ALGRES: An Extended Relational Database
System for the Specification and Prototyping of
Complex Applications

F.Cacacel, S.Ceri4, S. Crespi-Reghizzil, G.Gottlob3, G.Lamperti2,
[.LLavazza?2, [..Tancal, R.Zicaril

LPolitecnico di Milano (Italy)

2TXT S.p.A. (Italy)
3Technical University of Wien (Austria)

4University of Modena ([taly)

Abstract

This paper illustrates by means of examples the functionalities offered by
ALGRES: An advanced relational programming environment for the formal
specification and rapid prototyping of data-intensive applications.

1. INTRODUCTION

A new trend in current database technology is to facilitate complex non standard
application development and to provide reasoning capabilities on data stored in
the database. New types of applications such as CAD/CAM, CASE, CIM, office
automation systems, cartography, robot planning, call for new kind of database
systems which are more powerful and flexible than the existing ones.

The introduction of these new application domain has resulted in a large effort
in the scientific community to extend or even completely redesign database
systems. These new generation database systems will support a variety of
applications which are much more complex then the traditional business
applications.

In particular, the new database systems need to offer several new concepts at
the user level and more importantly, they need to be flexible enough to
accomodate new requirements as they arise both from existing and new
applications.

A non exhaustive list of the facilities that should be provided by a new
database system can be summarized as follows:

i) Data types and Operations. Non standard applications require the
management of more data types than the traditional ones. In fact, information
such as maps, charts, images, pieces of text, structured documents, drawings,
need to be represented as types in a database system. Present database
systems do not support such new kinds of data. In some cases, (e.g. for text),
data is stored in the database as a long string, with no further interpretation
by the system. In other cases, these new types of information are stored in
separate storage systems and are extracted when needed, and integrated with
formatted records stored in the database. This results in an arduous and most
of the time unreliable task. Problems arise in assuring data integrity and
reasonable performance. Therefore the new generation database systems
should provide new data types directly to the user, and more important they
should allow the definition of new data types base on the built in ones. The
introduction of new data types also implies the possibility of specifying new
kind of operations on them. Fn fact, each new application area has in principle
a specialized set of operations apphcable to specific data types that the
database system has to spport. Special operators are needed for manipulating
long texts, or for comparing images, new operators such as a transitive closure
are needed in processing recursive queries in knowledge based applications
and so on.

ii) Knowledge representation. The new systems have to exploit the
knowledge on the information stored in the database. This is needed in several
knowledge based applications. The database system should then he able to
offer different knowledge representation formaﬂsms as they are needed from
several applications or even from part of the same application. A multi
paradigm knowledge representation seems to be a very promising approach.

iii) Concurrency control and recovery mechanism . Each new application
area has also some specific requirements for concurrency control and recovery
which are different from the traditional ones. For instance, handling long
transactions manipulating large and complex structured objects requires and
ad-hoc mechanism. Recovery as a traditional feature of databases has to be
extended to handle complex objects with possible different versions.

iv) Access methods and storage structures . Each new application area

requires the development of appropriate access methods such as R-Trees used
to access spatial data, KDB-trees and Grid-files. These methods allow fast
access to an object in a multidimensional space and determine overlapping
objects. Indeed, existing DBMS access methods are inadequate for many
information types.

Several different approaches have been defined in the literature to enhance
current database technology to include the facilities described above. A large
number of research organizations, universities and industrial companies both in
Europe, the USA and Japan are developing new database systems for handling
new applications.

These efforts can be roughly classified as follows:

i) Extensions to existing database systems. This approach considers
existing database systems, mainly relational ones, and provides several
extensions to the basic theoretical model in order to enhance the power and
flexibility of the system, but still retaining the original advantages of the
relational model: Simplicity and a non procedural language for query
processing.

The approach can be further divided into two classes when considering how
these implementations are performed. In the first case the extensions are
developed adding an extra layer on top of an existing system, in the second
case, the database is augmented with new processing components, new
algorithms, and new storage techniques from the "inside". The resulting
differences is in the performance of such systems more than their
functionalities.

Examples of such an approach are the systems based on nested relational
models and the systems that allow user-defined abstract data types.

ii) Semantic data models. This approach tends to define a higher level data
model which is closer to the needs of the applications than the relational
model. In fact such models are not directly comparable with the relational
model and with the ones defined at the previous point, but they have to be
considered as high level conceptual models which might be implemented on
top of the relational model. Altﬁough several semantic data models have been
defined in the literature, few of them have been implemented.

iii) Extensible database systems. This approach tends to develop a kernel
database system which can be easily extended to meet the demands of new
applications. For such systems, the sharing of common functionalities is
essential, and specific data structures and operations can be defined based on
the common database.

Moreover, other fields of computer science have considerably influenced the
development of the current database technology: namely Al and Programming
Languages. In particular, several database architectures have been investigated
and designed in order to integrate some of the paradigms usually used in AI
technology and in Programming Languages. Running prototypes and commercial
products have already been developed. These systems can be classified in two
main classes:

i) Object oriented database systems. These systems make extensive use of
work done in the object oriented ares, especially in the programming
languages.

ii) Deductive database systems. These systems make extensive use of the
work done in logic programming and Al

In the rest of this section we will limit ourselves only to the nested relational and
thedeductive database approaches.

1.2. NESTED RELATIONS

One approach to the definition of a new data model tends to minimize the
extensions to the relational model in order to retain much of its advantages.
Within this context, relaxing the first normal form assumption for relations has
been suggeste by several authors [MAKI77],[SCHE82],[ABIT84], [FIS83],
[JSSC82], [SCSC86], [ROTHB84]. Relaxing the first normal form corresponds to
allow unnormalized relations normally called nested relations. A nested relation
permits components of tuples to be relations instances themselves instead of
atomic values. For nested relations, new types of perations have been defined
with respect to the standard operations of relational algebra. Among them, two
operations called Nest and Unnest have been extensively investigated by several
authors [MAKI77], [SCHES82], [ABIT84], [FISH83], [ROTH84]. Essentially, the
Nest and Unnest operators permit to pass from flat relations to nested
hierarchical ones and vice versa. In this way, it is therefore possible to model all
cases where data is by its definition a tree structure (e.g. office forms). Several
theoretical studies have been done on the nested relational model. The basic
approach is to extend the results of relational theory fo the nested model.

Recently the nested relational model has been extended and modified to
capture a few characteristics not covered by the original model. In particular, the
following extensions have been proposed:

e New static attribute types (tuples, sets, multisets and lists) with their
respective operators have been added [CERI88], [DADA86], [GUET87],
[PIST86].

® Ordering among tuple components has been considered [GUET87].

® Duplicates are allowed for multisets and lists [PIST86], [CERI88],
(GUETS87].

® Keys on multivalued attributes and surrogates have been introduced
(DADASSG].

® New null values have been introduced [ROTH85], [GUETS87].

® More powerful restructuring operations than Nest and Unnest have been
defined [ABIT86], (GUET87].

® A Closure operator has been introduced. This operator applies on algebraic
expressions and iterates the evaluation of the expression until the result
reaches a fixpoint [CERI88], [LINN87].

® Many-sorted algebras rather than one-sorted algebras have been also
proposed [GUET87].

e Extended definitions of the SQL language have been defined [PIST86],
(ROTHS5].

Notable models that include some of the above features are: The extended NF2
model developed at IBM Heidelberg [DADA86], the NST model [GUET87]
developed at IBM San Jose', the ALGRES model developed at Politecnico di
Milano [CERI88]. All of them served as a formal base for the implementation of
running prototypes. Results of experimentation of such systems with real case
application are under investigation.

A major difference in the above systems is the architecture. The extended NF2
system is a new database system that provides a user interface based on extended
nested relations. The NST system has been implemented on top of an existing
relational database. ALGRES instead is interfaced with a commercial database
system, but is not implemented on top of it.

1.3. DEDUCTIVE DATABASE SYSTEMS

The deductive database systems are a rule-based paradigm which integrate in
the database the knowledge shared by several applications. The knowledge
included in the system is expressed as general rules which define deduced or
derived facts from the facts stored in the database. While the facts stored in the
database constitute the extensional database, the rules define the intensional
database. The most familiar approach to integrate a rule base language is to use
logic programming language such as Horn Clause language.

Since the notion of deductive databases is well understood [GALL78],
(REIT78],[(GALL84], systems designers have started to build practical deductive
DBMS. In [CERI86] is shown how to translate logic programs for deductive
database systems into relational algebra. This translation can be used to
transform logical rules and queries into algebraic expressions, which can be
computed more efficiently. Since a goal of the ALGRES language is to investigate
the integration of the relational systems and the deductive database systems, it
provides a fixpoint operator (see Section 2) which allows to evaluate recursive
queries in a buttom-up fashion. An interface which performs the translation of
DATALOG programs into ALGRES ones is already operational.

2. THE ALGRES SYSTEM

ALGRES is a vehicle for the integration of two research ares: The extension of
the relational model to deal with complex objects, and the integration of
databases with logic programming,

The ALGRES system consists of:

i) A data model which incorporates standard elementary types (character,
string, integer, real, boolean) and type constructors such as RECORD, SET,
MULTISET, and SEQUENCE. An ALGRES object has a schema which
consists of a hierarchical structure of arbitrary depth built through the above
type constructors.

ii) An algebraic language, called ALGRES-PREFIX, which provides:

- Classical relational operations such as selection, projection, cartesian
product, union, difference (and derived operations, e.g. join) suicably
extended to deal with multiple-levels objects and new types.

- Restructuring operators (nesting, unnesting, extension of a tuple), which
modify the structure of a complex objects. The nesting operators allow the

artitioning of relations with respect to the value of some attribute (like,
or example, the aggregate formation operator defined in [Klug82]).

- Facilities for query-language applications. These are: Evaluation of tuple
functions and aggregate functions; tuple updates; built-in functions to
evaluate the carc%inality of a collection, the number of attributes in a
collection, etc; operators to handle ordered collections.

- Operations for type transformation, which enable the coercion of any type

constructor into a different one.

- A fixpoint operator which applies to an algebraic expression and iterates
the evaluation of the expression until a certain predicate is satisfied. This
operators is quite flexible and allows to emulate all the different "closure"
operators proposed to evaluate recursive queries. The fixpoint operator can
therefore be specialized to optimize the evaluation of particul classes of
recursive queries, as proposed, for example in [Agra88]. Moreover, the
fixpoint operator derives extra power from the presence of aggregate
functions, nested relations, and ordered collections: These features are all
present in ALGRES and open interesting possibilities of evaluation and
optimization of logic programs and deductive databases programs.

The fixpoint operator has the following structure:

FIXPOINT [Temp:= TRANSF(Op);
PRED (Temp.,Op),
COMB (Temp,Op)] Op

where Op is the operand and Temp is a temporary object whose scope is
limited to the FIXPOINT operation. TRANSF, PRED, COMB are three
ALGRES expressions: TRANSF computes a new instance of Temp from Op;
PRED is the exit condition from the loop; COMB creates a new instance of
Temp from Temp and Op. The three inner statements of the FIXPOINT
operators are iteratively executed until Pred is not satisfied. Note that, like
every ALGRES statements, the FIXPOINT operator does not actually
modify the original Op object; a copy of Op is used in the evaluation of the
FIXPOINT, and it eventually becomes the final result.

The FIXPOINT operator then corresponds to the following PASCAL-like
program:

end : = false;
Result: = Op;
repeat
Temp := TRANSF(Op);
if PRED (Temp, Op)
then end : = true;
else Result:= COMB (Temp, Result),
until end

Although being much more general, the fixpoint operator can be used to
simulate the transitive closure to evaluate recursive relational
expressions: R = f(R).

The least fixpoint of this expression is a relation R* such that R* = f(R*)
and R*C S for any S satisfying S=1(S). The least fixpoint can be obtained
using the FIXPOINT operator as follows:

FIXPOINT [Temp:= f(R0);
NOT (Temp C RO);
UNION Temp RO] RO

where R0 is an empty collection with the required schema. Chandra and
Harel [ChHa82] have shown that the relational algebra (without the set
difference) together with a least fixpoint evaluator becomes equivalent to
the function-free Horn clause programs. The FIXPOINT operator has a
wider range of applicability than the computation of the least fixpoint. It
can also be used to simulate for-next iterative statements, due to the
presence of a generic PRED function. Moreover, the presence of the COMB
expression allows the evaluation of non-monotonic or non-"growing"
transformation over algebraic espessions. As a concluding remark, it
should be pointed out that the expressive power of the FIXPOINT operator

makes possible to optimize the buttom-up evaluation of logic clauses and
also to implement evaluation strategies more complex than "pure" depth-
first or breadth-first.

A goal of the language is to limit the loop complexity and to suppress linked
list structures, which are the two major sources of programming costs.

The ALGRES systems constitute a relational programming environment, in

fact ALGRES is integrated with a commercial relational database system, but it
is not implemented on top of it. This is for efficiency reasons: Execution of our
operations would be expanded into a long chain of database operations, causing
very long response time.
We assume that the ALGRES system will be typically applied to complex data
structure of medium size, rather than to very large databases: Examples are CAD
and engineering systems, and some office automation systems. As a consequence
of these assumptions, ALGRES programs operate on main memory data
structures, which are initially loaded from an external database, and returned to
mass memory after manipulation. The abstract machine supporting the extended
data model and its operations, named RA (Relational Algebra), reflects these
assumptions: Only a fraction of the database is supposed to be present in main
memory at any time, and speed (rather than memory) is the limiting factor.

The core of the ALGRES environment (fig. 1) consists of the ALGRES to RA
translator and RA interpreter. RA instruction set provides traditional algebraic
operations on normalized relations as well as special features; it has been
carefully designed so as to provide instructions that can be efficiently executed
over the flat subobjects stored in the main memory algebraic machine. The
translator and RA machine are implemented both on a SUN workstation and
Microvax, with the Informix! Database management system providing
permanent storage of objects.

The ALGRES system is intended to compare favorably with other existing
productivity tools or high-level languages which have been successfully used for
rapid prototyping such as SETL and Prolog.

Applications in ALGRES can be programmed using directly the ALGRES-
PREFIX and the C interface (ALICE). However, to provide the programmer with
a multi-paradigm, easy-to-use programming environment, we have designed
ALGRESQL, an extension of the SQL language which enables a "structured,
English-like" query and manipulation language. Programs in ALGRESQL are
translated into ALGRES-PREFIX before execution. We are also considering the
use of the language DATALOG embedded into ALGRESQL, for dealing with
recursive queries. DATALOG is a clause-based logic programming language
developed in the database community, syntactically similar to Prolog, designed
for retrieving information from a flat relational database system. Finally, we
interfaced both ALGRESQL and DATALOG with the "C" programming language
in order to exploit existing libraries, and to access the facilities of ALGRES from
conventional programs.

The ALGRES project is broad-spectrum, and to give a specialized description

of each of its parts is outside the scope of this paper; the interested reader is
referred to [CERI88], [CERI88a], [GoZi88].

I [nformix is a trademark of Informix Co.

£soL DATALOG
program program
ESQL to DATALOG to
ALGRES PREFIX ALGRES PREFIX
TRANSLATOR TRANSLATOR
ALGRES PREFIY -

program ."'.'.._.,......-...,...
\ Y "‘..:'.:.

ALICE

(ALGRES in C
embedded)

INTERFACE
TO C

—

ALGRES PREFI
to RA
TRANSLATOR

¥
code

RA
INTERPRETER

(Virtual Machine) .

fig.1: the ALGRES environment.

Persistent

Brjecis INFORMIX

INTERFACE to
RELATIONAL
DB

‘-

3. A COMPARISON BETWEEN ALGRES AND
RELATED APPROACHES

In this section we briefly analyze the main features of the ALGRES language,
and compare them with current Relational Database Systems and Data Bases
Programming Languages (DBPL).

3.1. ALGRES DESIGN GOALS

The ALGRES language includes several important extensions to the
Relational Algebra, which make it a suitable tool for many different applications.
In fact, ALGRES can be used as a query language for complex databases, since it
allows to expresse concisely powerful queries on complex objects; or it offers its
rich data modeling capabilities to become a rapid prototyping language for
those applications (CAD-CAM databases, office automation) where modeling and
restructuring of complex objects play an important role. ALGRES includes a
flexible closure operator to express recursive queries: Depth-first and breadth-
first strategies are both efficiently evaluable. It can therefore be used to support
deductive databases and logic programming language in an efficient and
well formalized way. Moreover the ALGRES operators provide a unified
language-based solution for problems which involve incremental
computations, advanced editing environments and speadsheet programs (see for
example [YeSt88]).

A goal of the ALGRES language is to limit loop complexity and therefore it
provides the possibility to build complex algebraic expressions from simple ones.
Extended Relational Algebra operators can be applied on intermediate results
and complex expressions can be nested one into another to perform long
computations with a single statement and without using auxiliary variables.
Moreover, ALGRES programs can be structured by means of procedures and
macros. The latter gives the possibility of re-using the same code on different
complex objects (polymorphic procedures). We illustrate this with an example.
Suppose we wish to define a new algebraic function Self Join, which makes the
cartesian product of an object by itself and then selects the tuples that have two
specified attributes with the same value. We can write:

SUBFUNC Self__Join (R{Al,A2})
BODY Self Join: JOIN[A1=A2]RR

where Al and A2 are two generic attributes of the parameter, the relation R.
Notice that the schema of R, Al, A2 are left unspecified and can be different on
different calls of Self Join (provided that Al and A2 have the same schema).

3.2. LANGUAGE FEATURES

The ALGRES definition of complex objects is based on four type constructors:
Record, set, multiset, sequence. The record and set type constructors allow the
programmer to distinguish between the type of an object and that of a collection
of the same object. Object-oriented languages and models (such as Adaplex
[Smith83], Taxis [Mylo80] or Galileo [Alba83]) irclude declarations of entities
with associated extensions. However it is not generally possible to declare
different classes over the same object type as it is in ALGRES. Consider the
classical example of describing the inventory of a manifacturing company
(adapted from [Atk87]). The database represent the way certain parts are
manufactured out of other parts. Since the manufactured parts may themselves
be subparts in a further manufacturing process, the relationship between parts is
hierarchical but it is a directed acyclic graph rather than a tree. The Adaplex data
definition for Parts would be:

d atabase Manifacturing is

type ...
type Part;

type ...

typePart is entity
Name : String(1..16);
Components : set of Part;
end entity;

Two entity values are considered distinct even if all their defined attributes have
the same value. Notice that with this declaration we produce both the type and
the extent. There is no clear distinction between the underlying type of the entity
and the associated extension. The extent is bound to the entity, then we cannot
have two collections of the same type. The usefulness of this limitation is
uncertain. In ALGRES the declarations of the type and of the collection can be
made distinct. The programmer can either define a separate type for the tuple or
not, asthe following equivalent declarations show:

DEF Parts SET OF Part: (Name: string, :
Components: MULTISET OF (C__Part: string))

DEF Parts SET OF : (Name: string,
Components: MULTISET OF (C__Part: string))

The record type Part of the first declaration can be used elsewhere in the program,
making possible the existence of many collections of Part, which is considered the
same type. The same approach is used in PASCAL/R [Schm77], where one starts
by constructing a record t)pne and using that to construct a relation. But in
PASCAL/R the consituent fields of records that form the basis of relations are
limited to certain types and this should be regarded as a failure of type
completeness: It would in fact be useful to have a relation of integer, that is, to
have a generic set type without explicitely having to name the underlying record.
Moreover, in the relational model of PASCAL/R complex objects are not allowed:
To describe the hierarchy of parts we have to define two relations. To find the
components of a part we must write a piece of code which computes the join of
these two relations. In ALGRES the association between a part and its
components is made by the data definition.

An advantage of the semantic data model approach over ALGRES is that the
directed aciclyc graph of the example can be represented through a recursive
definition, like that of Adaplex; in ALGRES we must explicitely represent it with
a two-level tree. Moreover, languages like Taxis, Galileo or Adaplex use the
notion of inheritance to define a hierarchy of types and represent variant
records. In ALGRES variant records must be explicitely represented by different
complex objects or by using special attributes.

Duplicates and ordering can be handled with the introduction of the multiset and
sequence type constructors.

It is argued in the literature that many recursive queries can be expressed and
evaluated more conveniently by using ordered sets with additional operators for
them. (for example the problems of graph traversal, etec.).

4. EXAMPLES OF USE OF ALGRES

This section contains several examples of use of the ALGRES system.
In particular, the first three examples show the facilities offered directly from the
ALGRES system; the last example illustrate the use of ALICE, the integrated C
environment with ALGRES.

All examples have been previously tested and executed. The code at the
moment uses a concise, Assembler-like notation for algebraic operatorss. For the
sake of readability we list the corresponding full names of the operators in Table
)

TABLE 1.

P) PROJECT

SL SELECT

DS DELETE STRUCTURE

cs CREATE STRUCTURE

EX EXIST -

NJ NATURAL JOIN

MT MULTISET TRANSFORM

TE TUPLE EXTENSION |

AF AGGREGATE FUNCTION |

IN JOIN |
CONTEQ CONTAINED OR EQUAL

DF DIFFERENCE

UN UNION

FP FIXPOINT |

4.1. TEACHING SAMPLE PROGRAM

This example shows how to managea simple databases of courses offered in a
university and related time-tables. The application consists of two objects
definitions, teachings and specific__teachings, and six complex queries on them.

DEF teachings: { teaching_ name: string,
sections: { section: char,
teacher: string,
time__table: {day: string, hour: integer,
schoolroom: string }}}

teachings < READ [teachings__inst: VS [teachings]]
DEF specific__teachings: { teaching__name: string, section: char}
specific__teachingse READ [spec__inst: VS [specific__teachings]]

The object teachings is a nested relation with a three nesting depth and

10

schema shown in fig. 4.1. The object and its nested subrelations are sets. Every
tuple in teachings contains two attributes: teaching__name (single-valued
attribute) and sections (set-valued attributel): Every teaching can be divided into
one or more sections. Sections is a set with three attributes: section (an identifier),
teacher, time__table. In turn, time__table is a set with three attributes: day, time,
schoolroom.

_ The second object, specific__teachings, shown in Fig. 4.2, is a classical relation
with two (simple) attributes: teaching__name and section.

All queries in Appendix are coded in ALGRES. Every query is specified by an
ALGRES statement.

Query 1.1 - Find and display the time-table of all the teachings contained in
specific__teachings . :

DISPLAY [] PJ [teaching name, section, time__table]

NdJ specific__teachings DS [sections] teachings
First, we unnest teachings of one level by deleting the internal relation sections.
We obtain an intermediate object with the schema shown in Fig. 4.3.
We JOIN this object with specific_ teaching on attributes teaching__name and
section. We then PROJECT on the attributes we are-interested: teaching__name,
section, time__table.

Query 1.2 - Find and display the time-table for each schoolroom.

rooms__time « CS [roomtime: { teaching__name, section, teacher,day, hour}]
DS [sections]
DS [time__table] teachings

DISPLAY [] rooms__time

This query takes as input the object teachings as shown in Fig. 4.1. We want to
obtain the time-table of each schoolroom from the time-table of each teaching.
This is obtained by unnesting the two internal relations sections and time__table:
we then create a new nested relation roomtime from the attributes of the flattened
relations with the operation CREATE STRUCTURE [roomtime: {
teaching__name, section, teacher, day, hour } |. The new object rooms__time
created by this operation contains two attributes: schoolroom and roomtime and
has the schema shown in Fig. 4.4.

Query 1.3 - Find and display the time-table for each teacher.

teachers__time « CS [teachtime: {teaching__name,section,
day,hour,schoolroom}]
DS [sections]
DS [time__table] teachings

DISPLAY teachers_ time

We obtain the object teachers_ time from teachings in a similar way as in the
previous query. Teachers__time shows the time-table for each teacher and it is
obtained by unnesting time__table and sections in teachings and nesting the new
relation teachtime with attributes teaaching__name, section, day, hour,
schoolroom. Teachers__time has the schema shown in Fig. 4.5.

! [n the sequel, we denote single-valued attributes as simple, and set (lists, mulrisets)-valued
attributes as complex. [n the figures, complex attributes have double border width

11

teachings {}

teaching__name sections {} "

section teacher time__table {}

day hour schoolroom

Fig 4.1- Schema of the object teéchings

specific__teachings {}

teaching__name section

Fig 4.2- Schema of the object specific__teachings

Query 1.4 - Find and display all free schoolrooms on Thursdays at9.00 a.m.

free__rooms « SL[NOT EX [(day ="thur" AND (hour=9)] roomtime]
rooms__time

In this query we use rooms__time, the object created by Query 1.2, to select the
schoolrooms which are free at 9.00 a.m. of a generic Thursday.

The last two queries are:

Query 1.5 - Find out if there is any schoolroom which is used for different
teachings at the same moment.

room__overload « SL[NOT (EQUAL (MT[roomtime] PJ [day,hour] roomtime;
PdJ [day,hour] MT [roomtime] roomtime))]

rooms__time
DISPLAY room__overload

Query 1.5 - Find out if there is any teacher which has to teach different
teachings at the same moment.

teacher__overload « SL[NOT(EQUAL
MT (teachtime] PJ [day,hour] teachtime;
PdJ [day,hour] MT [teachtime] teachtime))]

12

{}

teaching__name section

teacher

time__table {}

day

hour

schoolroom

Fig. 4.3 - Schema of the object obtained by Unnest (sections) teachings

rooms__time

0]

| schoolroom

roomtime {}

teaching__name

section

teacher

day

hour

Fig. 4.4 - Schema of the object rooms__time

DISPLAY teacher__overload

4.2. FIXPOINT SAMPLE PROGRAMS

These following three examples use the ALGRES FIXPOINT (FP) operator. [t

13

teachers_ time

teachers__time {}

teacher teachtime {}

teaching__name | |section day hour | |schoolroom

Fig. 4.5 - Schema of the object teachers__time

should be pointed out that the FIXPOINT is the only control structure of the
ALGRES language and that it allows to implement recursion.

The following examples cannot be computed using a normal query language
since they require the full computational power of a normal programming
language.

4.2.1- ANCESTORS

The problem is to find all the ancestors of a set of persons (persons), given the
object relationship containing the father-son relationship (Fig. 4.6).

The ancestors are obtained by recursively joining relationship and persons . In
the FIXPOINT operator, then, the TRANFé operation is a NATURAL JOIN
between relationships and persons; the PRED condition is that the new partial
result parents is contained within the accumulated result persons; the COMB
operation is the UNION of persons and parents.

relationship {} persons {}

L

father son son

Fig. 4.6 - Schema of refationship Fig. 4.7 - Schema of persons

DEF relationships: { parent: string, son: string }
DEF persons: { son: string }

relationships <« READ [rel _inst: VS [relationships]]

14

persons < READ [person__inst: VS [persons]]
DISPLAY [] relationships
DISPLAY [] persons

ancestors < DF FP [parents : = PJ [parent] NdJ relationships persons ;
NOT (CONTEQ (parents; persons));
UN parents persons] persons -
persons

DISPLAY [] ancestors
4.2.2- COMPONENTS

Now we deal with the classical problem of finding elementary components of a
set of products.

We define the object products as a set of product (the product name) and
components (an inner set of constituent parts component), with schema shown in
Fig. 4.8. The object input (Fig. 4.9) contains the set of products that we want to
examine. The use of the FIXPOINT operator follows the same pattern as our
preceding examples: We have an auxiliary object first_ components which
contains the set of sub-components computed at each iteration. The only
difference in the body of the FIXPOINT operator is that we perform an
AGGREGATE FUNCTION of UNION over all the components sets which are
present in the NATURAL JOIN between input and products, to obtain the single
set first__components.

products {} input {}
product components {} product
component
Fig. 4.8 -Schema of products Fig. 4.9 - Schema of input

DEF products: { product: string, components: { component: string } }
DEF input: { product: string }

products < READ [product__inst: VS[products]]

input <« READ [input__inst: VS[input]]

DISPLAY [] products

DISPLAY []input

L§7

elementary__components « DF FP [first_ comp:= AF[UNION /components]
N input products ;
NOT (CONTERQ (first__comp;input));
UN first_ comp input Jinput
input

DISPLAY [] elementary__components

4.3. TEACHERS FINDER

This is an example of an ALICE program. The program shows how ALICE can
be used to interactively retrieve information from an ALGRES database. The
example uses the same database defined for the TEACHINGS SAMPLE
PROGRAMS. We want to look in the time-table to know, given a day and an hour,
where a certain teacheris, .

The ALICE program defines his own C variables to store the values of
ALGRES objects. It also contain two ALGRES instruction: the first one defines
the object teaching, the second one loads from a file an instance of it. The ALICE
program uses the special GETOBJ statement to transfer the values of ALGRES
objects into its simple-valued C variables, tuple by tuple.

The GETOBJ statement is placed into the body of a C while statement, thus
one can repeat the query more than once, changing its parameters each time, The
program also adds some messages that are not allowed in the ALGRES
environment; for example if one type a name that is not contained in the
collection, the program answers that the specified person does not teach here.

In the example, the GETOBJ loads the whole teachings object, without
performing projections on the interesting attribute. This feature is not
mandatory, since we could have reduced the set of attributes examined in the data
acquisition cycle of the GETOBJ statement.

#include "/usr/include/stdio.h"
main()

{

char buf[100];

char buffer [80];
chatt__name [40];
char sec;

char teach [40];

char teach__des [40];
char day [40];

char day__des[40];
int time__tab;

int hour__des;

char schroom [40];
int cont;

int found__teach, found__ hour;
int badg, bado;

char resp="y";

char trace = 'n';
inti=0;

int j=0;

int k=0;

ALGRES][|;

16

DEF teachings: {
teaching name:string,
sections: |
section: char,
teacher: string,
time table:{
- day: string,
hour: integer,
schoolroom: string } } };

printf("\n");

printf("loading file teachingsdat ...\n");

printf("n");

teachings < READ [teacist: VS [teachings] « "teachings.dat"];

found__teach= 0;

found__hour= 0;

badg=1;

bado= 1;

system("clear");

printf("Would you like to trace data acquiring ? (y/n)\n");
gets(buf); :
sscanf(buf,"%c",&trace);

while (resp=="y")

k=0;
system("clear");
e = .
prlntf(FkkkkokEkE *************************0);

printf Tk ***0);
printf("*** TEACHERS FINDER ***();
printf(s i

printf("**********************************0).
)

printf("Desired teacher:.\n");

gets(buf);

sscanf(buf,"%s",teach__des);
printf("day:.\n");

gets(buf);

sscanf(buf,"%s",day__des);
printf("hour:.\n");

gets(buf);

sscanf(buf,"%d",&hour__des);
if(stremp(day__des,"sun")= =O)g(strcmp(day__des,"sat) = =0)) badg=0;
if(hour__des<8)||(hour__des>19)) bado=0;
if(lbadg= =1)&&(bado==1))

{
GETOBJ teachings VIA
{ /* teachings acquiring cycle */
t_name DOC
if(trace = ="y") printf("***TRACE:\t%s\n",t __name);
END,

{ /* sections acquiring cycle */

sec,

teach DOC

{
if (trace=="y")

printf("***TRACE:\t\t%c\n" sec);
printf("***TRACE:\t\t%s\n" teach);
|

if(si;rcmp(teach,teach_des) ==0) found__teach=1;

17

4

END,
{day, /* time__table acquiring cycle */
time__tab,

schroom
DOC

if(trace=="y")
[

printf("**TRACE\t\t\t%s\n",day);
printf("***TRACE:\t\t\t% d\n",time__tab);
printf("***TRACE:\t\t\t%s\n",schoolroom);

}
if(found__teach)
if(trace=="y')

{

printf("\n# # # TRACE: break: exit from time__table'n\n");
break;

}

}
if(stremp(day,day__des)= =0 && time__.tab= =hour__des)

printf("%s is in schoolroom %s\n\n",teach__des,schroom);
found__hour=1; .

printf("\n## # TRACE: break: exit from time__table\n\n");
break;

}

}

END
DOC
if(found__teach)

{ .
printf("\n### TRACE: break: exit from sections\n\n"); l
break;

}
END
}
DOC
if(found__teach)

{
printf("\n### TRACE: break: exit from teachings\n\n");
break;

}
END

b

if(!found__teach) printf("%s doesn't teachs here\n\n",teach__des);
if(found__teach && !found__hour) printf("%sisin hisoffice\n\n",teach__des);

else printf("I can't find %s\n\n" teach__des);
printf("Hit 'y’ to continue, 'n' to stop\n");
gets(buf);

resp =*buf;

found__teach=0;

found__hour=0; ‘
badg=1; |
bado=1; ‘
system("clear");

}

18

4.4. ALGRES INTERPRETER SIMULATOR

In this example we use the ALICE capabilities to simulate an interactive
interpreter for the ALGRES language.
We show how ALICE can be used not only to retrieve information from ALGRES
database, but also to execute interactively new ALGRES statements. That is,
queries on the ALGRES database can be changed at run-time without having to
change the code.

The program starts by loading three instances of the following objects of our
database:

students
institute__planning
exams__inscription__list

These objects are a simple database on which the user can perform some
queries using the ALGRES language.
Some examples of queries you can ask are:

SELECT [student = "Benjamin"] students.
PROJECT [student] students.

This result is obtained by parametrizing an ALGRES DISPLAY statement with
a C buffer (defined as an array of chars) containing the ALGRES statement to be
executed.

#include "/usr/include/stdio.h"
main()

{

inta=1;

char *result;

char buf[100];

ALGRES[];

DEF students: {student: string,
inscription year:integer,
individual “planning: {
“year: integer,
choosen teachings: (
- chosen teaching: string }},

done exams:|
- exam name: string,
grade:integer }};

DEF institute planning: {
- year: integer,
proposed teachings:(
proposed teaching: string,
must__be:done: bool,

19

preceding teachins:|{
preceding teaching:string}}};

DEF exam inscription list:{
. _ student: string,
teaching: string,
exam__ date: string };

printf("\n");
printf("loading file istplan.dat...\n");
printf("\n");
institute planning <« READ [reoist: VS [institute planning| <
"istplan.dat" |; _
printf("\n");
printf("loading file inscription.dat...\n");
printf("\n");
exam inscription list <~ READ [examist: VS[exam inscription list]«
"inscriptions.dat" [;~ _ —
printf("\n");
printf("loading file students.dat...\n");
printf("0);
students « READ [studist: VS [students| « "s.tudentsdat" |;
while(a)
{

system("clear");
rintf("**********************************\n)-
b

printf(""*** =
printf("*** Now, enter your query ... ***n);
printf Wik K\
printf("**********************************\n);
?lrintf("\n");
ush(stdout);

}gets(buﬂ;

ENDALGRES;

}

5. CONCLUSIONS

The concepts, techniques and tools necessary for the design and the
implementation of the future database systems are expected to result from cross
fertilization in several ares of Computer Science. One key area is Artificial
Intelligence which provides knowledge bases techniques for reasoning, problem
solving and question answering. An other area is Programming Languages and
especially Object Oriented Languages which provides powerful languages to
handle complex applications, that is, with numerous different data types. Finally,
the Database field is concerned with the efficient management of large amounts
of persistent, reliable and shared data. The issue of partially integrating these
different fields has received wide attention from the scientific and technical
community.

The ALGRES system is an attempt to unify two reasearch areas: The
extension of the Relational Model to deal with complex objects and Logic
Programming., As such it can be used as a tool for rapid prototyping and
sperimentation nf new data-intensive applications.

Several example have been given in the paper to show the capabilities of the
system.

20

The use of the system with industrial applications will give us the necessary
experience and point out the advantages and the real limits of this approach.

The ALGRES system is operational on SUN workstations (SUN-2, SUN-3)
with Berkeley UNIX! 4.3 BSD Operating System, and on VAX/780 with
ULTRIX? Operating System interfacing an INFORMIX Database System.

A distribution kit of the ALGRES system is available for non-profit use
directly from the authors at a nominal fee.

For further information please write to:

Prof. Roberto Zicari
Dipartimento di Elettronica
Politecnico di Milano

Piazza Leonardo da Vinci, 32
20133 Milano, Italy

phone: +39-2-2399-3523
fax: +39-2-2399-3587

AKNOWLEDGMENTS

The ALGRES project is mainly supported by the EEC-Esprit Project 432
"Meteor", and also partially by the italian CNR, MPI, and Rank Xerox University
Grant Program

REFERENCES

[ABIT84] S.Abiteboul, N.Bidoit, "Non First Normal Form Relations to Represent
Hierarchially Organized Data", ACM 1984, 191-200.

[ABITS86]S.Abiteboul, N.Bidoit, "Non First Normal Form Relations: an Algebra
Allowing Data Restructuring",JCSS, 1986.

[Agra88] R. Agrawal, "Alpha: An Extension of Relational Algebra to Express a
Class of Recursive Queries", in IEEE Transactions on Software Enfineering, Vol.
14, N.7,July 1988.

[Alba83] A. Albano, L. Cardelli, R. Orsini "Galileo: A Strongly Typed,
Interaptive, Conceptual Language” Tech. Rep. Internal Technical Document
Services, AT&T Bell Laboratories, Murray Hill, N.J.

[Atk87] M.P. Atkinson, O.P. Bumeman 'Types and Persistence in Database
Programming Language", ACM Computing Survey, Vol. 19, No. 2, June 1987,
[CERI86] S.Ceri, G.Gottlob, L.Lavazza: '"Translation and Optimization of
Logic Queries: The Algebraic Approach”, in Proc. 12th VLDB, Kyoto, 1986.
[CERI8S8] S.Ceri, S.Crespi Reghizzi, G.Gottlob, G.Lamperti, L.Lavazza,
L.Tanca, R.Zicari "The ALGRES Project" in Proc. EDBT 88, Venice, 1988.
[CERI88a] S.Ceri, S.Crespi Reghizzi, G.Lamperti, L.Lavazza, R.Zicari
"ALGRES: An Advanced Database System for Complex Applications” IEEE
Software (to appear).

[ChHa82] A.K. Chandra, D. Harel "Horn clauses and the fixpoint query
hierarchy"in Proc. 1st Symp. Principles of Database Systems, 1982, pp 158-163.
[DADA86] P.Dadam, K.Kuespert, F.Anderson, H.Blanken et al., "A DBMS
Prototype to Support Extended NF2 Relations: An Integrated View on Flat Table

LUNIX is a trademark of AT&T.
2ULTRIX isatrademark of DEC Corporation.

21

and Hierarchies”, IBM Heidelberg Scientific Center, ACM-SIGMOD Conference,

1986.c

[FIS83] P.Fisher, S.Thomas, "Operators for Non-First-Normal-Form Relations",

Proc. 7th COMPSAC, Chicago, November 1983.

{gALL'TS] H.Gallaire, J.Minker (eds.) "Logic and Databases” PlenumPress,

1978.

[GALL84] H.Gallaire, J.Minker, J.-M. Nicolas "Logic and Databases: A

Deductive Approach”, ACM Computing Surveys, 16:2, June 1984,

[Gord79] M. Gordon, A. Milner, C. Wadsworth , Lecture Notes in Computer

Science, vol. 78, Springer-Verlag, New York, 1979.

[GoZi88] G.Gottlob, R.Zicari, "Closed World Databases Opened through Null

Values"in Proc. 14th VLDB, San Francisco, 1988.

[GUETS87] R.Gueting, R.Zicari, D.M.Choy, "An Algebra for Structured Office

Documents"IBM Almaden, Report RJ 5559 (56648), March 1987.

[JSSC82] B. Jaeschke, H.-J. Schek, "Remarks on the Algebra on Non-First-

Normal-Form Relations", Proc. 1st PODS March, 1982.

[KCB88] W. Kim, H. Chou, J. Banerjee "Operations and Implementation of

Complex Objects”, in IEEE Transactions on Software Enfineering, Vol. 14, N. 7,

July 1988.

[Klug82] A. Klug "Equivalence of relational algebra and relational calculus

guizry éagréguages having aggregate functions"Journal ACM, Vol. 29, pp. 699-717,
uly 1982,]

[LINN87] V.Linnemann, "Non First Normal Form Relations and Recursive

Queries: an SQL based Approach"”, Proc. Workshop on Theory and Application of

Nested relations and Complex Objects, Darmstadt, 1987.

[MAKI?77| A. Makinouchi, "A consideration on normal form of not-necessarily

normalized relations in the relational model”, Proc. 3rd VLDB, October 1977.

[Mylo80] J.Mylopoulos, HK.T. Wong, "Some Features of the Taxis Data Model"

6th International Converence on Very Large Data Bases, Montreal, 1980.

[PIST86] P.Pistor, F.Andersen, "Designing a Generalized NF2 Model with an

SQL-Type Language Interface”, Proc. 12th VLDB, Kyoto, Japan, 8/86, pp. 278-

285.

[REIT78] R.Reiter "On Closed World Databases”, in Logic and Databases,

H.Gallaire and J. Minker (eds.), Plenum Press, 1978.

[ROTH84]M.A.Roth, H.F.Korth, A.Silberschatz, "Theory of Non First Normal

Forma Relational Databases",University of Texas at Austin, Techn. Rep. TR-84-

36.

[ROTH85] M.A.Roth, H.F.Korth, A.Silberschatz, "Extended Algebra and

Calculus for non-INF Relational Database"”, Techn. Rep. TR-84-36, Revised

Version, University of Texas at Austin, 1985.

[SCHES82] H.-J. Schek, P.Pistor, "Data structures for an Integrated Data Base

Management and Information Retrieval System"”, Proc. 8th VLDB, Mexico, 9/82.

[SCSC86] H.-J. Schek, M.Scholl, "An Algebra for the Relational Model with

Relation-Valued Attributes "Information Systems, 11:2, 1986.

[Schm77] J.W. Schmidt, “Some high level language constructs for data of type

relation " ACM Trans. Database Systems 2,3 September 1977, 247-261.

[Smith83] J.M.Smith, S.Fox, T.Landers, "ADAPLEX: Rationale and Reference

Manual"Second ed. Computer Corporation of America, Cambridge, Mass., 1983.

[YeSt88] D. Yellin, R.Strom "INC: A Language for Incremental Computations"”

in Proc. SIGPLAN 88 Conference on Programming Language Design and

Implementation, Atlanta, Georgia, 1988.

22

