
(

An Expert System for
Semantic and Relational Database Design

Mokrane BOllzeglzollb

Laboratoire MASI, Universite P. et M. Curie, Centre de Versailles

45, avenue des Etats-Unis 78000 Versailles, France

Email: mob@litp.inria.fr

Abstact :

Database design has become an art that requires a high level of competence. The database
design process is characterized by a certain indetermination in the way of choosing data
structures and constraints. Several different schemas may describe the same reality. The design
process is also characterized by an intuitive and empirical methodology; consequently, the
quality of the schema obtained is heavily dependent on the database administrator's experience
and insight in the database design. The development of increasingly sophisticated and efficient
relational Data Base Management Systems has emphasized the need for increasingly complex
information systems. It is therefore no longer possible to envision database design carried out
without a computer aid. The expert system approach, described in this paper, is more adapted
to the difficult problem of database modeling. It integrates algorithms, heuristics and practical
know-how, and proposes an interactive methodology which is based on abstraction levels, user
friendly interfaces and a modular knowledge base. This approach was fIrst implemented by a
prototype which was followed by a commercial product named SECSI<l!> (Systeme Expert en
Conception de Systemes d'information).

Keywords:

Information Systems, Database Design, Semantic Data Models, Relational Model, Expert •
Systems, Computer Aided Software Engineering.

® SEeSI is a registrated mark of INFOSYS.

1. Introduction
Relational data bases are nowadays the preferential
tools for memorization and restitution of large
amounts of data. This is especially true because of
the great performance of the systems (DBMS).
However, using the relational model as a
conceptual design tool was somewhat
controversial [KENT 79]. Indeed relational
concepts are neither simple to use nor sufficient to
capture the semantics of the user's application. At
the conceptual level, new models are necessary to
capture the semantics of the real world with
preciseness and naturalness. Semantic data
models seem to be more suitable for this objective
[SMIT 77], [HAMM 81], [MYLO 80], [HULL
87], [PECK 88].

Even with these new models, database design
remains a lengthy and tedious process without
computer aids. Many computer tools have already
been built, but they are far from solving all the
data base design problems.

We have proposed a new approach based on
techniques used in artificial intelligence [BOUZ
83]. This approach aims to combine various
categories of knowledge coming both from
relational theory, semantic data models, artificial
intelligence and software engineering. An expert
system product for conceptual and logical design
has been built to apply the main ideas of this
approach and to point to specific problems
[BOUZ 85].

The SECSI system is developed in Prolog
language, under PC-MS/DOS environment and
UNIX workstation environment (particularly SUN
workstations). Several other environments are
envisioned in the nearest future. The product was
commercially available since june 1988, and more
than fifthy installations exist today. An english
version will be available too.

The product SECSI can be considered as a
central part of a software engineering
environment. It was one of the first tools of the
CASE technology. SECSI can be used as well as
by expert designers for data modeling or schema
validation, and by novice users and students in
order to learn database design and relational
technology.

After a brief outline, in section 2, of the data
base design problems in both traditional and new
databases, section 3 presents an overview of the
existing tools. Section 4 characterizes the expert
system approach for database design. Sections 5
and 6 detail the expert system approach, its
objectives, its structure and the knowledge
involved. Section 7 highlights how a deductive

approach can efficiently contribute to the database
conceptual design. Finally, section 8 concludes by
pointing to the future developments.

2. Database Design Problems
Data base design is a difficult task. Since the
begining of the database era, many design
problems have been pointed. In addition to these
problems, the introduction of knowledge bases,
deductive databases and object oriented databases,
impose new complex problems. The following
sub-sections outline the different problems as well
as in traditional databases and in future databases.
In the following, we are not concerned by the
physical organisation of data, nor by its
optimization. We point only to those problems
implied by the conceptual level and the logical
level (i.e. semantic level).

2.1. Design problems in
traditional databases.

In this section, we outline the main problems
which must be solved in traditional databases.

(1) Size oj the application: the difficulty of
the design increases with the size of the
application. Designing small data bases is quite
easy, but structuring several hundred objects,
relationships and constraints without computer
aids is always a hard task, especially for people
whose profession is not to be a "specialist" in
database design.

(2) Relative perception oj the real world
and modeling choices: the real world may be
reported in different ways with respect to the
designers' perceptions: several database schemas
may describe the same reality. The problem is to
characterize the best schema with respect to formal
rules, then to fmd a methodology to build and to
choose this schema.

(3) Availability oj injormation and the
problem oj restructuring : the designer
cannot often get a detailed description of objects
because of the lack of knowledge about the
application. However the design must start with
incomplete and imperfect knowledge. As the
design is bas"ed on a fuzzy universe of discourse,
new information may arise and may entail changes
in the definition of classes, relationships and
constraints.These changes must be integrated
without reconsidering all thc modeling phases
which were already done.

(

2.2. Design problems in future
databases

Besides the traditional database problems
kn.owledge bases. deductive databases and object
onented databases have introduced the following
problems [BROD 84). [GALL 84). [BROD 86).

(l). Representation of more complex
objects: future databases will be able to
represent more complex objects than flat data
structures. The new objects may be rules. abstract
data types•.texts. graphics or images. Hence the
correspondmg representation models could be
very difficult to learn and to use.

(2) Rep'resentation of more complex
cOllstramts : models have to express more
complex constraints as general integrity constraints
(state constraints) and dynamic constraints
(transition constraints). For example. some logic
based models allow to express most constraints as
any first ~rder formu~as. Besides this problem of
specification, the deSigner has to decide wether a
set of integrity constraints is consistent. easy to
check and to maintain.

(3). Represent~tion of tile dynamics of
ob!ects: tr~dltlonal database design makes a
Slnct separation between data and the behavioural
of this data. The trends in the new models are (as
~vell as in the object oriented languages) to
mtegrate the dynamic aspect with the static aspect
of the database [OODB 86). This leads to a
double reflection effon during the database design
process.

. This list of problems shows how complex and
difficult the database design was and will be.
The.n! nowdar, no useful methodology could be
envlSlOl1ed Without computer design aid. That is
why CASE technology becomes more and more
necessary and urgent.

3. Overview of Existing
Database Design Tools

To solve some of the traditional database
problems. many tools have been proposed and
commercialized during the last decade [DBEN
84]. [BOUZ 86b). [BROD 87). We distinguish
three categories of tools. They are generally
characterized by the methodology and the models
which are supponed.

The first category of tools consists of
. graphi~al tools which are generally based on
semantic data models lilce the Entity-Relationship
Model [CHEN 76), or the Semantic Hierarchy

2

Model [SMIT 77). The different graphical tools
whic~ are pr?vided act as a word process; they
p~rrrut to deSign. to store and to layout aesthetic
dla~rams. but they rarely help in the modeling
chOIces nor m the consistency checking of the
deSIgned schemas. All the design choices are left
to the database administrator (DBA). In the best
case. the graphical tool offers a few facilities for
syntactic control or. if integrated with a data
dictionary. it insures the correspondance between
t~e ~omponents of the schema and the terms of the
dIc~lOnary. These tools are very interesting for
therr user fn~ndly aspect and their help to a clean
documentation. but they are far from being
effective modeling tools as they do not make any
design choice.

The second category of tools provides a set
of al~orithms which are generally built upon the
Relanonal M?d.el [CODD 7~). Such tools provide
programs denvmg a normalized relational schema
froma set of attributes and dependencies [BERN
76) [BEER 79) [FAGIN 77). This approach is one
of the best formalized. it permits to characterize
and to automaticaly design the best relational
schema: with respect to redundancy and to update
anomalies. Unforrunately, this approach ignores
natural. objects such as entities. relationships,
genera~zatlon hierarchies and semantic integrity
constramts. The only constraints which are
hand.led are generaly functional dependencies and
multivalued dependencies (all of them considered
as semantic links). But the acquisition of these
dependencies. in the context of the universel
relation assunption. remains a combinatory
problem which requires a detailed study of the
semantics of all elementary relationships between
attributes. However. if these tools are not suitable
for the conceptual level, they could be strong
components at the logical level.

The third category of tools consists of a set
of interactive programs which can be considered
as a combination of manual tools and algorithmic
tools. They often call for CAD techniques [BROD
87). Interactions between the users and the
system are question-answering oriented or
graphics language oriented. This approach is
based on the idea that database design is panly an
automated process and partly a human an'l
Because of the last reason. this category of tools is
more realistic t!Jan the. previous category of tools,
and thus more mterestmg from the practical point
of view. However if this approach does not
always succeed. it is because computer aids are
programmed once and for all; hence it is difficult
to modify or to add design rules. Tools appear as
black boxes in which you must believe and accept
their results, or you don't believe, then you
remake manually the design. But this remains an
interesting approach if we combine it with the new

developments in knowledge engineering and
deductive systems. That is what we have done
with SECS!.

The computer design tool we have built,
combines the advantages of these three catogories
of tools and aims to do more by providing a
unified methodology which combines theoretical
knowledge (expressed by algorithms and rules)
and practical know-how (expressed by heuristics
and cooking recipes). The deductive approach
fulfils the lacks of the first two categories of 100ls,
and a modular knowledge base increases the
evolution of the design techniques and allows the
CASE system to evolve better than the third
category of tools.

4. SEeSI: a New Generation
of Tools for the Database
Designers

This section summarizes the different objectives of
SECSI, highlights its different characteristics as an
expert system and reports the different levels of
expertise of its knowledge base.

4.1. Main Objectives of SECSI

SECSI has been conceived for answering many
problems related 10 the development of database
applications. Generally, design 1001s are devoted
to a given specific task within the design process.
SECSI aims to cover all the life cycle of this
process, from the conceptual level to the physical
level [BOUZ 86a]. These objectives are declared
hereafter as a set of questions for which the
desired system must give answers.

(l) Conceptual lIlodeling: how to transform
incomplete specifications of a problem, expressed
in an ambiguous natural language, into a formal,
complete and consistent conceptual schema
? How objects can be classified as entities,

relationships, attributes or constraints? Can the
human designer be liberated from these different
choices?

(2) Physical design : how to generate an
efficient data slOring and retrieving structure,
starting from the conceptual schema of a
database? How to take into account the different
parameters that characterize: (i) the given
application and its cost requirements, (ii) the
software and hardware environment which will be
used for development and implementation?

(3) Schema restructuring: how to make sure
that the database structure will evolve as the

3

information system changes? How to add new
attributes, new relationships and new constraints
without redesigning the whole database? How 10
integrate several data base schemas that have been
designed independently?

(4) Database administration: how to develop
and maintain a detalled and precise documentation
on the complete life cycle of the database (from the
design phase through the operational phase) ?
What are the repercussions on the data and the
already eltisting programs when the characteristics
of the software or hardware environment are
modified ?

Some of these objectives have already been
reached (e.g. conceptual and logical design, some
schema restructuring and some documentation).
Others are in the prototyping phase (e.g. physical
design, view integration).

More than just a tool for the design of database
schemas, SECSI can also be used in many other
ways as for example, a validation tool of manual
design or as an educational tool in data modeling.
Combined with a DBMS, SECSI can be
considered as a powerfull prototyping
environment of relational databases. SECSI is
already used to design buiseness applications as
well as technical applications like geographical
databases.

4.1. Main Characteristics of an
Expert System for Database Design

The general defmition of an expert system states
that it is a specialized software 1001 which solves a
problem as well as a human expert can do [HAYE
84] . Practically, in our area, this definition may
be interpreted by the following four concrete
characteristics:

The first characteristic is to constitute a
complete knowledge base including
theoretical algorithms and rules, and experimental
knowledge in the database design process.

The second characteristic is to provide an
interactive methodological environment
which accepts incomplete specifications, provides
the same reasoning as a human expert, permits
backtracking 10 any design step, uses a question
answering system and can infer over examples.

The third characteristic is to be an open
system which can learn and integrate new
theoreiical and experimental rules. The system
must also trartsfer its expertise through its use (via
explanation of its design rules) and through
justification of its results.

The founh characteristic is to provide end·
user friendly interfaces by offering a
workstation which reproduces the main features
of the manual design (Le. a graphical interface to
design the first rough sketch of the database
schema. a natural language to facilitate the
communication of the specifications, and a
declarative language to specify high level
assertions that could have ambiguous
interpretation in the natural language or a complex
representation in the graphical interface). To
facilitate the interaction between the system and the
user. other features like icons. menues and mouse
must be used too.

4.2. The Different Levels of
Expertise of a Case Tool
in Database Design

propenies are described by facts and rules which
constitute the detailed description of a given
application.

All the knowledge referred to above constitute
the knowledge base of the expen system SECS!.

5. An Open System
Architecture

SECSI architecture is characterised by its
modularity which permits, thanks to the atomicity
of its knowledge base. to add new design rules
and new various interfaces. This section describes
the components of this architecture.

5.1. The knowledge base
The expenise of the system is divided into three
categories:

The knowledge base is composed of two pans: a
rule base and a fact base.

Fig,1: The SEeS! architecture

The rule base is created and updated by the
expen designer. This base contains general rules
such as normalization rules, mapping rules; but
also specific rules which can be system dependent
or even application dependent. General design
rules are grouped into the DESIGN module which
is used by the methodological regulator and the
explanator. This part of the knowledge constitutes
the system shell. hence automatically delivered in
the basic version of the system.

The fact base is designed by the database
administrator. It contains compiled specifications
describing a given application. This part is
created and updated by the DBA. It corresponds
to the problem which is submitted to the system.

I

I .
N E,
E N
• G
E I
N N
C E
E

IUUlfATOI

RULIS

Dun ImUI"Cl
Sl"I\"DAiD SQL

ISOWLlDCln

DOCUMlNT4110lf

INTlRlACU

II'fATUlAL I
IDleu""T·1

ICRAPHIC·I

(3) Specific application knowledge: within
a specific application domain. there are some
propenies which characterize each application
(e.g. reservation in a given travel agency). These

(2) Specific domain knowledge: for each
application domain (e.g. insurance. banking.
medicine. travels). there is some common
terminology. managerial rules and skills which
represent the specific know-how of the domain.
This know-how can be represented. as well as we
can fomalize it. either by general behavioural rules
or by general predefined structures. This
knowledge is stored in the system data dictionary
and reused. when appropriate. during the design
process.

(1) Theoretical knowledge: this knowledge
coincides with the design concepts (models, rules)
and the design methodology (advices. reasoning
principles). Theoretical knowledge is composed
of algorithms. rules and heuristics:

A1~orithms : some parts of the design process
are well isolated and formalized. and have
already been expressed by many efficient
algorithms. such as normalization algorithms.
cost evaluation of transactions and access paths
optimization.

- .R.uk£: correspond to some known or admitted
expenise as in normalization process
(Armstrong's inference rules). view integ
ration rules. mappings rules between different
models. and consistency enforcement rules.

- Heuristics: may be particular interpretations of
the real world. assumptions in some value
distributions. or simplification of the
correlations between attributes or between
constraints.

4

SIJIl'lber Muque r)Jle PO'/I'tl' Color

V~
fd rd

To represent these two types of knowledge, we
utilize two different representation models: a
semantic network to represent facts and production
rules to represent behavioural constraints and to
specify the design rules. The semantic network is
defined by a set of typed nodes (attributes, values,
srtructured objects and possibly their instances)
and a set of typed arcs representing relationships
between nodes (aggregation, generalization,
association and some constraint arcs) [BOUZ 84].
To.enhance the semantics of this model, additional
constraints are defined: domains, roles, keys,
intersection of classes, cardinalities and functional
dependencies. The figure 2 gives an illustration of
the different concepts of this semantic data model.

pl1.1)

'"'I'uro<7.a
Fig.2: An example of a semantic network

Each semantic relationship is represented by a
couple of binary arcs. Arcs a and p are called
atomic aggregation arcs, arcs r and 0 are called
molecular aggregaiion arcs, and arcs g and s are
called generalization-specialization arcs.
Cardinality constraints are expressed both over
alp arcs and rio arcs. Other constraints like
functional dependencies are portrayed by fd arcs
too.

6.2. The inference engine

The inference engine is a program composed of
the basic mechanisms which permit to manage the
rules into the rule base and to apply them onto the
fact base. This inference engine functions by an
alternate use of backward-chaining and forward
chaining. The combination of these two principles
is made necessary because each step of the used
methodology consists of:
(I) Proving an hypothesis: for example. is a

constraint derivable from a set of other given

constraints? This leads to the use of a
theorem prover principle, based on a
backward-chaining.

(2) Transforming specifications from one given
form to another: for example, the successive
mapping of the natural language
specification to the relational model schema.
This leads to the use of an inference engine,
based on a forward chaining.

Besides this basic program, the inference
engine provides two important modules: the
methodology regulator and the results justificator.
The first module allows the user to backtrack to
any design step to redesign his database or to
modify his specifications. The second module
makes the system able to explain and justify its
results.

6.3. The external interfaces

Describing the application in a comprehensible
manner is an important problem in data base
design. SECSI offers three types of interfaces: the
specification interfaces, the acquisition interfaces
and the interaction interfaces.

(1) The specification interfaces consists of
three languages:
i. A natural language which accepts simple

sentences, possibly composed of a conjunction
of subjects,a verb and conjunction of
complements. Its role is particuraly
important for novice designers and for the easy
communication of specifications. It also allows
a rapid handling of the system without leaming
any formal language.

ii. A high level declarative language which helps
to specify what the natural language cannot
easily express. This language permits also to
describe any database schema specified into
any given data model

Fig,_3 An example of an applicatioD specification

5

iii. A graphical interface which enhances the user
friendly interaction. This interface is used
either as an input facility or as a layout feature.
As there is no common standard representation
of graphics, SEeSI provides graphics
generator which permits to each user to have
his own diagrams.

(3) The interaction interfaces distinguishe
icons, menus, forms and documentation:

i . The menus visualize the authorized operae tions
on a given active window. According to the
stages of design, only the permitted operations
are visualized or accessible.

~.

CARDINAlITIES

DElJVf]S

VEJDC1L
QIE.\T

fUNCTIONAL DEPE~llENCIES

"APPLICA1IONS SECSI llODElINO

APflJCATI~~ NAlIE

iElmONSmp ACQI11SITION Of CIJIOIN.lLITY CONS1llAl~TS

DDJ'IERS('IUllCli,llJOO~A~)

ii. Forms facilitate the capture of some cons
traints (e.g. functional depedencies, cardi
nalities), and permit to hihglight the default
options generated by the system.

Fjg4: An example of a graphical interface

To be more flexible, the designer of a data base
has the choice to describe his application in one or
more of these languages, and then combining them
in the same specification. An interactive parser
generates a fact base from the description, this
base being progressively enriched by the
interactive acquisition module and transformed
into a canonical semantic representation.

(2) The acquisition ill/erface : the interactive
acquisition assistance helps in completing the
description of a problem through a question
answering system that automatically reminds the
user what he might have forgotten to specify or
what he has ignored in his description. This
interactive acquisition process is based on
deduction rules, heuristics, and the analysis of
examples fed in by the user.

NOiMAWATIOH PBASI or lUI RELATICfl

VIllIlli(NU\lB>J.II,UQUF,lYI<J'(7IIIl.lXLO«j

F~cr[ONAL DEPENDENCIFJ EXAMPLES or TUPLES
NlfMIlER. -) lYPl!, WllQUB, rot.Oi.

T1JPlB I lUPUil T1JPlBmE·)POWEl.

NOS VALmE fUNrf. DEPEHDENC. "'tJWIER. 1234 1234 5618
DEDUCED FiOM EXAMPLrJ 1m M A1 A1

Y.ARQlfE .J.) lYPl!, h1JMllEi.
",W!Jl 1 1TYPE -It) h1.MlER

Nl'f8ER..j·) TYPahtrMllEl ""QUO R R R

>YOill' WlIll~eul'e ootwstll the ded'oco.t IX &Mil ~peDdeD<:a,
P..... •lllI1d you 1tI1 .. ",!bot NUMBER cIelemint<mE" DOl 1

Fig.6: A menu and fonn example for cardinality acquisition

ii. The documentation is accessible at all levels
whenever the user of the system requests it,
during a session or independently. It consists
of a concise user's manual, a synthesis of the
methodology implemented by the system, and
the defmition of the main notions of data bases
to which the system refers.

6.4. The Expected Results

When the design process is terminated, the system
produces the following results:

(1) A set of basic relations in 4NF and the various
keys of these relations (primary keys and
candidate keys).

(2) A set of virtual relatjons (or views) and theI
defmition of the corresponding relational queries
which permit to derive them from the implemented
database relations.

(3) A set of constraints like domain, referential and
other general semantic constraints which have
been generated by the mapping rules and the
normalization process.

Fig.5: Interaction between cODlrajnts and examples

6

t1lEA1E VIEW I'lliON
AS
SELEcr_, plm:, lddress
fRO~CliU

~~IOS

SELEcrnm, plm:, ,<\:bes$
fROMSu~

Fig.? Example of results produced by SEeS!

All the results can be obtained, as needed,
either in standard SQL, as far as this language can
do it, or in a more readable ad hoc language (i.e. a
declarative language). Fot those results that
cannot be generated in SQL (especially semantic
integrity constraints), the declarative language is
used, and it is of the responsibility of the database
administrator to program these results in the
corresponding language used for his application.

6.A Modular and Progressive
Design Approach

The design approach adopted by SECSI and
portrayed in figure 8 is based on three abstraction
levels: the conceptual level, the logical level, and
the physical level. To each level there correspond
a specific model and a specific design process.
The methodology proceeds by stepwise
refinement, going from informal description of a
given problem down to physical representation of
this problem in terms of records and meso Staning
from informal know ledge, three main phases
successively produce: a formal specification, a
conceptual schema, a logical relational schema and
a physical schema.

The conceptual design phase generates from the
external description of an application a sound
conceptual schema stored as a semantic network
with its associated constraints. This generation is
performed while conversing with the end-user.
The different views of the application given by the
end-user(s) are mixed into one description after
elimination of redundancy and resolution of
conflicts. A verification step performs the
validation of the application description in order to
generate a consistent conceptual schema. In
addition to the syntactic controls, this phase
detects generalization cycles, recursive
associations and objects which play several roles
in the same relationship. The system tries to

7

eliminate the possible inconsistencies using
predifmed inference rules or with the end-user's
help.

The logical design phase transforms the
conceptual schema into a fourth normal form
relational schema with its associated integrity
constraints and views. It performs the interactive
acquisition of constraints and the choice of first
normal form relations. Constraints such as
intersection and union of classes, cardinalities of
relationships and functional dependencies between
attributes are captured. The fust normal form
relations are constructed by suppressing
generalization hierarchies and removing
multivalued attributes. Normalization is carried
out using dependencies between attributes.

~~~
~. 'Y ~

R,qwlrtlllUI u.". atqlllrtlllnl ... Ip." RtillllrllJlnl ... IJ."

... ''''In'''~ .., ••~n"".. J,.,,'n,,'"

~t;:Jp
View In~itltlo.

CONCEPTUAL
~...w.. SCHEMA I4lp~_1Iru-.....~.Ir-

~hoplllltl .lId
lIormllluUoa,

LOGICAL
~I_oohn SCIJEMA ....oetJ0t6ctl..._ ..

CMaJ&iIu \bt gll:-..oa

OPu~J..CIU
•pnYSICAL

SCHEMA

Fig,S; The deSlgn melbodotowy

The physical design phase gives an optimized
physical schema of the data base. This schema
includes both a set of initial implemented relations
and a set of indexes and formats. The choice of
implemented relations and plausible attributes for
indexing depends on the most important or most
frequent queries which will be performed on the
database. This choice needs some estimations
depending on the DBMS used.



(

The design of a database is an iterative .process.
It implies numerous comings-and-goings between
the universe of discourse and the expert system.
SEeSI provides this iteration at two levels :

(i) by permitting the interuption of a working
session without losing the achieved task.
The recover of the session can be done
without any redesign of the last schema.

(ii) by authorizing the interuption of a dialogue to
modify an assertion or to return to a preceding
question.

Some resumptions are automatic at each of this
levels without having to manually return to the
current stage of modeling.

The design of a data base is not a fully
automatic process: a permanent interaction with
the designer allows the comb.ining of algorithmic
tasks with human decisions.

7. How a Deductive
Approach Can Contribute
to the Conceptual Design

This section highlights the contribution of expert
system approach in the database design process.
We particularly focus on that parts where the
system has enough knowledge to infer from rules,
heuristics and examples.

7.1. The Interpretation and the
Control of Specifications

Besides the syntactical checks of sentences, one of
the hard problem, when compiling user
specificiltions, is to decide wether a term in a given
sentence must be considered as an attribute, an
entity, a relationship or an integrity constraint.

Sentences are not only interpreted as
independent units, but also as a whole consistent
specification whose interpretation is stronger than
that of each sentence. So when a sentence is
followed by another one, its interpretation could
be modified because we get more information by
reading two sentences than by reading only one.
For example, from the following sentence: "A
prodllct has a nllmber, a IInit-price, and its
sllpplier", we understand that there is an object
named "product" and characterized by three
attributes: "numberll

, t1unit-price", "supplierll
• But

if we add a new sentence like: "Each prodllct
supplier, described by his name and address,
supplies one to ten parts", we modify the
previous interpretation by removing the attribute

8

"supplier" and generating another object
("supplier") described by two attributes ("name"
and "address") and a relationship ("supplies")
between "product" and "supplier". In fact we got
more information in the second sentence as we
know the minimum and the maximum number of
products supllied by a given supplier (i.e.
cardinality constraints). But the second sentence
introduces an additional complexity, related to the
usage of synonyms ("product" and "parts"), that
can be solved if a data dictionary is provided.

Another problem is related to objects that play
several roles in the same relationship. For
example, in the sentence: "A person could be
married to another person", we do not know who
is the wife and who is the husband. The
interpretation must complete this sentence by
acquiring the different roles from the user and
modifying the previous sentence as follows: "A
person as a husband could be married to another
person as a wife". Every body who reads this
sentence can infer more than a relationship
between a person and a person; he can deduce that
a person cannot be married with himself (because
of the term "another" in the sentence). One can
also deduce that there exist some persons who are
not married.

Redundancy is a frequent problem in the
specification phase. Some new sentences, altough
they are true, do not augment the semantics of the
application, as the new described facts can be
deduced from the previous ones. For example, in
the following description, the third sentence is
redundant to the first two: "A person has a name
and and age. An employee is a person. An
employee has a name and an age." Again, in the
following example, there is a redundancy, but it is
an underhand one: "Employees and secretaries are
persons. A secretary is an employee". Indeed
the second sentence makes a part of the first one
redundant; as a secretary is an employee, it is not
necessary to say that he or she is a person, this
fact can automatically be deduced.

As the previous paragraphs show, the
interpretation of a given specification is not only a
syntactic process, but a very high level semantic
process based on expert knowledge:

a lexicon of terms which correspond to the lISUal
absttations (like aggregation and
generalization), and to the different terms used
in the vocabulary of the application,

a set of semantic rules which permit to
distinguish between atomic objects (attributes)
and molecular objects (entities and
relationships),

I



- a set of inference rules which capture the
integrity constraints involved by the different
sentences.

a set of reinterpretation rules which are able to
modify the interpretation of an objet to another
object with respect to a given set of related
sentences.

a set of redundancy checking rules which
avoid the assertions that can be deduced from
other given facts.

7.2. The Acquisition of Constraints

One the most problem related to the constraints
acquisition is the combinatory explosion (e.g. the
acquisition of functional dependencies in the
relational model). In this case. we cannot envision
to ask the user all the possible questions. So we
must use various means in order: (i) to limit the
different combinations to consider and (ii) to
avoid all questions for which an answer can be
produced by using a set of inference rules.

As stated above, the problem of combinatory
explosion arises for all constraints involving
attributes (e.g. functional dependencies.
cardinalities of attributes, keys). To illustrate this
problem. we will consider the case of the
acquisition of functional dependencies. Suppose
we have an object type O(Al .... ,An) where for
each instance, we allow the attributes to be
monovalued or multivalued. This can be
represented by the following rliagram:

An

As one can see. cardinalities specify in one
hand the monovalued or multivalued attributes (p
cardinalities). and in the other hand wether. for a
given attribute value. we can associate one or
many instances of the object (a cardinalities).
There is a particular correlation between
cardinalities and functional dependencies. Indeed.
from a set of attributes with their cardinalities. we
can deduce some functional dependencies. For
example:
If Card(a(A1 ,0»=[1.1 j and Card(p(0,A2))=[1.1j
Then A1->A2.
In the same way. from a combination of
cardinalities and functional dependencies. one can
derive new cardinalities and son on. For example:

9

IfCard(p(0,A1 ))=[1.1 j and A1->A2
Then Card(p(O,A2»=[1.1].
Finally. as it is well-known. one can derive. using
Armstrong's axioms. new functional dependencies
from a given set of dependencies. For example:
If Al->A2 and A2->A3 Then A1->A3.

This process can be done as far as necessary to
generate the maximum facts. All generated facts
are so much gained questions for the user. This
deduction process is based on two assumptions:

(i) the number of combinations necessary to get
cardinalities is lower that that of getting
functional dependencies,

(ii) the acquisition of cardinalities is more natural
than the acquisition of functional dependencies.

However. all functional dependencies are not
implied by cardinalities. This derivation process
can then be regarded as a heuristic to reduce the
combinatory explosion in the search of functional
dependencies. For all other dependencies which
are not implied by cardinalities. one must use
Armstrong's inference rules or. in the last.
questions to the user.

Before requiring questions to get dependencies.
one can go far. when possible, in the usage of
heuristics. For example. we can make the
assumption that. in most applications. there is no
need to search for functional dependencies with
more than four or five attributes in their left
hands ide. This can contribute to considerably
reduce the combinatory explosion.

Fianally. one can also use examples to reduce
the combinatory explosion of functional
dependencies. More precisely. examples could be
used to generate some non valide functional
dependencies; hence a set of unnecessary
questions to ask to the designer. For example,
from the following small relational extension.

NAME AGE ADDRESS

Dupond 24 Pa::h
Durand 27 Lyon
Durand 27 Dijon
Martin 24 Paris

one can generate the following non valide
dependencies:

NAME -1-> ADDRESS
AGE ·I->ADDRESS
(AGE, ADDRESS) ·I->NOM
(NAME,AGE) -1-> ADDRESS

We can notice that we cannot say anything about
the NAME and AGE.



p8'\
I),~ Sa

+

To be more relational. we must remove
molecular aggregation arcs (rio) and replace them
by references and referential constraints. as
portrayed in the following schema:

One of the semantic concepts which is not
supported by the relational model is the
generalization hierarchy. Thanks to the inheritance
property. this concept can be represented by basic I
relations (implemented relations) and virtual
relations (calculated relations or views). For
example. in the left handside of the following
schema. one can replace the CLIENT object by a
virtual relation calculated from the union of
AGENT and PRIVATE]ERS. The suppression
of this generic class is immediately followed by
the inheritance of its properties (related objects) to
its sub-classes (schema of the right handside).

In fact. this transformation depends on ·the
cardinality values. To satisfy the first normal form
defInition of relations. the cardinality of one of the
two a)'cs (either r or 0) must be equal to [1.1) or
[0,1). References designate the foreign keys of
the related objects.

If the two cardinalities are different of [1.1) or
[0,1). we must use another transformation which
implies the defInition of an inteimediate object in
such a way that one of its cardinalities equals
[1.1). That permits to come back to the previous
transformation. This case is portrayed by the
following schema.

PII.N,-'F
NlJDe

+ j PfRSO~(Nm.SlIJ1llJlll. SurmJIl2, !gel
1,11 \

~

To summarize, the problems related to
constraint acquisition could be solved by using
different techniques as : (i) interaction rules
between constraints, (ii) heuristics, (iii) examples
and finally. when necessary, (iv) questions for the
user.

7.3.Transformation of the Semantic
Model to the Relational Model

One of the main tasks of the system SECSI is to
transform a conceptual schema expressed in a
semantic model into a logical schema expressed in
a relational model. As it is known. the problem in
this case is to not loose the semantics between the
two levels. For this objective. the system
provides a set of transformation rules which
conserves the semantics of the conceptual level at
the logical level. by generating new objects,
semantic integrity constraints and views (queries).

One simple transformation rule is to represent
any molecular objet with monovalued attributes
(cardinalities of p arcs equal [1,1) or [0.1]) of the
semantic model by fIrst normal form relation in the
relational model.

When some attributes are multivalued attributes
(cardinalities of p arcs equal [IoN) or [O,N)) they
must be transformed into a molecular object related
to the fust one. to satisfy the atomicity of values
which characterizes the fIrst normal form relations.
Depending on the attributes wether they are related
by functional dependencies or not, this
transformation may generate one or several
molecular objects.

l

1 0



l1.1FXf ~ AGf:\1 UPRIVAll:}Eltl

But this transformation is not the unique one
allowed. Indeed, instead of removing the generic
class, one can remove the sub-classes by replacing
them with a specific attribute (say "role") which
captures the role played by a given client in the
specialization hierarchy. The sub-classes AGENT
and PRIVATE]ERS should be calculated by
restriction of the CLIENT class using the new
attribute role. This case is illustrated by the
following schema transformation:

,t6
P{ Y
~ ,

Ide

Dom(1011)'{t1 t"I,IIIOI}
PRIVATE PERS~IPERSOSllol",·t1IIOI·)

AGE~I'IPDlSON I Rot,,"IIOI')

In a given schema, the two preceding
transformations are not both possible. Their
application depends on wether the sub-classes
have specific properties or not. If they have, the
first transfonnation is better, otherwise the second
one is beller. In practice, this strategy is not so
simple: we can also move up some specific
attributes if we introduce a specific integrity
constraint the check the null values on this
attribute. To decide for each case which
transformation to apply, the expert system may
use heuristics based on the number of sub-classes,
the number of specific properties of each class and
the complexity of the possible integrity constraints
to be generated.

In general, the mapping process from the
conceptual schema to the logical relational schema
is based on a specific strategy which is built in
such a way that:

no semantic information is lost during each
transformation,
no duplicate relation schemas are generated,

the number and the complexity of the generated
integrity constraints would not be too high.

After the mapping process, he normalization
process is carried out, as in usual, by generating
for each relation its minimal cover of functional
dependencies.

7.4. The Justification of the Results

Justifications and explanations are especially
emphasized int the expert system area. Such aspect
is devoted in one hand to increase the user's
knowledge in database design, and in other hand
to enhance the credibility of the results obtained by
the system. Explanations and justifications are
lillie different. In the fust case, the system has to
explain the concepts, the methodology and the
design rules which constitute the knowledge base.
In the second case, the system has to justify
different representation choices for a given
database application. SECSI supports these two
aspects at different levels.

At the first level, the system provides
explanations for every ununderstood concept or
question during the interactive design process. If
a given concept is not understood by the user (e.g.
a cardinality of a functional dependency), SECSI
elaborates a text composed by a defmition of the
concept and an illustrative example). If a given
question asked by the system is not understood
because of its complexity (i.e. contains concepts
which are not understood) or of its fuzzy form, the
system decomposes the given question into easy
sub-questions for which the user has only to
answer "yes" or "no". This gives the system the
ability to be used by both expert users and naive
users. The documentation about the system use
and the syntactic form of the different languages is
also integrated at this level.

At the second level, the system justifies why an
object of the application is represented as a
normalized relation or as a virtual relation, why a
given fact is represented by an integrity-constraint
whereas the user waits for a relationship, but also
why a given fact does not explicitly appear in the
results, or why some artificial objects are in the
results whereas the user description did not
contain them. To answer to a given question, the
system elaborates a synthesis of the different
design rules applied to the concerned object, from
the analysis of the external description to the
normalized relational schema. This synthesis is

1 1



(

(

based on the different states of the knowledge
base, which are saved all along the design steps.

Explanation and justification is a very complex
process which needs to remember a large amount
of data an design rules. Its feasability is
demonstrated in the first prototype of SECSI
[BOUZ 86c], but its current industrial application
is very limited.

7.5, The Incremental Design

As often claimed, the database design task is an
iterative and long process which cannot be done
definitely in a short time. Many refinements are
necessary during a long period of time (several
weeks or several months depending on the
complexity of the application). The contribution
of an expert system to this problem is to provide
some methodological and some recovering
features which pennit the user to backtrack to any
design step and to interrupt his design with the
possibility to recover his session a few days later,
without redesigning his application.

During each recovering session, the user would
modify his first specification by adding new facts
or modifying old ones. Hence, two different
problems arise:
- how to make sure that the specification is
consistent,
- how to integrate these new facts without
reconsidering with the user all the pevious design
(especially the set of previous asked questions).

To reach this double objective, SECSI stores in
an extended fact base all the deduced facts from its
rule base and all the captured fact from the user's
answers. When a given session is recovered with
some possible specification updates, the system
generates a new fact base and procceeds through
its following design steps. Whenever the system
needs to ask a question to the user, the extended
fact base is used first to derive a possible answer.
Then only questions concerning new facts and
modified facts are effectively asked to the user.

8. Conclusion:
In this paper, we have described an expert system
approach for database design. As an answer to the
various modeling problems, SECSI relies on the
most elaborated concepts of databases and the
most recent techniques of artificial intelligence.
Compared to the existing tools, this approach
seems more suitable for data base design in the
sense that it takes advantage of both theoretical
development and practical experience. Even if
practically limited, the ability to justify several

design choices and to explain reasoning
alternatives is one of the important feature of
expert systems; it makes them attractive for
complex problems.

More than just a tool for the design of database
schemas, SECSI can also be used in many other
ways, as for example, a validation tool of manual
design or as an educational tool in data modeling.
Combined with a DBMS, SECSI can be
considered as a powerfull prototyping
environment of relational databases. SECSI is
already used to design buiseness applications and
technical applications like geographical databases.

Three main versions are dedicated to the design
of databases: Version 1 concerns the production
of a normalized relational schema from the given
specifications in natural or declarative language.
Version 2 is dedicated to the optimization of
structures and to the generation of access paths.
Version 3 is an extension of the conceptual
modeling to the integration of views or to an
incremental design of the data base. Each version
evolves horizontally through a permanent research
in improving the interfaces, the reasoning
explanation and the documentation, offering
among others the graphic edition and layout
possibilities adapted to each type of model used.
Currently, only the version I has reached the
industrial level and then commercialized. The
other version are in the prototyping level.

With future development of deductive databases
and knowledge bases, this approach is more
adequate to integrate new concepts and new design
rules. We think that only powerful expert systems
will efficiently handle the complexity introduced
by these new research developments.

References
[BAT! 85] BATIN! C. and CERI S. "Database Design:

Methodologies. tools and environments" Ranel
sesion, ACM SIGMOD 1985.

[BEER 79) BEERI C. and BERNSTEIN P.A.
"Computational problems related to the design of
normal Conn relation sct':m1S" ACNf Transactions I
On Database Systems, marcH 1979.

[BERN 76J BERNSTEIN Ph. "Synthesizing Third Normal
Fonn Relations from Functional Dependencies"
ACM TODS. Voll,N'4, 1976.

[BORG 85J BORGIDA A. and WILLIAMSON K.
"Accomoding Exeptions in DB and Refining the
schema by learning from them." VLDB Conf,
Stockholm august 85.

[BOUZ 83J BOUZEGHOUB M. and GARDARIN G. "The
design of an expert system for database design-"
InU. Worlcshop on New Applications of Databases,
Cambridge (UK). sept. 83. Published in New

1 2



Applications of Databases. Academic Press.
Gardarin & Gelenbe eds. 1984.

[BOUZ 84) BOUZEGHOUB M. "MORSE: A Functional
Query Language and its Semantic Data Model"
IN RIA RR270 and Proceed of 84 Trends and
Application conf on Databases, IEEE-NBS
Gaithersburg (USA), 1984.

[BOUZ 85] BOUZEGHOUB M., GARDARIN G.,
METAlS E. "Database Design Tools: an Expert
System Approach" VLDB Conf, Stockholm
august 85.

[BOUZ 86a] BOUZEGHOUB M. "SECS!: Un Syst~me

Expert en Conception de Syst~mes d'lnfonnations"
These de Doctorat de I'Universite Pierre et Marie
Curie (Paris VI), mars 1986.

[BOUZ 86b] BOUZEGHOUB M., COMYN I. &
RICHARD D. "Conception de Bases de Donntes:
Etat de l'art sur la mod6lisation conceptuelle,
l'int6gration de vues et la conception physique"
Rapport MASI-Universitt Paris VI NO 180, 1986.

[BOUZ 86c] BOUZEGHOUB M. & METAlS E.
"L'cxplication du raisonnement et la justification
des resultats dans Ie syst~me expert SECSl", 2iem
Colloque International en Intelligence Artificielle
de Marseille, 1986).

[BROD 84J BRODIE M., MYLOPOULOS 1., SCHMIDT
Y. "On Conceptual Modelling: Perspectives from
Artificial Intelligence, Data Bases and
Programming languages. Springer-Verlag, NY
1984.

[BROD 86] BRODIE M. & MYLOPOULOS 1. (editors)
"On Knowledge Base Management Systems"
Springer Verlag, 1986.

[BROD 87J BRODIE M. "Automating Database Design
and Development" A Tutorial of the SIGMOD
Conf., San Francisco 1987.

[BROW 83] BROWN and STOTT-PARKER "LAURA: A
formal Database Model and her Logical Design
Methodology." Proceed. VLDB Conf, Florence
1983.

[BUBE 82) GUSTAFSSON M., KARLSSON T. &
BUBENKO 1. "A Declarative Approach to
Conceptuallnfonnation Modeling" in Infonnation
Systems Design Methodologies Olle, Verijn-Stuart
editors, North Holland /Pub!. Co, 1982-

[CERI 83] CERI S. (editor) "Methodology and Tools for
Database Design" North Holland Pub!. Co, 1983.

[CHEN 76J CHEN P.P. "The Entity Relationship Model 
Toward a Unified View of Data" ACM trans. On
Database Systems VI, NI, March 1976.

[CODD 70] CODD E.F. "A Relational Model of Data for
Large Shared Data Banks", Comm ACM,VoIl3,
N06,1970.

[CODD 791 CODD E.F. "Extending The Database
Relational Model to capture more Meaning." ACM
trans. On Database Systems, 4, Dec 79.

[DBEN 84) Database Engineering Revue, "Special Issue on
Database Design Aids" Vol7, N'4, 1984.

[FAG! 77] FAGIN R. "Multivalued Dependencies and a
New Normal Form for Relational Databases"
ACM TODS, Vo12, N'3, Sept 1977.

[GALL 84J GALLAlRE H., MINKER 1., NICOLAS I.M.
"Logic and databases: a deductive approach" ACM
Computing Surveys vol 16, NO 2, Iuin 84.

[GARD 89] GARDARIN G; & VALDURIEZ P.
"Relational Databases and Knowledge Bases"
Addison Wesley Pub!. Co. 1989.

[HAMM 81] HAMMER N. and McLEOD D. "Data Base
Description with SDM: A Semantic Data Model"
(ACM TODS V6, N3, Sep 81).

[HAYE 84 ] HAYES-ROTH F. "The knowledge based
Expert Systems: A Tutorial" Computing Revue,
Vol 17, N'9, 1984.

[HULL 87J HULL R. & KING R. "Semantic Database
Modeling: Survey, Applications and Research
Issues" ACM Computing Surveys, Vol 19, N'3,
1987.

[KENT 79] KENT W. "Limitations of Record-Based
Wonnation Models." ACM Trans.on Database
Systems 4,1,1979.

[MYLO 80] MYLOPOULOS 1. BERNSTEIN P.A.
WONG H.K.T." A language facility for designing
database intensive applications" ACM trans. On
Database Systems valIS, nb2, 1980.

[NILS 82] NILSSON N.J. "Principales of Artificial
Intelligence", Springer_Verlag Berlin Heidelberg
New York, 1982.

[OODB 86] First Workshop on Object Oriented Database
Systems, IEEE Computer Society Press, 1986.

[PECK 88] PECKHAM 1. & MARYANSKI F. "Semantic
Data Models" ACM Computing Surveys, Vol 20,
N'3, 1988.

[SMIT 77J SMITH I.M. and SMITH D.C.P. "Data Bases
Abstractions Aggregation and Generalisation ..
ACM trans. On Database Systems, june 77.

[TUCH 85] TUCHERMAN 1.., FURTADO A. and
CASANOVA M. "A Tool for Modular D"atabase
Design." VLDB Conf, Stockholm 1985.

[ULLM 82) ULLMAN J.D. "Prineiples of Database
Systems" computer science press 1982.

[ZAN! 81] ZANIOLO C., MELKANOFF M.M: "On the
design of relational data base schemata", ACM
trans. On Database Systems, V6, NI; march 1981.

13


