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Abstract

Everyday millions of blogs and micro-blogs

are posted on the Internet These posts usu-

ally come with useful metadata, such as tags,

authors, locations, etc. Much of these data

are highly specific or personalized. Track-

ing the evolution of these data helps us to

discover trending topics and users’ interests,

which are key factors in recommendation and

advertisement placement systems. In this pa-

per, we use topic models to analyze topic evo-

lution in social media corpora with the help of

metadata. Specifically, we propose a flexible

dynamic topic model which can easily incor-

porate various type of metadata. Since our

model adds negligible computation cost on

the top of Latent Dirichlet Allocation, it can

be implemented very efficiently. We test our

model on both Twitter data and NIPS pa-

per collection. The results show that our ap-

proach provides better performance in terms

of held-out likelihood, yet still retains good

interpretability.

1 Introduction

Topic evolution analysis has become increasingly im-

portant in recent years. Such analysis on social me-

dia and webpages could help people understand in-

formation spreading better. In addition, it also pro-

vides ways to understand latent patterns of corpus,

reduce effective dimensionality and classify documents

and data. Meanwhile, reseachers manage to fit vari-

ous types of data into the topic model. For example,

image segmentations was modeled as topics in Feifei

et al. [6]. User behaviors were also modeled as topics

as in Ahmed et al. [1] In such circumstances, topic

evolution gains other practical values. For example,

knowing the evolution of people’s behaviors could im-

prove the performance of item recommendations and

advertising strategy. In addition, dynamic feature ex-

traction might also provide richer user profile.

In various applications, one might want to harness

metadata for different purposes. When metadata con-

tains useful information for the topic analysis, it can

help enhance the precision of the model. For instance,

authorship can be used as an indicator of the topics in

scientific paper analyzing [14]. Citations can also help

reveal the paper’s topics [9]. In behavior modeling,

metadata such as user id could be used for personal-

ized analysis.

In this paper, we propose topic evolution model

incorporating metadata effects, named metadata-

incorporated dynamic topic model (mDTM). This is

a flexible model effective for various metadata types

and evolution patterns. We demonstrate its applica-

bility by modeling the topic evolution of Twitter data,

where we use hashtags as the metadata. This prob-

lem is particularly challenging because of the limited

length of tweets and their non-standard webish style.

Later we use authors as the metadata to run a dynamic

author-interest analysis on the NIPS corpus.

The paper is organized as following. Section 2 gives a

brief description of backgrounds and prior work. Our

model is introduced in Section 3. Finally, the illustra-

tive examples of topic evolution analysis are presented

in Section 4.

2 Notations and Related Work

In this paper, the corpus is denoted by D, and each

document d in corpus consists of Nd words. Each word



w is an element in the vocabulary of size V . There

are K different topics associated with the corpus. As-

sume the words in the same document are exchange-

able. The case of interests is when the documents have

other special metadata. We use h to represent the

metadata. Assume h ∈ H, where H is the domain

of h. For instance, when h is hashtag of a tweet, H

can be all the strings of hashtags. Let hd be the in-

stantiation of h ∈ H at document d. Now with above

notations, we can define the topics to be probability

distributions over the vocabulary. Let p(w|z) be the

probability of word w appears when the topic is z, then

topic z is represented by a V -vector corresponding to

a multinomial distribution:

(p(1|z), p(2|z) · · · , p(V |z)).

Latent Dirichlet Allocation proposed by Blei et al.[4],

is one of the most popular models for topic analysis.

LDA assumes the documents are generated by the fol-

lowing process:

(i) for each topic k = 1, · · · ,K :

Draw word distribution by φk ∼ Dir(β).

(ii) for each document d in the corpus :

(a) Draw a vector of mixture proportion by

θd ∼ Dir(α).

(b) for each word position j in d :

(b1): Draw a topic for the position by

zd,j ∼ mult(θd).

(b2): Draw a word for the position by

wd,j ∼ mult(φzd,j ).

In the process, α is a K-vector and β is a V -vector.

θd’s are K-vectors characterizing a multinomial distri-

bution of the topic mixture for each document d. α

and β are called hyperparameters. Throughout this

paper, we will use wd,j and zd,j to denote the word

and topic in position j of document d respectively.

Dir(α) denotes the Dirichlet distribution with param-

eter α, and mult(θ) denotes the 1-trial multinomial

distribution.The model structure of LDA is shown in

Figure 1(a), where we use Φ to represent the vec-

tors {φ1 · · ·φK}. In most cases, α and β are chosen

to be symmetric vectors. There is work (Wallach et

al.[16]) showing that LDA with asymmetric hyperpa-

rameters can outperform symmetric settings. For a

K-vector Ω = (Ω1, · · · ,ΩK), they added the prior of

α so as α ∼ Dir(Ω) can connect LDA to mixture model

given by Hierarchical Dirichlet Process (HDP), which

(a) Original LDA graphical structure

(b) Asymmetric LDA with priors.

Figure 1: Graphical structures of LDA models.

is a nonparametric prior allocation process proposed

in Teh et al.[15]. Adding the extra prior Ω, the graph-

ical structure of LDA can be represent by Figure 1(b).

As mentioned in Section 1, we would like to take meta-

data into consideration as in [14]. Labeled-LDA (Ra-

mage et al.[13]) provides another method to use meta-

data, requiring topics to be chosen from a subset of

the label set, where the labels can incorporate certain

kinds of metadata. Statistically speaking, this works

like adding sparse mixture priors. In Ramage et al.[12],

labeled-LDA is used for Twitter data. However, there

is no natural way to create labels for different meta-

data. Such models assume specific generative process

for metadata influences, which often limits the model

to certain metadata. However, in our model, the im-

pacts of metadata are modeled by empirical estima-

tion rather than a specific probabilistic process, which

makes it valid generally.

On the other hand, we need dynamic models to analyze

topic evolution. The dynamic topic model (DTM) pro-

posed by Blei works well on the example of science pa-

pers [3]. However, its logistic Gaussian assumption is

no longer conjugate to multinomial distribution, which

makes the computation inefficient. Moreover, it is an

offline model that needs the entire corpus at one time,

thus not suitable for stream data. Iwata et al.[10] uses

multi-scale terms to incorporate time relation. This

method can be very complicated in some cases and

therefore infeasible for large scale datasets. But the



idea of modeling the relation by hyperparameter is re-

ally effective in many problems. In [1], a time-varying

user model (TVUM) is proposed. It considers users’

behaviors over time, and connects different users by

the general sampling process. Here we can take a dif-

ferent viewpoint of TVUM. Note that when we take

each user’s identity as the metadata, TVUM is actu-

ally using metadata for interests evolution. In this as-

pect, it can be seen as a special case and also a starting

point of our model.

In the next section, we begin from another view of

LDA model, and generalize it to incorporate metadata.

3 Metadata-incorporated Dynamic

Topic Model

3.1 Motivation: Define LDA via Markov

Chains

The inference of LDA can be done through MCMC

sampling. The sampling inference algorithm was pro-

posed in Griffiths et al.[8]. But to understand how

LDA works, we need to use the smoother version

shown in Figure 1. It is shown in [15] that LDA in

this case limits to a HDP mixture model as K → ∞.

Thus we will introduce a few more notations and start

from HDP aspect of LDA. In the rest of the paper, we

will use subscript d to denote relevant variables associ-

ated with document d, subscript k to denote the vari-

able associated with topic k, and w to denote variables

associated with word w. Following this style, mk is

defined as the number of documents containing words

generated from topic k and m = (m1,m2, · · · ,mK),

while nd,k,w is the number of words w in document

d that is from topic k. We further use · to de-

note summation over a specific variable, so n·,k,w is

the number of occurrence of words w being drawn

from topic k and, nk = (n·,k,1, n·,k,2, · · · , n·,k,V ). In

addition, nd,k,· is the number of words in d which

are associated with topic k. When we want to

discuss the variables at time t, we use the super-

script xt to represent the variable x in the model of

time t. So we have mt = (mt
1,m

t
2, · · · ,mt

K),ntk =

(nt·,k,1, n
t
·,k,2, · · · , nt·,k,V ). When we focus on discus-

sions at one time slice, which is clear in context, we

will ignore the superscript t.

According to the discussion in [15] and the mechanism

of Gibbs sampler, we can equivalently define the LDA

inference of topic z (for each position of each docu-

ment) as the stationary distribution of a Markov chain

with the transition probability given in Formula (1),

in which the superscript −(d, j) refers to the originally

defined variables without considering the position j of

document d, and w−(d,j), z−(d,j) are the variables of

the words and topics of the corpus except the ones at

position j in document d, that is, wd,j and zd,j respec-

tively.

The interpretation of this transition probability is that

the Markov chain evolves with the following two pat-

terns to arrive new topic states in the document. (i)

Choose a topic proportional to the existing topics dis-

tribution within the document. This means it tends

to keep the topic of each position consistent with the

document contents. (ii) With certain probability, it

might choose a topic ignoring the existing contents of

the document. However, this choice is based on the

popularity of topics over the entire corpus. This is a

reasonable assumption in many circumstances, and we

believe this could explain the power of LDA.

P (zd,j = k|w−(d,j), z−(d,j)) ∝

(n
−(d,j)
d,k,· + λ

mk + Ωk∑
mk + Ωk

)P (wd,j |φk). (1)

3.2 Generalization: mDTM

Assume the corpus has metadata h. Our basic as-

sumption is that metadata is a good indicator of topics

for each document. For example, a tweet with hash-

tag “#Microsoft” is much more likely to talk about

technology rather than sports. Nearly all the previ-

ous works involving a certain type of metadata rely

on this assumption. We first define the preferences of

metadata over time as a vector function of t and h,

g(h, t) = (g1(h, t), g2(h, t), · · · gK(h, t)). The kth ele-

ment gk(h, t) is the preference of h to topic k at time

t. Since we want to build a dynamic model for topic

evolution, we can learn g(h, t), and turn it into another

impact on top of the evolutionary effects of β and Ω.

Motivated by the definition of LDA given by (1), we

define the mDTM inference at a fixed time slice to

be the stationary distribution of a Markov chain with

transition probability

P (zd,j = k|w−(d,j), z−(d,j) ∝

(n
−(d,j)
d,k,· + gk(hd, t) + λ

mk + Ωtk∑
mk + Ωtk

)P (wd,j |φtk). (2)

The modification we make has exact effects that we

want to incorporate into (1). In addition, this process



provided by mDTM is simple and does not incure too

much computation, as shown in the Section 3.4. We

only focus on the case where there is only one meta-

data variable in our discussion. There might be the

case that more than one metadata variables are asso-

ciated with the corpus. For instance, we might have

timezone and browser for web log. In this case, we

can simply model the effects as additive and estimate

the function g(h, t) separately for each metadata vari-

able. Then everything we discuss here could be used

for multiple metadata variable case. As we will pro-

pose different evolution patterns for the parameters in

later sections, here we introduce notation fΩ and fβ
as the evolution functions of Ω and β. Now taking the

time effects of evolution into consideration, the entire

evolution process of mDTM is as follows:

(1) t = 0: initialize the model by LDA.

(2) For t > 0:

(a) Draw Ωt according to the model of t− 1

by Ωt = fΩ(t− 1).

(b) For each topic k = 1, · · · ,K : Draw βk by

βtk = fβ(t− 1).

(c) With the current Ωt and {βtk}Kk=1,

implement the inference for the process

described by equation (2).

We model the evolution of all the effects by separable

steps, so the model can be updated when data in new

time slice arrives, which makes it possible for stream

data processing and online inference. It is very flexible

to adjust mDTM for different types of metadata, with

different properties as we do not have to assume spe-

cific properties of the metadata. Notice that though

we generalize the Markov chain definition of LDA to

mDTM, we haven’t shown the existence of the station-

ary distribution or limiting behavior of the chain. To

address this issue, we can check mixing of the chain,

so as to know if the inference is valid. In all of our

experiments, such validity is observed. For details and

methods about mixing behavior of Markov chains, we

refer to Levin et al. (2009) [11].

The evolution patterns fΩ(t), fβ(t) and g(h, t) are ad-

dressed in Section 3.3. Then we give the inference

steps of mDTM in Section 3.4.

3.3 Evolution Patterns of mDTM

Now we describe how to model g. Assume metadata is

categorical which is the case we normally encounter in

applications. Similar methods can be used to choose

fΩ and fβ , so we will only discuss the evolution pat-

tern for g(h, t) in detail. We use ñtk,h to denote the

number of the topic k that occurs in all documents

having metadata h at time t.

3.3.1 Time-decay Weighted Evolution

We can just take gk as the weighted average number

of topics k appearing in documents with metadata h,

using the weights decays over time. This represents

our belief that the recent information is more useful

to predict the preference. Thus,

gk(h, t) = σ
∑
s<t

κt−sñsk,h, (3)

where σ is a scalar representing the influence of the

metadata. This is a straightforward way to encode the

evolution pattern, and the computation is very easy.

3.3.2 Bayesian Posterior Evolution

For each h ∈ H, we assume there is a preference vector

for h to be µth = (µt1,h, µ
t
2,h, · · ·µtK,h) which is a vector

in the K − 1 dimensional simplex, with µtk,h ≥ 0 for

k = 1 · · ·K. Then the realization of choosing topic

for any h ∈ H can be seen as (ñt1,h, ñ
t
2,h, · · · ñtK,h) ∼

Multinomial(ñth, µ
t
h), the ñth-trial multinomial distri-

bution which is sum of ñth independent trials from

mult(µth), where ñth is the total number of observa-

tions of h over the corpus. So we can take the Bayesian

estimation by adding a Dirichlet prior by the process:

µth ∼ Dir(ζt−1 · µ̂t−1
h )

(ñt1,h, ñ
t
2,h, · · · ñtK,h) ∼ Multinomial(ñth, µ

t
h)

In such settings, we can choose the posterior expec-

tation as the estimator, which is

µ̂tk,h =
ñtk,h + ζt−1 · µ̂t−1

k,h∑
ñtk,h + ζt−1 · µ̂t−1

k,h

. (4)

ζ is a scalar representing influence of the prior, which

is the Bayesian estimator from previous time. Then

let

gk(h, t) = σµ̂tk,h



in the process, where σ is a scalar representing the

influence of the metadata. Such evolution pattern is

very simple and smooth and it adds almost no addi-

tional computation cost.

This pattern actually also assumes there is a hyper-

parameter in each time t, which is µth. Rather than

setting it beforehand, we impute the estimate for such

hyperparameters by inference from the model. This is

the idea of empirical Bayes method. In particular, one

could notice that if there is no new data for h after

time t, Bayesian posterior evolution would remain the

same, while the time-decay evolution gradually shrinks

g to zero.

3.3.3 Sparse Preference

In certain cases, we might constrain each document

to only choose a small proportion of K topics. Our

method to achieve this goal is to force sparsity on the

topic choosing process. We can take the occasional

appearance of most of the topics as noise, then imple-

ment a thresholding to denoise and get the true sparse

preference. Define the function S(a, ε) as hard or soft

thresholding operator where ε is the threshold. Then

we can process each variate of the vector resulting from

the previous evolution pattern by S, resulting a sparse

vector. The soft and hard thresholding functions are

defined respectively as

Ssoft(a, ε) = sign(a) ·max{|a| − ε, 0}

Shard(a, ε) = sign(a) · I{|a| > ε}

3.3.4 Choice of fΩ and fβ

Similar evolution patterns for fΩ and fβ can be cho-

sen. With certain variable changed according to the

settings. For fΩ, one could use mt
k to replace ñtk,h in

(3) and (4). The evolution pattern of β can be derived

via replacing ñtk,h in (3), (4) by ntk .

3.4 Inference

As mentioned previously, mDTM can be seen as a gen-

eralization of TVUM. Suppose now we take user-ID as

the only metadata which is categorical, and assume

that each document belongs to a certain user-ID, then

the parameters associated with each category of the

metadata in mDTM become the parameters associated

with a particular user. Furthermore, suppose that the

documents are the browsing history of a user, then

mDTM will be modeling the user’s browsing behavior

over time. In particular, if we use the time-decay av-

erage discussed in Section 3.3.1, the resulting model

is equivalent to TVUM after some simple derivation
1. This connection gives an vivid example about how

to transform a specific problem into the settings of

mDTM.

The time-varying relationship of mDTM can be rep-

resented by a separable term, thus we can incorporate

the time-related term and the topic modeling for a

fixed time separately. For a fixed time unit, the in-

ference process by Gibbs sampling is easy to derive.

Since the special case mentioned before is equivalent

to TVUM, we derive the inference process by analogy

to that shown in [1]. Suppose now we have the model

in previous time t− 1, the whole process for inference

of t is as follows:

(i) Update the new hyperparameters Ωt and βt for

time t according to the chosen evolution pattern.

(ii) Initially set the starting values. We could set the

initial value of α as Ωt. The initial values for the counts

at time t, that is mt
k, n

t
·,k,w, nd,k,·, can be computed

after randomly choosing topics for each documents and

words.

(iii) For each document d, compute the g(hd, t) ac-

cording to the chosen evolution pattern in Section 3.3.

Then sample the topic for each word position j by the

formula

P (zd,j = k|wd,j , others)

∝ (n
−(d,j)
d,k,· +gk(hd, t)+λαd,k)·

n
t,−(d,j)
·,k,wd,j

+ βtk,wd,j∑V
w=1 n

t,−(d,j)
·,k,w + βtk,w

.

(iv) Sample mt
k from the Antoniak distribution [2] for

Dirichlet process.

(v) Sample α from Dir(mt + Ωt). And repeat (iii)-(v).

4 Experiments

To illustrate the model, we conducted two experiments

in which metadata is used for different purposes. We

first use mDTM on Twitter data for topic analysis, in

which we take hashtags as the metadata. In the sec-

ond experiment, we fit our model on the NIPS paper

corpus and try to find information for specific authors,

1
Actually, TVUM has a slightly different way to define the evo-

lution of Ω, which defines the average in different scales of time,

such as daily, weekly and monthly average.



which we use as metadata. For conciseness, we mainly

discuss the former in detail, because Twitter data is

special and challenging for topic analysis. In the NIPS

analysis, on top of the similar results as in previous dy-

namic models such as DTM, we can extract authors’

interests evolution pattern, which would be the main

result we present for that experiment.

4.1 Twitter Topic Analysis

4.1.1 Data and Model Settings

The Twitter data in the experiment is from the paper

of Yang and Leskovec [18]. We use the English tweets

from July 1st, 2009 to August 31st, 2009. For each

of the first three days, we randomly sampled 200,000

tweets from the dataset. And around 100,000 tweets

were sampled for each of the rest days. We considered

the hashtags as the metadata in the experiment. After

filtering stop words and ignoring all words appearing

less than 10 times, a vocabulary of 12,000 words is

selected by TF-IDF ranking. The number of topics

was fixed at 50. In mDTM, time-decay weighted av-

erage was used for fΩ and fβ . We simply set κ = 0.3.

Bayesian posterior evolution was used for hashtag and

soft-thresholding discussed in Section 3.3.3 was used

for the evolution of g(hd, t). The parameters λ and ε

are tuned according to the prediction performance in

the first week, which is discussed in Section 4.1.4.

Our main interest is how topic popularity and contents

change over time.

4.1.2 Topic Popularity Evolution

As can be seen from Equation (2), all the documents

with different metadata share the common term m,

thus m can be interpreted as community popularity

of topics, separated from the specific preference of

metadata. This shows which topics are more popu-

lar on Twitter. Figure 2 gives popularity over the two

months of some topics, which we labeled manually af-

ter checking the word distributions of the topics.

4.1.3 Topic Contents Evolution

Since each topic is represented by a multinomial distri-

bution, one could find out the important words of the

topics. Table 1 gives the content evolution of the topic

US politics. It can be seen that obama and tcot2 are

very important words. However, words about “Sarah

2
The word tcot represents “top conservatives on twitter”.

Figure 2: Topic Popularity on Twitter given by mDTM,
over the period of July and August 2009.

Palin” were mainly popular in July, while the words

about “Kennedy” and “Glenn Beck” became popular

only at the end of August, all of which roughly match

the pattern of search frequencies given by Google

Trends3.

Table 1: Content evolution of the topic US politics
Jul 4 Jul 27 Aug 12 Aug 30

palin obama health kennedy
obama palin care care
sarah tcot obama ted
tcot sarah tcot health

president president bill obama
alaska healthcare healthcare bill

al health reform beck
honduras obamas insurance glenn
governor speech president public

palins alaska town president

4.1.4 Generality Performance

There is no standard method to evaluate dynamic

topic models, thus we take a similar approach as in

[3] to show the prediction performance on the held-

out data. In each day, we treat the next day’s data as

the held-out data and measure the prediction power of

the model.

We compare mDTM with two LDA models without

metadata as in [16] to illustrate the improvement pro-

vided by metadata modeling4. Without metadata, in

the first model, we use LDA on the data of each day

for inference, and call this model indLDA. The prob-

3
We don’t provide the results from Google Trends due to

the limited space. The search frequencies can be found at

www.google.com/trends/
4
We didn’t compare directly with DTM. This is because DTM

cannot be used in an online way, thus it cannot serve our purpose.



Figure 3: Negative log-likelihood during the early period
(July 4th - 10th).

Figure 4: Negative log-likelihood during the end period
(Aug 21st - 30th).

lem here is that there is no clear association for topics

between days. In the second one, we try to overcame

this drawback and take all the data of previous days

for inference, which we call LDA-all. It would take

nearly two months’ data at the end of the period. This

would be too much for computation. Thus we further

subsampled the data from previous days for LDA-all

in the end of the period to make it feasible. LDA-all

will not serve for our purpose and so the main inter-

ests would be comparing indLDA and mDTM. We re-

port the negative log-likelihood on the held-out data

computed as discussed by Wallach et al[17] over the

beginning period (July 4th - 10th) and the end period

(Aug 21st - 30th). We estimate mDTM as discussed

before, but computed the negative log-likelihood ignor-

ing the metadata of the held-out data, thus this gives

us an idea of how metadata can improve the modeling

for general documents, even those without metadata.

There is λ in all of the three models. We tune it and

the thresholding parameter ε by achieving the best log-

likelihood in the first week. Figure 3 and 4 illustrate

the results.

As is shown, mDTM always performs better than the

other two models. This is not surprising because

mDTM has more flexible priors. It is interesting that

LDA-all performs even worse than indLDA. This is

different from the results of [3]. It might be explained

by the differences between Twitter data and scientific

paper data. Twitter’s topic changes so frequently, but

LDA-all takes all the previous days together, which

undermines its power.

4.1.5 Effects of Metadata

In Twitter analysis, the topic preference of a specific

hashtag is not of interests. However, incorporating

hashtags can improve the preformance. On average,

there are roughly 10 precent of the tweets having hash-

tags. But such a small proportion of metadata is able

to provide important improvement of the whole cor-

pus, even for the tweets without hashtags. We com-

pute the held-out log-likelihood, for both the model

inferred without using hashtags as metadata (called

DTM noTag) and the model mDTM using hashtags.

mDTM noTag can be seen as TVUM with one user.

Note that when compute the held-out log-likelihood.

We take the improvement of hashtags as the improve-

ment of negative log-likelihood

(−loglik)DTM noTag − (−loglik)mDTM.

Figure 5 illustrates the improvement of negative log-

ikelihood on the held-out data over the period. It

can be seen that on average, incorporating hashtags

as metadata does improve the performance. And this

improvement tends to grow as time goes. This might

results from the better estimation of most of the meta-

data preference.

4.1.6 Running Times

Here we present a comparison for timing of mDTM and

indLDA. Both were implemented in C++, running un-

der Ubuntu 10.04, with Quad core AMD Opteron Pro-

cessor and 64 GB RAM. We list average running times

(rounded) in Table 2. indLDA is the average time on

10 days (July 4th - July 13th) with 600 sampling itera-

tions each day. mDTM-1 is the mDTM running on the

same data with 600 sampling iterations. Since mDTM

could inherit information from previous time, we found

300 iterations (or less) are enough for valid inference.

Thus we use mDTM-2 to denote mDTM with 300 it-



Figure 6: The human evaluation ACR for the three models. Each box is a value distribution of average correct ratios for
10 topics of the corresponding model on certain day.

Figure 5: The improvement of negative log-likelihood via
hashtags over the period. The red lines are the improve-
ment of −log(likelihood) computed by importance sam-
pling. The blue lines are the intervals at each estimation
point given by 2 standard deviations of the sampling.

erations. It can be seen that mDTM is much faster

than LDA.

Table 2: Running times of three different models
indLDA mDTM-1 mDTM-2

58min 41s 67min 13s 39min 24s

4.1.7 Interpretability

The previous sections show that mDTM is better than

indLDA and LDA-all at generality. However, the in-

terpretability of the topics is also of interests. Chang

et al. [5] revealed that models with better performance

on held-out likelihood might have poor interpretabil-

ity. Here we use the method in [5] to ask humans

to evaluate the interpretability. We choose July 4th

(the first day after three initial days), July 11th (af-

ter one week of July 4th), August 30th (the last day)

and August 23th (one week before the end) for experi-

ments. However, news would be difficult for people to

recognize after more than one year, so we only chose

10 stable topics from each model5. For every topic in

each model, we construct the list by permuting top

15 words for that topic together with 5 intruder words

which have low probability in that topic but high prob-

ability in some other topics. Suppose we have S sub-

jects, then for each topic k, we compute the average

correct ratio (ACR)

ACR(k) =

S∑
s=1

C(s, k)/(5S),

where C(s, k) is the number of correct intruders cho-

sen by subject s for topic k. We conducted a human

evaluation experiment on Mechanical Turk with 150

subjects in total. Figure 6 shows the boxplot of ACR

distribution within each model on each day.

It can be seen that mDTM does not lose much inter-

pretability despite its better prediction performance,

which is different from the observations in [5]. We hy-

pothesize that this is due to the impacts of metadata.

4.2 NIPS Topic Analysis

In this section, we illustrate a different application

of mDTM, that is, to extract specific information of

metadata.

5
We count the number of different words in the top 20 words list

on two consecutive days, and sum such numbers during the whole

period together. A larger sum number means that the topic word

list changes frequently. Then we select 10 topics that are the most

stable. The topics in different time are not associated for indLDA

and LDA-all. We connect a pair of topics between two consecutive

days if they have the most overlap on top 20 words.



4.2.1 Data and Model Settings

The dataset for this experiment contains the text file

of NIPS conference from 1987 to 2003 in Globerson

et al[7]6. We only use the text of the paper and take

the authors as the metadata. The papers in 1987-1990

were used for the first time unit to initiate the model,

and each year after that was taken as a new time unit.

The preprocessing details of the data can be found

on the website. We further deleted all the numbers

and a few stop words. The resulting vocabulary has

10,005 words. The number of topics K was set as 80.

Bayesian posterior evolution was used for g and fβ .

And fΩ was set as time-decay weighted average with

κ = 0.3. We don’t use sparse preference in this exam-

ple. The parameter λ is again tuned by log-likelihood

as before.

4.2.2 Author-topic interests

As before, we could see the topic contents and pop-

ularity trends over time. Here, we only focus on the

special information given by metadata in this exper-

iment. When taking authors as metadata, an inter-

esting information result provided by mDTM is the

interests of authors, similar to the results of [14]. Fig-

ure 7 shows the results given by mDTM for author

“Jordan M”. The height of the red bars represents the

µ̂k,h from Equation (4) for h=“Jordan M”, which can

be interpreted as the topic interests according to the

past information.

It can be seen that authors’ favorite topics remained

nearly the same during the three years, though the in-

terest level for individual topics varied. When we know

the topic interests of the author, we can further inves-

tigate the contents of the user’s favorite topics, which

is a way to detect the user’s interests that would be

useful in many applications. Table 3 shows the top 10

words for four topics of significant interests to “Jor-

dan M” in 1999, according to the result in Figure 7.

We can roughly see they are mainly about “cluster-

ing methods”, “common descriptive terms”, “graphi-

cal models” and “mixture models & density estima-

tion”, which is a reasonable approximation.

5 Conclusion

In this paper, we have developed a topic evolution

model that incorporats metadata impacts. Flexible

6
Data can be found at http://ai.stanford.edu/ gal/data.html
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Figure 7: Topic preference from mDTM of 80 topics, for
author “Jordan M” in 1997, 1998 and 1999.

Topic 60 Topic 63 Topic 75 Topic 78

clustering function variational model
clusters number nodes data

information figure networks models
data results inference parameters

algorithm set gaussian likelihood
cluster data graphical mixture
feature case field distribution

selection based conditional log
risk model jordan em

partition problem node gaussian

Table 3: Four significant topics for “Jordan M” selected
from Figure 7 in 1999.

evolution patterns are proposed, which can be chosen

according to properties of data and the applications.

We also demonstrate the use of the model on Twitter

data and NIPS data, revealing its advantage with re-

spect to generality, computation and interpretability.

The work can be extended in many new ways. For the

moment, it cannot model the birth and death of topics.

One way to solve this problem is to use general prior

allocation mechanism such as HDP. There has been

work using this idea for static models. In addition, the

generality and flexibility of mDTM make it possible

to build other evolution patterns for hyperparameters,

which might be more suitable for specific purposes of

modeling.
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