
I

(

FOUNDATION· THE BROAD TOOL

Espen Brodin and Bjllrn IvaI' Danielsen

Arthur Andersen & Co.
Oslo
Norway

Most businesses of today are increasingly becoming dependent on
computer systems in their daily operation. Businesses need to respond
quickly and accurately to be able to compete in their rapidly changing
envi ronments.
It is important that organizations and businesses become aware of the
gain that could be realized by applying Integrated Computer Aided
Software Engineering to their systems design.
The major gains of using an I-CASE tool will be realized during the
systems maintenance period by enabeling more timely, less costly and
correct impementation of changes.
The incorporation of I-CASE in the organization requires not only
conventional training of personell, but cultural changes. The cultural
changes are needed to facilitate the life-long process that an I-CASE
method includes.
Arthur Andersen & Co. has put in years of experience and development
effort to reach the goal of a true I-CASE method. The product is
named FOUNDATION and supports the entire life-cycle of systems
design.

urged industries and their businesses to
Organizations that were late in applying

the automation process by a demand for

1 WHAT IS CASE?

1.1 An analogy

Historically, engineering has developed its products through a try and fail
process. Pieces of machinery was often built before they could be tested in
their environments, resulting in a long list of neccessalY modifications or a
total reassessment of needs and specifications. The result often was that
new items had to be made or that the existing item had to be extensively
modified.
The cost of repeating this process over and over pushed development of
better planning systems, modeling and construction control. In today's
computer-age the competitive industries all utilize some kind of automateu
too I to plan, design and implement complex products. One such tool is
Computer Aided Design (CAD) systems that help car manufacturers design
cars with thousands of parts. The manufacturers also use Computer Aided
Manufacturin~(CAM) to automate the actual manufacturing process.
The result IS that the time from the idea of a new car emerges until the
first car rolls off the assembly line is only a fraction of the time it took
with the old approach to engineering.
The competitive environment has
utilize tIllS automated approach.
new technology were forced into
better financial results.

The computer software industry is much younger
engineering industries. It does, however, share many
needs of traditional engineering.

1.2 CASE

than the traditional
of the properties and

The software industry, like traditional industries, realized the need for
structured tools to help their product development and maintenance
processes improve. In the seventies this lead to the automation of
IIldividual tasks of software development. This process was named Computer
Aided Software Engineering (CASE).
As CASE developed, an increasing number of software developers and
vendors realized the gain that could be made in utilizing this tool. The use
of CASE spread, and made its way into software development environments,
large and small, much like the spread of automation among traditional
industries.

2 WHY CASE?

2.1 Computer systems - a critical part of the business

Since computer systems are increasingly becoming a critical part of the
business environment, firms realize the need for making their systems more
efficient. This includes traditional goals like increasing responsivness of

2

(

(

system alterations and improving the development of new systems.
It is critical that individual business manage to respond in ample time to
take advantage of the ever changing business environments.

Today, businesses are completely dependent on their computer systems. It
is not acceptable to have systems falter or misfunction. The demands for
reliability, flexibility and dependency are increasing rapidly as organIza­
tions widen their use and complexity of computer-based solutions. As the
dependency on computer systems increase, it becomes critical to the
organizations that the systems work, and work right.

Until recently, too few businesses realized the need to invest in proper
software developing tools. Maybe because software has been looked upon
as something unrelated to traditional tangible products. The dependence on
software has often been missed.
Today, software is critical to most business functions like planning,
production, accounting, customer services, and a wealth of other admini­
strative functions. It is therefore of great importance that time and effort
is spent on synchronizin~ software strategies and development to both short
and long run business-strategies.

The business environments get increasingly more competitive and the speed
of change is also increasing. This stresses the need for businesses to be
able to respond quickly and accurately in order to beat the competition in
the marketplace. Automation of systems development is crucial for the
ability to make timely changes.

2.2 Cost and time overruns

Even if business administrators have realized the need and criticality of
software systems development, they are often discouraged by the numerous
cost and time overruns before a system is completed. System developers
are notoriously optimistic about their abilities to develop systems on tllne,
on budget, and with the specified functionality. Too often, business
administrators are faced with mediocre systems, slipping deadlines, cost
overruns or project cancellations.

These discouraging situations can be avoided if proper attention and
resources are allocated to systems development. But, it has to be done the
right way. In many cases, systems development IS undertaken without the
help of a methodical, structured, standardized tool.
It is no longer enough to hire programming wizards to get the job done.
Businesses of today operate far too complex and critical systems to leave
anything to "quick and dirty" solutions. By applying a proper standardized
method to systems development, large improvements can be made. System
operators will have to adhere to a specified standard in their work. It is
the only way to assure continuity, timeliness and control in a systems
development environment; Past, present and in the future.

•

CASE is rapidly developing into
process of system development
process.

encompassing more and more of the whole
rather than just individual stages of the

3

3 INTEGRATED CASE

The most powerful property of some of today's CASE packages is the
centralization of shared data in a repository. This enables all participants
to access current data and eliminates the manual labor of moving data
around. It can be referred to as a project data base which is accessible to
several different tasks and users. This makes the process much more
systematic since it operates in an environment rather than in individual
partitions. The increased compatibility between automated tasks also
enhance productivity and improves the learning curve.

By applying a continuous process, containing several tools, today's CASE
tools should support systems design from the initial planning through
development stages and all the way to maintenance of the finished product.
The combination of a shared project-database with an extensive collection
of tools that play together is called Integrated Computer Assisted Software
Engineering (I-CASE). In I-CASE it should only be neccessary to enter the
same piece of information once. I-CASE will help orchestrate the systems
design and installation effort.

I-CASE assures a formal systematic and computerbased approach to systems
development. It is a system for developing other systems, providing the
system-crew with the opportunity for enhanced productivity, quality and
compatibility with previous work. The I-CASE approach encourage group
work, and makes It possible for relatively unexperienced people to produce
useful results. It reduces the risk involved in big projects since it
strongly encourages standards and proven techniques. The risk is also
reduced by the fact that I-CASE lends itself to repeated use of previously
completed work. I-CASE replaces the art of programming with the
engineering science.

I=OUnORTlon

Complete Life Cycle Support

METHOD/!
I pranninl I

Repository

4

I
4 BENEFITS BY USING I-CASE

•

{

(

I-CASE encourages high quality and dependable systems

Dependability is improved by the repeated use of tested techniques and by
the reuse of successful program modules from other systems.
Quality is improved by consitency in the implementation of the whole
system, both in the user interface and the internal system structure. This
makes the finished system easier and more predictable for the user. It
also improves the ease of maintenance.
Quality is also enhanced by the use of prototyping, a process enabeling the
end user a "look and feel" of the system before it has actually been
implemented. Prototyping gives the end-users a better opportunity for
input about their needs.

COST OF
CHANGE

'-----------------i~ TIME

DESIGN,
INSTALLATION

(

Affects accuracy of cost & time forecasts

The use of I-CASE increases the predictability of cost and
implementing a system because of its highly automated structure
integrated tools available for project management.

Overall management control

time of
and the

An I-CASE tool helps management control
providing tools for assessing predictability,
control.

the system design effort by
and quality assurance and

Orchestration of the system development process

I-CASE provides a tool for orchestration of the project environment, i.e.
hardware, system software, and different tools to support the processes.

5

Sharing of project data

By arranging project data
desi~ners. This enhances
wi tll1n the project environment.

in a repository, data can
standards and Improves the

be shared by system
communication process

Separation of unit testing and system test

By enabeling design, coding and unit-testing to be performed on worksta­
tions in an I-CASE environment, mainframe resources will be utilized beller.
The system test will (and should be) performed in the production environ­
ment.

Larger gets easier

I-CASE enables organizations to undertake projects
too large or too risky and helps MIS uepartments
systems, on-time and within budgets.

previously classified as
prouuce higher quality

(

Coovffsioa

"SJsltm

" Traditional

',,--

Ti'"

The gain from using
I·CASE

Cost efficiency

Experience tells us that
uevelopment costs can be
reduced with 15 to 50% by using
I-CASE. These savings will
usually be eaten up by the
increased cost of training and
the need for cultural changes in
the host organization.
The large and meaningful
savings occur during maintenan­
ce. By having a complete
uocumentation of a system's
development process, changes
anu modifications can be
implemented swiftly. This will
be the real savings of applying
I-CASE in the organization.
One part of the savings will be
the reduced resources needeed
to implement changes. Another,
and for most businesses the
larger part, will be the savings
(increased revenue) realized by
constantly meeting business
needs in the rapidly changing
business environment.

ARTIfUR
'--- ANDERSEN

&Q).J

6

I
5 FOUNDATION

Andersen & Co. we have put an extensive effort and more than
of experience into developing I-CASE tools that will make
improve their efficiency and help them stay ahead of the

At Arthur
30 years
businesses
competition.
We believe we have taken it further than our competitors by including an
extensive variety of tools and making our system support the life of the
business and not only that of a specific system.
The notion of life-long support necessitates the need for an evolutionary
rather than a revolusionary approach in the development of systems design
methods.

The key problem is to design a method for systems development that
enables you to always produce a correct and predictable solution. The rigor
of the solution is a very important factor when selecting systems develop­
ment methods.
It is not enough to apply the limited "picture to code" terminology in order
to facilitate a system to administer systems design efforts. There is
actually no evidence that any vendor has achieved the "picture to code" for
moderatly complex systems without significant manual intervention.
To be able to meet the requirements of tomorrow's need for automation,
sy-stems design organizations need to chanl;le their operative culture just
like the traditional industries had to do when they applied automation.

Arthur Andersen & Co's contribution to I-CASE is named FOUNDATION.
FOUNDATION consists of three integrated components that can be used
individually or combined: METHOD/l for project management, DESIGN/l
for planning and design, and INSTALL/l for implementation and support.
The combined use of these three tools enables a complete I-CASE that will
significantly help productivity and predictability of systems development.

Because FOUNDATION operates on-line on a personal computer (IBM PC) it
allows users to quickly access and review information. To promote even
greater communication and productivity, FOUNDATION can operate in a
Local Area Network (LAN).

!=OUnlJATIOn

PRODUCTION
miniS
SUPPORT

IIERAIIYE
IMPUMEN1AliOM

PACKAGE
ml£l.l
IMPllMlHUTIOH

CUSJOI.\ CUSIOM
S1SJEM malA
DESIGN IMI'tHIfHIA110H

PACKAGE
mUM
OlSIGN

IlERAIIVE
DESIGN

t :1-

IHrORMAllOH
l'IAIWIHG

munmmon - Melltoc/ologyReality demands
different implementa­
tion methods from a
systems development
method. FOUNDA-
TION supports
iterative design,
package system
design, and custom
system design, and
will incorporate
expert system design
and decision support
systems design.

7

Among the functions and features of FOUNDATION are:

Full life-cycle methodology
The methodology provides a framework for
systems. This is why FOUNDATION is process­
than data model-driven.

developing complete
and data-driven rather

by providing symbolic entrance and
isolation of versions by programmer

Project management
Tools for effective management of systems development efforts.

Diagramming tools
Used to enhance the conceptual integrity of systems design. They
also improve the communication of the design concept among the
users and the team.

Screen and report painters
Help the developer define layouts, validation and editing requirements.

Prototyping
Demonstrates proposed screen layouts and dialogs for end-users.

Checking and analysis
Checks design information as it is entered and analyzes the finished
design for consistency and completeness.

Dictionary and reports
The dictionary contains information about the system entities,
including screens, programs, etc. It was built using relational
technology with a strong, flexible reporting facility. Once information
is entered, it is made available to all users and consistently used by
all components.

Code generation
Screen handling and dialog control logic are generated from dictionary
resident, high-level, non-procedural specifications. Other features
facilitate program generation with shell tailoring and statement
generation. A complete file maintenance conversation may be
generated from screen and database definitions.

Test data management
Manage test data as an asset
maintenance, version control and
or team.

Production Systems support / configuration management
The dictionary provides the mechanism to analyze
proposed maintenance changes and to control the
programs between production and development environments.

8

the impact
movement

of
of

(

(

FOUNDATION-PAC

Services and support are often needed to help facilitate the adoption of
FOUNDATION in an organization. FOUNDATION-PAC is a work-program­
med set of services including additional training, help, and installatIOn and
adoption assistance. FOUNDATION-PAC will facilitate the adoption of
FOUNDATION componenets and provide customized assistance to further the
acceptance and effectiveness of the package.

6 METHOD/1

METHOD/1 contains a structured approach for managin8 systems develop­
ment from planning and design through implementation and support.
Because of the vast complexity and sophistication of today's information
systems, this is a critical management problem. Advanced technologies are
not a solution in itself. A framework for managing the systems develop­
ment process is required.

The method provides the framework to help optimize systems development
and uses an approach for building information systems that meet long-range
business needs and strategies.
By defining what to do and when to do it in each phase of the systems
development life cycle, it provides a comprehensive, effective management
approach for the systems development life cycle. Each phase produces and
communicates valuable information to the next. Planning, development and
maintenance are in this way managed as a process.

Tailoring to individual requirements

METHOD/1 can be tailored to reflect ~orporate culture and priorities
in the host organization by incorporatIng a top-down management
approach. The customization allows the MIS management to create a
plan that communicates their objectives throughout the department.
The method can also be tailored to support one of three possible
design approaches: custom systems, package systems or iterative
development.

Facilitating project management

All procedures and functions in the systems development life cycle are
incorporated within the methodology. This gives managers the
information needed to estimate and schedule resources before any time
is spent on design or programming.

9

munonTion
J=DunmUlOn . Project Management

Simplifying appljcation development

By dividing necessary. work to be done into successively smaller and
more manageable Ul1lts, the systems development is simplified. The
units reflect the strategic objectives and goals of the organization.
The methodology defines all tasks required to build and implement an
application, including objectives, work to be done, and deliverables.

Enhancing communication

(

METHOD/l
expectations
reference.
management.

provides
to project

A reporting

a means for management
teams glvlllg everyone the
facility communicates work

to communicate
same frame of

progress back to

Production systems support

The method helps anticipate potential changes, to prevent
problems to become a reality. When revisions are required,
scheduled directly into the planning phase for immediate modification.

potential
they are

Management checkpoints

At the completion of a phase within
examine completed work by help of a
will help management to decide whether
of the project.

the method, management can
review capability. The review
to proceed to the next phase

Quality assurance

METHOD/l incorporates quality assurance reviews throughout the
systems development process. This provides management with
independent appraisals of completed work. The review are performed
at specific checkpoints, allowing evaluation of the development process
and completed work.

10

(

7 DESIGN/!

DESIGN/I is an integrated workbench to supporting the analysis and design
phase of the systems development life cycle. During the desIgn phase it is
Important that systems analysts share specifications in order to develop
consistent, high quality system design. Automation promotes the creation
and management of such a shared repository of design information. Because
design data is available to all members of the design team, more time can
be spent on design development and less time on manual documentation.

DESIGN/I consists of a variety of techniques needed in the design phase of
systems development. By automating and integrating these techniques
through word processing, modelling, screen and report design, data design,
and prototyping tools, reusability is promoted and designers can share
design specifications.

DESIGN/I, version 5.0, is the largest object oriented system in the world
today.

Increasing communication, productivity and efficiency

A group-oriented approach is promoted by facilitating the sharing of
data between system designers. This helps enhance prOductivity and
minimizes the need for paperwork.
Documents that are stored in the shared repository are indexed and
cross-referenced for each data element in the design.

I=OUmlRTIOn

FDunonTlon - COlllplete Life Cycle Sollltioll

Project Management

Simplifying design development

A menu driven structure supports the simplification of the design
software functions. Designers are able to define relationships between
design objects, combine text and graphics within single objects, and
move or copy from one object to another. On-line help and next-step
instructions help accelerate the learning curve.

11

I

Improving design quality

DESIGN/1 incorporates verification and consistency facilities that
review design data for completeness, accuracy, and consistency. These
help designers detect, correct, and update all design documentation for
improved design quality. Early detection of design errors and
redundancies reduce total system time and resources required.

Repository providing a starting point for systems design

Within the repository, a number of pre-existing deliverables exist.
These provide the basis for the project standards used to create
design documents. Design data is automatically indexed and cross-
referenced in the repository for every document. Images and diagrams (
are also storable.

Data modeUer for creating entity relationship models

The data modeller diagrams conceptual data models and relational data
structures. Diagramming enhances the conceptual integrety of systems
design and improves communication between the project team and end­
users. To model business functions, the data modeller uses pull­
down menus, symbols, and icons to identify and define entity
relationships.

Automated data flow diagrams connect system processes and data paths
The data flow diagram mer allows designers to create and modify data
flow diagrams. A reporting facility checks models and documentation
for consistency and completeness.

Automating the design of screens and reports

The screen/report design facility allows designers to create and modify
screen and report layouts, using elements and literals stored in the
design repository. Elements are selected and placed into the screen or
report image. Cross-referencing between screen or report layouts and
elements occurs automatically. The design facility also lets designers
define display attributes for each element or literal.
The prototyping facility uses these screens, and the flow of data
between them, to simulate conversations.

Prototyping

Prototyping allows designers and end-users to define a sequence of
screens to prototype a conversation, using function keys to control
screen flow. Prototyping allows designers to test and modify a
system's conversation flow. End-users also become more involved in
the design process, helping to ensure the quality of design.

12

review and audit design documentation, seven
available for summarizing the contents of the

I

(

(

Structure charts

Structure charts define the organization of a system's programs,
modules, and functions from top-down. The structure chart editor
allows your designers to create and modify structure charts. These
are used to show the functional decomposition of program logic.

Data dictionary facilities

To help management
reporting facilities are
data design repository:

o The element glossary produces a report of all data elements.

o Index reports describe where elements and documents are used, and
which elements are contained within each document.

o Inventory reports list existing documents and their last revision
date.

o Cross-check reports identify duplicate documents.

o Element verification reports highlight discrepancies between data
elements and their attributes.

o Segment reports provide detailed information on the characteristics
and members of a data layout.

o Consistency check reports identify exceptions to the consistency and
completeness of a diagram's design documentation and data flow.

Code generation

DESIGN11 has a COBOL copybook generation facility that translates
design information into COBOL-formatted record descriptions.
DESIGN11 also has a CICS BS map generation facility to generate
basic mapping support macros and COBOL copybooks from screen
layouts.
Code will also be generated, from structure charts, to form shells.

Transferring of data to and from other software

DESIGN11 provides designers with the ability to use relevant design
documentation in the mainframe implementation phase. Information
sharing increases the effectiveness of the design process with respect
to design quality and productivity.

13

I

I

8 INSTALL/l

INSTALL/l is an inte~rated set of facilities for the implementation and
support phases of applIcation development. It is a comprehensive set of
maInframe-based software facilities which allows the creation and support
of application systems.
INSTALL/l is designed especially for the DB2 development environments,
providing greater programming productivity control over the development
process. In additIOn to providll1g code generation, INSTALL/l automates
development, streamlines testing, and enhances maintenance. It addresses
all areas of application generation, including screen and conversation
design, code generation, test data management, production systems support,
da ta base administration, and technical support. Its application architecture
enables developers to focus more on developing business solutions, and less
on redundant design and implementation activities.

Integrating the development environment

a central
programs,
population
or other

serves as
copybooks,

allows the
DESIGN/l

INSTALL/I has a DB2-based repository, which
location for all data elements, record layouts,
files, and documentation. A published interface
of the data repository with design data from
design data dictionaries and design tools.
The data repository is key to the integration of FOUNDATION,
ensuring referential integrity of data and consistency among all
entities.

Promoting communication

The data repository is important in communicating design decisions
between the project team members, and ensures that developers always
have access to the most up-to-date development information.

Enhancing productivity

By generating 100% of the code required for basic application program
components, INSTALL/l simplifies coding. Developers no longer have
to focus on redesigning, reimplementing, and retesting common
program functions.

Increased control over the development process

INSTALL/l's repository-based reporting facility allows project
managers to accurately asses the impact of a potential design chan~e.

Code generation, copybook generation, and screen modeling capabilities
help enforce project standards to enhance ease of system use and
mall1tenance. Security facilities control user access to INSTALL/l
functions, and data security protects the data repository and code
tables. Configuration management isolates different repositories to
control migration between environments.

14

isolates the developers from the technical
to focus on developing business solutions.
lNSTALL/l contain only application-specific

(

(

(

A proven approach

lNSTALL/1 has been employed in more than 30 sites since the launch
in April 1988. Its application architecture represents the newest ge­
neration of development platforms. The platform is based on AA&Co's
experience on layered architecture which has been employed in
hundreds of sites since the late seventies. The architecture allows
developers to exploit the advantages of MVS/XA, DB2, ClCS and
COBOL II, and will be based on IBM's System Application Architecture
(SAA).
In 1972, Arthur Andersen & Co. released the first commercial data
dictionary and code generator.

The application architecture

The application architecture
environment, allowing them
The programs generated by
code.
Major components of the application architecture include:

o The conversion control program detailes what work has been
performed to date and Identifies which program should be executed
next.

o The message editing service interfaces the application program with
the ClCS Basic Mapping Support facility to perform initial validation
and reformatting on screen data and output formatting operations.

I=OUnORTlon

I=OUnORTlon - Application Architecture

·1

NVSiXA

ClCS I OBl

INSTALUI

,IJlPUCATlON
PROCRAJIS

- mmm -

I~ Insulation Irom Technical Environment

I~ Centralized Applications

I~ Normalized Code

I~ Operational Efficiency

I~ Portability

I~ SAA Compliant

15

provides the following functions to
to distribute these functions to user

Architecture
allows them

The Application
developers, and
applications:

o Security features help control access to functions and data for all
components in the on-line environment.

o Suspend/resume allows developers to suspend work on one con
versation, perform a task in another, and resume work in the first
conversations.

o National language support allows developers to create and maintain
screens in any language, providing geographic portability.

Quick and accurate definition of screens

The Screen Maintenance facility uses models and standard screen
groups to ensure that screens adhere to established project standards.
The design can also be uploaded from DESIGN/I.

Validation and editing rules

INSTALL/l allows the assignment of validation rules for
during screen definition rather than during programming.
can also be defined in DESIGN/I.

each
The

field
rules

Antomation of conversation definition

INSTALL!1 allows an analyst to define a conversation to establish the
relationships between programs in the system. When DESIGN/l is used
with INSTALL/I, thiS data can simply be uploaded from the design
repository.

Automated code generation

100% of the code can be generated for basic application program
components such as basic COBOL requirements, environmental
interfacing, advanced features, screen input and output, and dialog
management.

Adding unique business logic

INSTALL/1 allows the creation and maintenance of COBOL code for
unique business logic. Additional functions create code wich is not
automatically generated. This increrases control and flexibility.

16

(

Plan administration

The Plan Administration Facility allows data administrators to bind and
free plans based on information stored in the repository.

Reporting

The Reporting Facility assist in the analysis of different environments,
system use, and entity relationships. Data administrators can revIew
and perform impact analysIs on data repository contents.

Testing

INSTALL/I offers a number of tools to help streamline testing. The
test Data Management facility allows each developer to create isolated
versions of DB2 test data for different test sessions.

I

(Re-engineering

The re-engineering facilitates the population of
repository with information about existing systems,
the need for support of application maintenance.
Re-engineering also enables and simplifies the total
system by providing a better starting point.

9 INSTALL/I-PC

the INSTALL/I
which addresses

remaking of a

The PC version of INSTALL/I allows applications to be designed, coded and
unit tested on a workstation environment isolated from the target mainfra­
me.
The coding is based on the INSTALL/I layered architecture in conjunction
with an animator, test data management and unit testing facilities.
By allowing design, coding and unit testing of the application to be done in
the PC environment, only system test is left to be performed when the
sytem is moved to the mainframe environment. It is of crucial importance
that the system test is performed in the production environment.
The use of INSTALL/I-PC results in considerable savings of mainframe
resources, allowing an increased resource allotment to be spent on system
test, which improves the quality assurance and management without the
need of acquiring additional resources.

17

