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Abstract

Many real world applications depend on
modeling the temporal dynamics of streams
of diverse events, many of which are rare.
We introduce a novel model class, Con-
joint Piecewise-Constant Conditional Inten-
sity Models, and a learning algorithm that
together yield a data-driven approach to pa-
rameter sharing with the aim of better mod-
eling such event streams. We empirically
demonstrate that our approach yields more
accurate models of two real world data sets:
search query logs and data center system
logs.

1 Introduction

Event streams—temporal sequences of discrete events,
are ubiquitous in many domains such as the firing
patterns of neurons [2], gene expression data [7], sys-
tem error logs [13], and web search engine query logs.
Learning a model for the temporal dependencies be-
tween events can be useful for understanding and ex-
ploiting the dynamics in such domains. For example,
learning that particular system events on a machine
predict failures at a later time may allow a system ad-
ministrator to prioritize preventive maintenance. Un-
derstanding how web search queries for commercially
valuable terms are dependent on prior queries, possi-
bly for other topics, can help in targeted advertising.
In many cases the data exhibits complex temporal de-
pendencies. For example, what a user will query for
at a particular time can depend on queries issued in
the last few minutes, the previous day, as well as in
the extended past. In a data center, the likelihood of
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a machine failing may depend on cascades of various
prior warnings, errors, and failures.

In many domains, it is valuable to model fine distinc-
tions between event types. For example, in targeted
advertising, it is valuable to distinguish whether a user
will issue queries related to mental health or to back
pain rather than simply predicting that a user will
issue a healthcare query. In a data center, it is more
useful to learn that particular disk errors predict failed
reboots than to know that generic error messages pre-
dict generic failures. While useful to model, such fine
grained event types are rarer than the coarser grained
ones that include them, and are therefore more difficult
to model. Many models of temporal dependencies in
event streams, such as the Piecewise-Constant Condi-
tional Intensity Model (PCIM) [8], learn the dependen-
cies of each event type separately, using independent
sub-models for each event type. Thus, they are not
able to model rare events well.

In this paper, we address this problem using pa-
rameter sharing, by introducing Conjoint Piecewise-
Constant Conditional Intensity Models (C-PCIMs)
and a learning algorithm for C-PCIMs, which yield
a novel data-driven approach to modeling fine grained
event streams. C-PCIMs generalize PCIMs by allow-
ing parameters to be shared across event types, and
our learning algorithm uses the data to determine
which parameters should be shared. In particular, we
give a conjugate prior that allows parameter learning
for the C-PCIM to be performed as efficiently as for
the PCIM, and that leads to a closed-form marginal
likelihood, allowing efficient structure learning. Dur-
ing structure learning, the C-PCIM learns what event
types in what historical contexts can be modeled by
shared parameters, thereby allowing more efficient use
of data during parameter estimation. In cases where
events are structured, with the different event types
having known attributes, we show how structure learn-
ing can take advantage of these attributes to distin-
guish between different event types when their depen-



dencies differ, while sharing parameters when they do
not. Finally, we give empirical evidence that demon-
strates the value of C-PCIMs in two real applications
which are not well addressed by existing approaches—
modeling the temporal query dynamics of web search
users and modeling the temporal dynamics of system
events in a data center. In the second application, we
demonstrate that the expressive power of C-PCIMs
combined with the data driven learning approach al-
lows us to relax the strong assumption of identical ma-
chines, yielding further accuracy improvements.

2 Related Work

Event streams can be modeled in either discrete or
continuous time. Using discrete time approaches such
as Hidden Markov Models (HMMs) [1, 14] and Dy-
namic Bayesian Networks (DBNs) [5] require event
times to be discretized, which requires a choice of sam-
pling rate, and with it, trade-offs involving fidelity of
representation, time-span of dependencies, and com-
putational cost. We avoid this choice, and model
event streams in continuous time. There have been a
number of recent approaches for modeling continuous-
time processes. C-PCIMs, like PCIMs [8], model event
streams as marked point processes, where events have
both an arrival time and a label specifying the type
of event, via conditional intensity functions. A num-
ber of other closely related approaches [15, 23, 24] use
regression techniques such as generalized linear mod-
els, Cox regression and Aalen regression to model con-
ditional intensity functions. Continuous Time Noisy-
Or [21] and Poisson cascades [22] are also approaches
for modeling event streams. These approaches do not
address model selection, and require a parametric form
for temporal dependencies to be specified. Predic-
tive performance is strongly impacted by this modeling
choice, which is domain dependent [21, 22]. There has
also been some recent work on nonparametric Bayesian
approaches for modeling unlabeled event streams [17].
Continuous Time Bayesian Networks (CTBNs) [12]
and Markov Jump Processes [16] are Markov process
models of the trajectories of discrete variables over
continuous time. In contrast to PCIMs and C-PCIMs,
they are Markov process models. A CTBN can be
used to model an event stream by modeling each kind
of event as a transition of a “toggle” variable [20], and
using latent state variables to model their dynamics,
to give a continuous time analog of an HMM.

Conjoint PCIMs differ from PCIMs in the way that
parameter are shared. Such approaches have been
used in other problems such as for building hidden
Markov models with large state spaces [9, 10], and for
building n-gram language models [11]. Hierarchical
Gamma-Exponential processes [18] are a hierarchical

nonparametric Bayesian approach to conjoint model-
ing in Markov processes such as CTBNs. Regulariza-
tion approaches may also be used for conjoint model-
ing [25], although we are unaware of applications to
continuous time event modeling.

3 The Model

We represent an event sequence as y = {(;,0;)};
with 0 < ¢ < -+ < t,, where t; € [0,00) is the time
of the ith event and [; is its label, drawn from a finite
label set L. The history at time t of event sequence y is
the sub-sequence h(t,y) = {(t;, ;) | (ti, ;) € y, t; < t}.
We write h; for h(t;—1,y) when it is clear from context
which y is meant. By convention ty = 0. We define
the ending time t(y) of an event sequence y as the time
of the last event in y: ¢(y) = max ({t: (¢,1) € y}) so
that t(hi) = ti71~

The data x, which is a particular event sequence, is
modeled as a realization of a reqular marked point pro-
cess [4, 6] with likelihood

p(el0) = T] TT Aultalhe, 0@ Mucednor (1)

leLi=1

where \;(t|h; 0) is the conditional intensity function [4]
for label I, and Ay(t/h;0) = [}, M(r|h;0)dr. We
write 1z(+) for the indicator function of a set Z and
1.(-) for the indicator of the singleton {z}. Intuitively,
Ai(t|h; 0) is the expected rate of events with label [ at
time ¢ given the history h. Note that despite the sim-
ilarity to the likelihood of a non-homogeneous Pois-
son process, this likelihood does not in general define
a Poisson process as the conditioning on history can
cause the independent increments property of Poisson
processes to not hold. The conditioning on the en-
tire history also means that such processes are non-
Markovian. Piecewise Constant Conditional Intensity
Models (PCIMs) [8] are a particular class of marked
point process where the conditional intensity functions
are restricted to be piecewise constant. In this paper,
we introduce Conjoint PCIMs which are PCIMs that
use a conjoint representation for the conditional inten-
sity functions. These models are described below.

3.1 PCIMs

In this section, we review PCIMs [8]. PCIMs are a
class of marked point process where the conditional
intensity function for each label is a piecewise con-
stant function of time, taking one of a finite number
of values. That is \(t|y) is piecewise constant in ¢
for all ¢ > t(y), and takes on values {\;5} for s € 3,
where ¥; is a finite label-dependent state set. The
value \;s taken on by A (t|y) at ¢ for each y is specified



by a piecewise constant state function oy(t,y), so that
A(EY) = Nioy (2,)-

Note that the state s summarizes all the information
about ¢t and y necessary for computing A;(t|y) in that
given s, \(t|ly) can be computed without further in-
formation about ¢t and y. However, unlike in Markov
models such as CTBNs [12], the state does not contain
all the information about ¢ and y for predicting future
states.

As described above, the conditional intensity function
Ai(t|y) can be specified by a structure S; = (X, 0y(+, -))
consisting of the state set ¥; and the state function
o1(+,+) and a parameter parameter vector 6; composed
of a non-negative intensity \;s for each s € ¥;. In turn,
a PCIM is specified by a structure S and a parameter
© that consist of the per-label structures S; and per-
label parameter vectors ;.

Gunawardana et al. show [8] that given the structure
S, a product of Gamma distributions is a conjugate
prior for ©, and that under this prior, the marginal
likelihood of the data can be given in closed form.
Thus, parameter estimation can be done in closed form
given a structure, and imposing a structural prior al-
lows a closed form Bayesian score to be computed for
a structure.

The structure of a PCIM can be represented by a set
of decision trees [8]. In particular, each state function
o7 can be represented by a decision tree whose leaves
represent the states s € ¥;, as shown in the example
of Figure 1. The decision nodes in each tree contain
functions that map a time ¢ and a history y to one of
its child nodes. These functions are piecewise constant
in time, so that the state function o;(t,y) represented
by a decision tree is also piecewise constant. Struc-
ture learning for each label [ is performed by starting
with the trivial tree, and iteratively refining it greed-
ily based on the closed form Bayesian score mentioned
above. A detailed presentation of this learning proce-
dure as generalized to C-PCIMs is given in section 4.1.

3.2 Conjoint PCIMs

Conjoint PCIMs (C-PCIMs), like PCIMs, are marked
point processes where the conditional intensity func-
tion A;(t|y) are piecewise constant and take on a finite
number of values, but unlike in PCIMs, the conditional
intensity functions in C-PCIMs take on values from a
single set of values shared across all labels [ € £. Thus
Ai(tly) takes on values {As} for s € ¥ which are shared
across all [. Which of these values is taken on by \;(t|y)
is specified by a C-PCIM state function o(l,¢,y) which
unlike PCIM state functions, is also a function of the
label [ whose conditional intensity function is being
evaluated. Thus, Ai(tly) = Ay(t,). C-PCIMs there-
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Figure 1: Example Decision trees representing a PCIM
for a problem with £ = {A,B}.

fore allow an intensity value A4 to be shared across con-
ditional intensity functions for different labels, possi-
bly at different times and for different histories. Thus,
a C-PCIM is defined by a structure S = (X,0(-,,-))
consisting of a state set ¥ and a state function o (-, -, -)
as well as a parameter vector © = {A,};¢ex, all of which
are shared across labels | € L.

We use a decision tree representation of the structure
S of a C-PCIM. However, instead of using a different
decision tree for each label | as in Gunawardana et
al. [8], we use a single tree that is used across all la-
bels, as shown in the example of Figure 2. The leaves
of the tree represent states s € X. However, the de-
cision nodes of a C-PCIM tree contain functions that
can depend on [ as well as on t and y. In particu-
lar, each decision node contains a basis state function
f chosen from a given set B. Each basis state func-
tion f(I,t,y) is piecewise constant in ¢ for each ! and
y, and takes values from a finite basis state set Xy.
Thus, a decision node with basis state function f has
a child node corresponding to each s’ € ¥¢. Since the
basis state functions are defined to be valid piecewise
constant state functions, the mapping from (I, ¢,y) to



leaves given by the tree is also a valid piecewise con-
stant state function o(l,¢,y).
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Figure 2: Decision tree representing a C-PCIM equiv-
alent to the example PCIM of Figure 1.

4 Learning Conjoint PCIMs

In this section, we directly generalize the parameter
and structure learning approaches for PCIMs [8] to
apply to C-PCIMs. For C-PCIMs, the likelihood of
equation (1) can be written as

p(x]8,0) = [[ Ae@e =) @)

sEX

where dq(x) and cq(x) are sufficient statistics of the
data. ds(x) is the total duration spent in state s, i.e.,
that o(l,t, h(t,z)) = s for some [. ¢s(x) is the number
of times a label I occurs in « when the state function
maps to state s for label [. Formally,

53 /“m

lel
-Y i

Note that since o(l, 7, h) in the integral above is piece-
wise constant in 7, the integral reduces to a sum over
the constant pieces of o (I, 7, h).

o(l,7,h(r,x)))dr

o(l,t;, hi)).

A product of Gamma priors on Ay is conjugate for ©.
The corresponding prior and the posterior densities for
As are given by

Pl ) = g e
p(Asla, B,2) = p(As|la+ cs(x), B+ ds(x)) -

p(S)p(x]S) =

In our experiments, we obtain the point estimate 6=
E[O|S, z] from the training data, given by

. a+ cs(x)

B +dy(x)
4.1 Structure Learning

For structure learning, we can write the marginal like-
lihood of the data x given the structure S in closed
form as

p(z|S) =

B T(a+ecs(z))
1;[2 D) (B4 ds(z))ates=)”

vs ()

As with PCIMs, we use a Bayesian decision tree build-
ing procedure [3] in order to learn the structure S. We
begin with the trivial structure ¥ = sg, o(l,t,y) = so
with only the root node sg, and refine the structure
S by iteratively splitting leaves s € ¥ based on basis
state functions f € B. In particular Given a current
structure S = (3, 0), a new structure S’ = (¥/,0') is
produced by selecting a state s € ¥; and a basis state
function f € B and refining s based on f as follows:

¥ = U {s®s'} | US\s

s'eXy
£ _
(0t y) = soO f(Lty) i U(lﬂij) s
o(l,t,y) otherwise

where ©® is the concatenation operator. Thus, S’ can
be represented as a tree where leaf s of the sub-tree S
has been split according to the result of f.

In order to select the state s and basis state function
f to use in producing a refined structure S’ from S,
we define a factored prior

p(S) x k¥

on the structure S. The posterior probability of a
structure S given the data x is then proportional to
[I,cs #7s(z), which can be computed in
closed form. Thus, the gain in p(S|z) due to splitting
state s using basis state function f is

ACHED
p(S|z)
o HS’EE’ KYs ()
a [Lies £7s(@)
Hs/ezf KYsos (T)
ks ()
We refine the structure greedily, choosing the refine-

ment with the highest gain, until no further gain re-
sults.

Gain(S — §') =




5 Basis State Functions for C-PCIMs

The modeling power of a family of C-PCIM is deter-
mined by the basis B of state functions selected. The
basis needs to capture the aspects of the history that
determine the intensities of events, and need to dis-
tinguish labels with different intensities. In addition,
the basis needs to allow the sharing of parameters be-
tween labels to allow for generalization of event be-
havior between labels. This is particularly important
in problems where some labels occur rarely. We will
give basis state functions that take advantage of known
structure in the label sets in order to do this. We first
describe how we capture label space structure through
label attributes, and then give an ontology of basis
state functions that make use of this structure.

5.1 Structured Labels

When the labels have a known structure, we will take
advantage of it in order to define models that can learn
dependencies between events with labels that may be
rare, or even not occur in the training data. For ex-
ample, in data center system event logs, events may
be labeled with the machine on which the event took
place and the type of the event. An event of type
disk-sector-error may occur on machine 9,045.
While we may have never observed a disk sector error
on a different machine 6,732, we may wish to allow
the structure learning procedure to determine whether
the behavior of disk-sector—-error events generalizes
across machines. Thus, we would like the basis state
functions to be able to query for the message repre-
sented by a label independently of the machine.

In general, we assume that the label set £ has a
set of attributes A, where each attribute a € A
can take values in a set V,. Label [ takes on
value v,(l) of attribute a. In the example above,
A = {machine-id,event-type}, and Vjachine-id
ranges over all the machines in the data center, and
Vevent-type Tanges over all possible events. If prior in-
formation about the labels is available, it may be en-
coded through label attributes. For example, if we
know a priori that machines in the data center are
grouped into database servers and web servers, we
could introduce an attribute server-type that takes
on values Vserver-type{database,web}. On the other
hand, we can access label identity as an attribute
by using the attribute identity with Vigentity = £,
Vigentity(l) = [. In the descriptions below, we will
therefore always assume that there are label attributes
defined. In cases where no structural information is
available we will simply use A = {identity}. In par-
ticular, the basis state functions for PCIMs [8] do not
explicitly use label attributes, but can be described as

using this trivial identity attribute.

5.2 Types of Basis State Functions

Allowing large classes of basis state functions that de-
pend arbitrarily on both the history and time as well
as the label is difficult computationally. We therefore
restrict attention to three specific classes of basis state
functions in this paper.

History Basis State Functions: A history basis
state function f(I,t,y) depends only on the history y
and the time ¢ and not the label [. In this paper,
we concentrate on a particular class of history basis
state functions f,. . 4, 4, (I, ¢, y) indexed by an attribute
a € A, avalue v € V, and time offsets do > di; > 0,
and given by

1 if 3, ey:
. t'E[t—ant_dl)
fa,v,dl,dz (l,t,y) - A Ua(l,) =V

0 otherwise.
That is fg v,dy,d5 (1, t,y) tests if the history y contains

an event in the time window between d; and ds before
t, whose label has the value v of attribute a.

Example. In modeling web search query
logs, the history basis state function
fquery-category,Health,l hr,1 day(l7 ta y) tests whether

y contains a query whose query-category attribute
is Health between 1 hour and 1 day before .

Label Basis State Functions: A label basis state
function f(l,t,y) depends only on the label I and not
the time ¢ nor the history y. A label basis state func-
tion is fo(l,,y) is indexed by an attribute a € A, a
value v € V, and is given by

1 ifog(l)=vw

0 otherwise.

fa,v(latay) = {

That is fa (1, ¢, y) simply tests whether the attribute
a of label [ has value v.
label  basis

fquery—category,Health(17 t, y) tests
query-category attribute Health.

state  function
whether [ has

Example. The

Match Basis State Functions: A match basis

function f,. 4, 4, (1, t,y) is given by

1 if 3@ ey:
tclt—dy,t—d
fa,d1,d2 (lvtay) = [/\ ’Ua(2l/) _ ’U(ll)(l)

0 otherwise.



In other words, the match basis state function tests
whether the history y contains an event in the time
window between d; and d, before ¢, whose label
matches [ in attribute a. This kind of basis state
function is useful in modeling repetitions of a given
attribute in an event stream.

Example. The basis state function
fquery-category,1 hr,1 day(l,t,y) tests whether y con-
tains a query with the same query-category
attribute as [ between 1 hour and 1 day before t.

We note that history basis state functions are equiva-
lent to the history basis functions of PCIMs [8] when
the attribute a is restricted to be the identity at-
tribute described above. Thus, a PCIM can be rep-
resented as a C-PCIM that uses only the identity
attribute, and whose state function uses a tree that
first splits based on every possible label basis state
function, and then uses only history basis state func-
tions. We use the term Attribute PCIM (A-PCIM)
to refer to the slight generalization of PCIMs that al-
lows the history basis state functions to use arbitrary
attributes.

6 Experimental Results

In this section we evaluate the value of C-PCIMs on
two real world tasks with large structured label spaces.
The first is to model the query behavior of web search
users, and the second is to model the behavior of a
cluster of machines in a commercial data center.

In order to evaluate the value of C-PCIMs in mod-
eling event streams with large label spaces, we com-
pare C-PCIMs to PCIMs. To explore the gains due
to conjoint modeling as opposed to the use of richer
label attributes in modeling, we also compare to A-
PCIMs. It has been shown that PCIMs have better
computational and predictive performance in compar-
ison to Poisson networks [15], which model conditional
intensity functions using generalize linear models. We
therefore do not compare to Poisson networks and
other closely related approaches that use regression
techniques to model the conditional intensity func-
tions [23, 24]. CTBNs with “toggle” variables mod-
eling events and latent variables modeling dynamics
are a natural baseline for continuous time event mod-
eling. We explored building such models using the
CTBN-RLE toolkit [20], but the current version does
not scale to these data sets [19].

6.1 Web Search Query Behavior

Queries issued by the users of a major commercial
search engine were used to generate a training set
consisting of approximately 100,000 queries collected
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Figure 3: Test set log likelihood of PCIM, A-PCIM,
and C-PCIM for the search query data, as a function
of training set size.

from approximately 6,000 users over a two month pe-
riod and a test set consisting of approximately 170,000
queries from approximately 6,000 users over the next
month. There was no user or time overlap between the
training and test sets. The test set was restricted to
contain only users whose query history was available
for at least two weeks. The queries were automat-
ically mapped to a two level hierarchy of categories
such as Health & Wellness/Mental Health. Thus,
our label set consisted of the 476 categories in the hi-
erarchy, while the 37 coarse level categories were used
as a second (i.e. non-identity) attribute, which we
name coarse. All labels occurred in the training set.

We use a product of terms of the form of equation (1),
one per user, to model the data, choosing not to model
inter-user dependencies. We investigated three model
classes for modeling users’ query behavior. First, we
built PCIMs which used only history basis state func-
tions using the identity attribute (i.e. the history
basis functions only tested for the occurrence of spe-
cific labels in the history). Second, we built A-PCIMs
that were also allowed to use the coarse attributes in
the history basis functions. Third, we built C-PCIMs
that also used label basis state functions that used
the identity and coarse attributes and match state
functions that used the identity attribute. Match
state functions using the coarse attribute were not
allowed due to reduce the computation time. All mod-
els used a prior with = 1/365 and 3 = 1 day, and
% = 0.001. The history and match basis state functions
used the time windows [t—1 hr,¢), [t—1 day,t—1 hr),
[t — 7 days,t — 1 day), and (oco,t — 7 days). All mod-
els took less than 12 hours to train on a single 3 GHz
workstation.

Figure 3 shows the test set log likelihood of all three



models as the amount of training data is varied. The
log likelihoods of the PCIM and A-PCIM are nearly
indistinguishable, while the C-PCIM performs much
better, especially with smaller amounts of training
data. This is the expected behavior, since C-PCIMs
are better able to share parameters. Note that since
C-PCIMs, A-PCIMs, and PCIMs define the same fam-
ily of marked point processes, we expect them to ap-
proach the same predictive performance as the training
set grows. While the gap between C-PCIMs and A-
PCIMs/PCIMs does shrink as the amount of training
data grows, C-PCIMs have higher training set like-
lihood even when all the training data is used. We
examined the likelihoods assigned to each test event
by the C-PCIM and the A-PCIM trained with the full
training set, in order to determine the statistical sig-
nificance of this gap. We grouped the per-event like-
lihoods by label, and found that the C-PCIM signif-
icantly outperforms the A-PCIM (p = 0.01) on 391
out of the 436 labels observed in the test set, while
under-performing the A-PCIM on none, according to
a paired sign test.

To understand the practical impact of the likeli-
hood gains, we used importance sampling [8] to fore-
cast whether each test user would issue Health &
Wellness/Mental Health queries on the eighth day
in the test set given their behavior in the first week.
Precision-recall curves for the three models are given
in Figure 4. Although there are only eight test users
who issued these queries on that day, C-PCIMs make
much better predictions than A-PCIMs and PCIMs.
Such predictions are useful in applications such as tar-
geted display (banner) advertising, where an adver-
tiser may only wish their advertisements to be shown
to web users who are interested in a topic related to
their advertisement. The assumption is that users who
will issue a query in a particular category during the
day may be more receptive to advertisements related
to that category during that day.

6.2 Data Center Machine Behavior

System logs from a cluster of machines in a commer-
cial data center were used to generate a data set of
about 300,000 logged system events from 71 machines,
over the period of a month. There were 221 possible
messages. This gave 15,691 possible labels, each of
which was a machine-message combination. Each ma-
chine belonged to one of four machine types that was
known a priori. Thus, each label had four attributes
{machine, message,machine-type, identity}. The
first two weeks of data was used for training, and the
rest for testing.

We use a product of terms of the form of equation (1),
one per machine, to model the data, choosing to not

100%
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Figure 4: Precision-Recall curves of PCIM, A-

PCIM, and C-PCIM for predicting Health &
Wellness/Mental Health queries.

allow inter-machine dependencies. We experimented
with using the power of C-PCIMs to allow machine
specific dependencies. In particular, we compare a
PCIM and a C-PCIM that treat machines identically
with a PCIM and a C-PCIM that allow machine spe-
cific dependencies. Non-identical modeling of ma-
chines may be useful if, for example, a certain machine
is old is more prone to failures. Models that treat ma-
chines identically are allowed to use only the message
attributes of labels. The PCIM that treats machines
identically is forced to use the same conditional inten-
sity function for all labels that agree on their message
attributes, pooling data from these labels during train-
ing. Note that in this setting, PCIMs and A-PCIMs
are equivalent in both the identical machine and non-
identical machine cases.

All models used the prior @ = 0.01, f = 1.0 day, and
k = 0.01. The C-PCIM trees were truncated at a
depth of 30 to save computation. The history and
match basis state functions used the time windows [t —
20 min, ¢) and [t — 1 hr,¢ — 20 min). The models took
less than 2 hours to train, except the non-identical
machine PCIM, which learned a separate tree for each
of the 5,307 labels present in the training data. This
took less than 12 hours.

Figure 5 shows the log likelihood of events after the
first two weeks given the events of the first two weeks
for all four models. Note the log likelihoods can be
positive since the likelihoods are density values and
not probabilities. It can be seen that building separate
PCIMs for each label, without pooling data across ma-
chines for each message results in a large loss in test
set likelihood, due to data sparsity. Both C-PCIMs
outperform the PCIMs. Note that the identical ma-
chine C-PCIM only has access to message information,
and therefore does not have access to any label struc-
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Figure 5: Test set log likelihood of PCIMs and C-
PCIMs that treat machines as identical, and PCIMs
and C-PCIMs that do not, for the data center event
log data.

ture. However, it gives a large gain over PCIMs due
to the use of match basis state functions, which model
repeated events. The ability of the non-identical ma-
chine C-PCIM to leverage label structure to learn de-
pendencies specific to machines or machine types leads
to a further gain in likelihood. Unfortunately, events
of interest such as machine failures are very rare in
this data set, so that there are not enough test cases

to obtain statistically significant comparisons between
C-PCIMs and PCIMs.

7 Conclusions

We have introduced Conjoint PCIMs, and shown how
they improve upon PCIMs in modeling the dynam-
ics of two real world event streams with large struc-
tured label sets. We have shown how conjoint model-
ing across labels allows better models to be built from
sparse data, and how C-PCIMs can leverage known
structure in the label space. We have also shown that
the predictive gains of C-PCIMs are not achieved by
Attribute PCIMs that leverage label structure but do
not use conjoint modeling.

While it would be of interest to compare the per-
formance of C-PCIMs with other approaches such as
CTBNs, limitations in the currently available CTBN
implementation prevented us from doing so. It would
also be interesting to investigate approaches that ex-
tend CTBNs to allow them to take advantage of label
structure in the manner of C-PCIMs. Another future
direction of interest is to investigate other extensions
of PCIMs that allow parameter sharing across labels,
such as hierarchical Bayesian approaches or regular-
ization approaches.
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