool

Figure 2: The Requirements Elicitation and Specification
Tool Architecture

checking on the evolving JSD Specification. The
Fact Base Tracing Facility is used to link a JSD
specification to the concepts in the UFB from
which it was derived and to update or annotate
information held in it due to information input by
the analyst using the JSD Input Tool.

Each item stored in the UFB or the JSD
specification is linked to its source, in terms of the
input session, date and analyst involved. This
provides the capabability for tracing the history of
the evolving models, and also allows for the
summarisation of any subset of the specification.

3.2 The Model for Concept
Representation

In order to simplify the system architecture, the
knowledge bases and UFB share the same
underlying representation. The formalism chosen
is broadly based upon the use of conceptual
structures [Sowa, 1984] for knowledge
representation and reasoning. Whilst conceptual
structures are often associated with the
understanding of natural language, involving large
semantic nets, comprehensive lexicons and precise
grammar rules, it 1s important to emphasise that
the use of conceptual graph theory within
requirements elicitation and formalisation does not
involve the same degree of complexity. The
concepts and relationships employed can be

limited to those which are relevant to the current
domain of interest.

The formalism has been chosen for its flexibility
and power of representation. Conceptual
structures can be mapped onto first order logic
statements, which allows for reasoning and
consistency checks on the contents of the UFB.
Summarisation of the UFB in English phrases is
made possible by the relatively simple mapping of
conceptual graphs onto the constructs of a natural
language.

Conceptual graphs are finite, connected bipartite
graphs, the two nodes of the bipartite graph being
concepts and conceptual relations. Every
conceptual relation has one or more arcs, each of
which must be linked to some concept. The
collection of all the relationships that concepts
have to other concepts is called the semantic net.
All conceptual graphs are linked to the semantic
net, and so access to any graph is possible from
any concept or relation.

The following components of conceptual graph
theory have been implemented to provide a
representation and reasoning medium for use by
the domain knowledge base and user fact base
which directly support the process of fact
gathering.

. seFarate hierarchies of concept types and
relation types which define the relationships
between domain concepts and relations at
different levels of generality

* prototype descriptions of each concept which
can be linked to the concept type hierarchy

+ formation rules to determine how each type of
concept may be linked to conceptual relations
and to other concepts

* conceptual graphs linked to each concept
defining how the concept should be used in a
domain (canonical graph) or how it may be
used (scenario graph).

A detailed description of the conceptual structures
employed in the model for REST is beyond the
scope of this paper. The interested reader is

referred to [Champion et al, 1988] for a
description of the conceptual structures
implemented in REST.

Requirements elicitation in REST is based on the
premise that an analyst should be able to define
any 'thing' of the modelled application domain as
a potential concept of interest and that the final set
of concepts can only be decided upon after careful
consideration of various scenarios about the role
that these concepts play. Therefore, 'concepts
capturing and resolution' uses:

» The semantics of conceptual graphs. Concepts
are placed in semantic networks with the top
level concepts being pre-defined as those of
ENTITY, EVENT, QUANTIFIER, VALUE, STATE
and TIME. Conceptual relations are also
classified by type. A hierarchy is defined over
the type labels of the conceptual relations
defined for the current domain.

* The domain knowledge base (DKB). The DKB
may contain information about one or more
concepts about the current application domain.
This knowledge is used in automatically
deriving conceptual graphs for these concepts
and later on for their resolution.

* A natural language output facility. All
information presented to the analyst during an
input session and subsequent resolution, is
shown in such a way as to hide the underlying
formalism. Where possible, general rules for
translating conceptual graphs into English are
used; however, where more complicated
representation is required for example, in the
representation of constraints, these must be
dealt with special purpose rules.

An Example Requirements

Elicitation Session
4.1 Capture and Representation of
Domain Specific Facts

The purpose of capturing facts about an
application domain is to allow an analyst to reason
with all information which is perceived to be
relevant so that a system specification can be
constructed. Because of the nature of the process
of concept identification and capturing, it is
advantageous to permit an analyst to carry out this
process in a variety of ways. Following the
discussion in section 2 about the underlying
characteristics of the requirements elicitation
process, REST provides two main support facilities
for the identification of concepts:

Text Analysis

This facility allows an analyst to highlight
keywords and phrases from a document.
Single words are stored in the UFB as
concepts. Phrases are analysed to find the
concepts of interest and the conceptual
relations between them. The concepts include
those identified by the analyst and those which
are known to the system as part of domain
knowledge. Where the concepts are known to
the domain knowledge, the appropriate
conceptual relations can be derived thus
producing conceptual graphs for storage in the
UFB.

Concept Hierarchy Building

The concepts known to the system are
described in terms of their relationships with
other concepts, and are arranged in a concept
hierarchy (in fact a lattice). This facility allows
an analyst to classify concepts by placing them
directly in the hierarchy in terms of each
concept's perceived semantics. The placement
of a concept at a particular node has
implications as to its allowable relations with
other concepts. This in turn facilitates the
development of scenarios based on these
allowable relations which may be prsented ‘o
a system developer for further analysis.

As an example of the fact gathering process using
REST consider the case of a University Library.
Text about this application domain is shown in the
text analyser window in figure 3. The underlined
text signifies that an analyst has h_i%hlighted these
concepts as being of interest. The process of
storing these concepts in the UFB is demonstrated
graphically in figure 4. The schema ‘'cgl'
represents the conceptual graph of the user-
supplied information. As a direct result of this,
concept , schemas are created for the concepts
"MEMBER", "BORROW" and "BOOK". The

version #2.0=P
ol
Anaiyat : bob

9 Analyst Assist = Stage Il Fact Gathering Prototype

options | [_input | [resolve || trsce |[brouse |

uti PA.AD) LID.TENT®)
a8

A univereity 1ibrary has 8 vho 0. Honoere |4
muet be either u‘z& or 8 of Ehe univereity.
Booke may be borrowed for up three weeke, after which t

hey muet be od. A menber may borrow no more than 3 b
ooke at a time, books on 1oan which are QUgrdug are subjec
t to a daily fine.

Booke may be pangued, if they are not already reserved by
another nember.

Figure 3: The Text Analyser

conceptual graph cgl is linked to each of these as a

From scenario for each concept. The relevant domain
Domain knowledge for the concept "BORROW" is shown
Knowledge as cg2, and is also provided as a scenario for the

concept. The resolution of the two scenarios is
trivial in this example, but in many cases an
analyst might be faced with a number of different
interpretations (most of which would be quite
legitimate). By highlighting all possible
interpretations of a concept, in particular those
guided by the domain knowledge, it is much more
likely that an analyst would capture a situationin a
more faithful manner. In the example, the resulting l

conceptual graph, cg3, is linked to the current
view slot of the concept schema. The schemas cgl
and cg2 are then marked as 'shadowed', to
indicate that they have been resolved by cg3.

The concepts represented in the UFB may be
viewed (and further extended) by using the
hierarchy editor as shown in figure 5. Figure 5
shows the type of specialisation of each concept in
relation to the pre-defined system concepts. This
means that each new concept introduced in the UFB
inherits relationships with other concepts from its
supertype. The placement of a concept in the
Figure 4: Creation of Concept_Type hierarchy does not preclude subsequent alterations

‘BORROW in the UFB which would change its position in the hierarchy.
Such a change may result from further analysis
and resolution of requirements.

‘Q Analyst Assist = Stage Il Fact Gathering Prototype

verelon #2.0=P
- 7/

Analyat : bob

ADD = NEW CONCEPTS
BOOK

BORROH

LORN

HEMBER

OVERDUE

REMEMW
RETURN
STAFF
ETUDENT

nnnnnnnnnnnn

[optlons | m [resolve || trace | [brovse

B

A univereity
nust be either gt3
Books ray be borrowad for up

ocke at a ti
t to a daily fine.

another member.

+ Henbere

0 thres uaeks, after which t
hey mrust be muﬁmd. A member may borrow no more than 5 b
ne. Hooks on lgan which are QUArdug are subJjec

Books ray be pangyed, if they ars not already reserved by

Figure 5: The Hierarchy Editor

In addition to identifying individual concepts such
as MEMBER, BORROW and BOOK it is possible to
highlight phrases within the text which imply
semantic links between the concepts. Then the
system can be prompted to derive the nature of
these links. An example of this is shown in figure
6. The selected phrase window shows the
highlighted phrase from the original text, together
with a list of all currently known concepts. Links
may be established between the three concepts and
the system's interpretation of these links is
presented in the created scenarios window. It is
now up to the analyst working together with the
end user to select the most appropriate
iJlltcrprctation which will subsequently be stored in
e UFB.

4.2 Resolution of Captured Domain
Specific Facts

Resolution of information within the UFB takes
place under the supervision of the analyst, but
some automatic checking of consistency can be
carried out. These checks imply the need for a
more formal representation of facts in the UFB.
Where more complicated dependencies exist in the
information, for example in the interdependence of
requirements and constraints, a set of rules is

required to maintain consistency.

The current version of the prototype includes
facilities for viewing the entire contents of the UFB
about a particular concept and for the
rationalisation of this information. As an example
consider again the University Library case study.
Figure 7 shows the information stored in the UFB,
in the window labelled User Fact Base and
Domain Knowledge Scenarios about the concept
MEMBER. The window scenario options shows
the available operations that can be performed on
the UFB knowledge about MEMBER. The 'make
current view' option relates to the agreed position
as far as a concept is concerned; the 'discard’
option allows the analyst to remove scenarios from
consideration (they are nevertheless saved for
possible future use); the 'join' option permits the
merging of two or more existing scenarios. Figure
7 shows two unresolved scenarios for the concept
MEMBER which may be joined and be made the
current view. The advantage of the resolution
facility is that it allows the incremental
development of information about each concept in
the UFB. The join operation includes functions to
enforce consistency in the scenarios being joined,
but in the case where conflicts arise, different
views of the same concept may be developed in
parallel.

varelon #2,0=P
-/
Analyst : bob

@‘ Analyst Assist = Stage Il Fact Gathering Prototype

optlong input | [reselve || trace | [brouse |

ENTER 3CENANO
add tu UFB

axit nenu

uil PA.RO; LB.TEXT#

Salsated Phrase Windaw

A university library has menbers who borrou
books.

A Created Scenariod
go| B

he books W borrous W mambera

00| | mombere with bocke borrow

t nnnhlrl uith hnnkl ara horru ued

Bo BOOK PART HEMBER [HGNT) + BURHUH].

an BOOK PART MEMBER 0BJ) # [BORROMW].
books uith HIHUIFI are borroul '

books of memberse are borrowed.

bocke are borrowed by nambers.

booke are borrowed rembers.

HEMBER
BORROW
BOOK

Figure 6: Scenario Formation

veraion #2,0=p
-/
Analyat : bob

¢ Analyst Assist = Stage Il Fact Gathering Prototype

[options | [Input ml traoe || brouse

SOENARO 053
nake aurrent view
dl soard

Join

User Faot Bass and Demain Knawisdge Scenaries of MEMSER

(7 booke are rensued by nembers,
7 booke are raturned by nembars.

Figure 7: Resolution Options

¢ Analyst Assist = Stage Il Fact Gathering Prototype

verelon #2.0=P
-/

Analyat : bob

| optlons | l | nput | uesolve | m brouse

Deoclsions

exlt nenu

DONOEPT INFORMATION
Resolved Infornatlion

Unresolved Infornation
Disoarded Infornation

hlerarchy edttor

Beleoted Phrase

Declslan Higtory

Decisions rela
MEMBER:GENERIC ars

B L T T

=]

DECISION DETRILS £
reason! shadow enforced by user

analyst!

bob
date of seesion: 1989,3r2l

Decision 1 di284

DECIS10N DETAILS)
reasani shadou enforced by usar
analyst: bob

date of session: 19B9r3r21

Figure 8: Tracing Analysts' Decisions

4.3 Tracing Analyst Decisions

During the development of a requirements
specification, analysts adopt certain lines of action,
decide which information is appropriate, discard
previously considered options and so on. In other
words, the construction of a requirements
specification is non-monotonic and therefore, tools
to assist in the tracing of the diverse decisions
taken by analysts in the process of deriving a
specification are considered as providing ano(ier
source of assistance.

The current version of REST allows the source of
information in the UFB to be traced. This may
include details of the source document, the analyst
or the date of the input session. In addition to this,
the system provides traceability of analyst
decisions. In order to facilitate tracing of
decisions, two types of information need to be
stored. Firstly, facts which the analyst wishes to
add without providing a documentary source, i.e.
the analyst's own ideas and notes. Secondly,
specific information concerning the decisions
made about the data in the UFB, in particular
decisions to do with the reconciliation of differing
views.

In the UFB, conceptual graphs attached to concept
types are marked as either 'shadowed' or
'current’. At any given time only one current view
of a concept is allowed. Each current view would
be linked to a decision showing how it was
derived and hence which scenarios and previous
views are shadowed by it. New scenarios and
current views may be shadowed by subsequent
decisions, but traceability is maintained by
including these changes in the decision history.

The tracing of analysts' decisions in the current
version of the prototype is shown in figure 8. The
'decision history' window shows the details of the
decision labelled 'd1254' which has been selected
by the analyst as relevant to the current view of the
concept MEMBER. These details include a
description of the type of decision made, the
analyst responsible, the date and a list of the
scenarios which have been shadowed as a result of
the decision. Subsequently, the analyst can review
any of the scenarios listed.

5. Conclusions

This paper has argued that the demand for more
reliable and cost effective information systems
should force us to seek solutions in areas most

likely to yield maximum benefits. One of the
major emerging themes in the area of information
systems development research is the realisation
that correct requirements specification holds the
key to the construction of effective and flexible
systems. At the same time it is recognised that the
area of requirements capture is fraught with
problems such as uncertainty and vagueness in the
users' requirements, complexity about the
modelled domain and lack of adequate techniques
and tools which can bridge the gap between users
and developers.

The work reported in this paper represents an
attemgt to improve rc&uircmcnts capture and

specification through the use of knowledge
engineering techniques. It is proposed that
requirements specification is primarily a

knowledge-intensive activity and the work
reported here follows the premise that the next
generation of requirements engineering
environments will be knowledge-based
environments. To this end, the work presented
complements other research efforts in the wider
sphere of software engineering, notably those of
[Waters, 1985; Rich et al, 1987; Pietri, 1987,
Keiser & Feiler, 1987; Lubars & Harandi, 1987].

In this paper a clear distinction is made between
requirements and design specifications. It is
argued that a requirements specification should be
concerned with the understanding of a problem
whereas a design specification should pay
attention to logical and physical structures that
implement the requirements. Therefore, the
development of a requirements specification
involves modelling the relevant application domain
resulting in a model which is cognitive in nature.
In the past, requirements specifications have
played a passive role and have been viewed as
fixed throughout the life of an information system.
The thesis put forward in this paper is that a
requirements specification needs to evolve to
reflect changes in the application domain and that
these changes must be implemented in such a way
so as to ensure that users and developers are clear
on the implications that the changes will have on
the design and operational characteristics of the
system. Because of the nature of requirements
elicitation, the paper proposes that, this objective
can be achieved by a knowledge-based approach,
such as that followed in the Analyst Assist system.

The system described in this paper has been
developed on Texas Instruments Explorers using
ART and Common Lisp. The prototype system has
also been ported on SUN workstations also
running under ART and Common Lisp. It has been
the intention of the authors to adopt a single
unifying representation formalism for the
expression of facts in the user fact base and
knowledge within the domain knowledge-bases
since such an approach has several advantages.

The informality which characterises much of the
initial requirements elicitation process is supported
by the linguistic basis of conceptual structures.
The representation is based on a user-defined type
hierarchy of concepts occurring in the domain of
interest. Linked to each concept in the hierarchy is
a definition, together with examples of semantic
and episodic information about the concept,
expressed as conceptual graphs. Our choice of
formalism also has implications for the validation
of the uirements independently of a design
method. The linguistic basis of the concept and
relationship definitions allows both the domain
knowledge and the existing application knowledge
to be presented to the user in terms of the
semantics of the domain rather than the semantics
imposed by any design method, thus broadening
the applicability of the general approach to any
system development method.

REFERENCES

Adelson, B. and Soloway, E. (1985) The
Role of Domain Experience in Software Design ,
in IEEE Transactions on Software Engineering,
Vol. SE-11, No. 11, November 1985.

Adhami, E. (1988) An Environment for the
Execution and Graphical Animation of JSD
Specifications, International = Workshop on
Knowledge-Based Systems in Software
Engineering, UMIST, Manchester, U.K., March
1988.

van Assche F., Layzell, Pl
Loucopoulos, P., Speltincx, G.(1988)
RUBRIC: A Rule Based Representation of
Information System Constructs, in Proc of the 5th
Annual ESPRIT Conference, Brussels, Nov 14-
17, 1988, Nort-Holland, pp.438-452.

Balzer, R., Cheatham, T.E, Green, C,
(1983) Software Technology in the 1990's:
Using a New Paradigm, Computer, November
1983, pp. 39-45. i

Bird, B. (1988) Building of JSD
Specifications, Internaticna. “Wockshop on
Knowledge-Based Systems in Software
Eél éneering, UMIST, Manchester, U.K., March
1988,

Chapin, N. (1979) Softiware Lifecycle,
INFOTEC Conference in Structured Software
Development, 1979.

Champion, R.E.M., Gibson, M.,
Harthoorn, C. (1988) Conceptual Structures
in the Fact Gathering System, Analyst Assist
internal report AA-U0067, UMIST, 1987.

DeMarco, T. (1978) Structured Analysis and
System Specification, Yourdon Press.

Dubois, E. et al (1986) The ERAE model: A
case study, in 'Information Systems
Methodologies: Improving the practice’ Olle
T.W., Sol HG. and Verrijn-Stuart A.A., (eds),
pp.87-106, IFIP-North Holland, 1986.

Fickas, S. (1987) Awtomating the Analysis

Process: An Example, 4th International Workshop

%nS Software Specification and Design, Monterey,
A,

Gane, C. and Sarson, T. (1979) Structured
.IS_'_I)J;ﬁems Analysis: Tools and Techniques, Prentice-

Gibson, M, and Harthoorn, C. (1987) The
Use of JSD, Analyst Assist internal report AA-
U0010, UMIST, 1987.

Greenspan, S.J., (1984) Requirements
Modeling: A Knowledge Representation Approach
to Software Requirements Definition, Technical
lllge 211 No. CSRG-155, University of Toronto,

Jackson, M. (1983) System Development,
Prentice-Hall.
Keiser, G.E. & Feiler, P.H. (1987) An

Architecture for Intelligent Assistance in Software
Development, 9th International Conference on
Software Enginecring, March 30 - April 2, 1987,
Monterey, USA.

Layzell, P.J. & Loucopoulos, P. (1987)
Systems Analysis and Development, Chartwell-
Bratt, 2nd edition.

Loucopoulos, P. and Champion, R.E.M.
(1988) Knowledge-based approach to
requirements engineering using method and
domain knowledge, Knowledge-Based Systems,
Vol. 1, No. 3, June 1988.

Loucopoulos, P, Layzell, Pd.,
Champion, R.E.M., Gibson, M. (1988)
A Knowledge-based Requirements Engineering
Environment, Proc, Conf. on Knowledge Based
Software Assistance (KBSA), Utica, USA, 2-4
August, 1988,

Lubars, M.D. & Harandi, M.T. (1987)
Knowledge-Based Software Design Using Design
Schemas, 9th International Conference on
Software Engineering, March 30 - April 2, 1987,
Monterey, USA.

MacDonald, L (1986) Information
Engineering- An improved, automatable
methodology for designing data sharing systems,
in 'Information Systems Methodologies:
Improving the practice' Olle T.W., Sol H.G. and
Verrijn-Stuart A.A., (eds), pp.173-224, IFIP-

North Holland, 1986.

Morris, EP. (1985) Strengths and
Weaknesses in Current Large DP, Alvey/BCS
SGES Workshop, Jan 1985, Sunningdale, U.K.

Pietri, F. et al (1987) ASPIS : A Knowledge-
based Environment for Software Development , in
ESPRIT'87: Achievements and Impact, pp
375-391, North Holland, 1987.

Rich, C., Waters, R.C., Reubenstein,
H.B. (1987) Toward a Requirements
Apprentice, 4th International Workshop on
%%f}t\warc Specification and Design, Monterey,

Ross, D.T. (1979) Structured Analysis: A
Language for Communicating Ideas, IEEE
Transactionson Software Engineering, Vol SE-3,
No.l1.

Rzepka, W. & Ohno, Y. (1985)
Requirements Engineering Environments:
Software Tools for Modelling User Needs, IEEE
Computer, April 1985.

Sowa, J.F., (1984) Conceptual Structures:
Information Processing in Mind and Machine,
Addison-Wesley Publishing Company, 1984.

Verheijen, G. & van Bekkum, J. (1983)
NIAM: An Information Analysis Method, in
'Information systems design methodologies : a
comparative review', OlleT.W, Sol H.G. and
Verrijn Stuart A.A., (eds), IFIP WG 8.1 CRIS I,
North Holland.

Vitalari, N.P. and Dickson, G.W. (1983)
Problem Solving for Effective Systems Analysis
An Experimental Exploration , in Communications
of the ACM, Vol. 26, No. 11, November 1983.

Waters, R.C. (1985) The Programmer's
Apprentice: A Session with KBEmacs, IEEE
Transactions on Software Engineering, 11(11) pp.
1296-1320, November 1985.

