
On Approximate Inference of Dynamic Latent Classification Models
for Oil Drilling Monitoring

Shengtong Zhong
Department of Computer and Information Science
Norwegian University of Science and Technology

7491 Trondheim, Norway
shket@idi.ntnu.no

Abstract

We have been working with dynamic data
from an oil production facility in the North
sea, where unstable situations should be i-
dentified as soon as possible. Monitoring in
such a complex domain is a challenging task.
Not only is such a domain typically volatile
and following non-linear dynamics, but sen-
sor input to the monitoring system can al-
so often be high dimensional, making it dif-
ficult to model and classify the domain’s s-
tates. Dynamic latent classification model-
s are dynamic Bayesian networks capable of
effective and efficient modeling and classifi-
cation. An approximate inference algorithm
utilizing Gaussian collapse has been tailor-
made for this family of models, but the ap-
proximation’s properties have not been ful-
ly explored. In this paper we compare al-
ternatives approximate inference methods for
the dynamic latent classification model, in
particular focusing on traditional sampling
techniques. We show that the approximate
scheme based on Gaussian collapse is compu-
tationally more efficient than sampling, while
offering comparable accuracy results.

1 Introduction

In the oil drilling, monitor the complex process and
identify the current system state is actually very dif-
ficult. Monitoring the complex process often involves
keeping an eye on hundreds or thousands of sensors to
determine whether or not the process is stable. We re-
port results on an oil production facility in the North
sea, where unstable situations should be identified as
soon as possible [12]. The oil drilling data that we
are considering, consisting of some sixty variables, is
captured every five seconds. The data is monitored in

real time by experienced engineers, who have a num-
ber of tasks to perform ranging from understanding
the situation on the platform (activity recognition) via
avoiding a number of either dangerous or costly situa-
tions (event detection), to optimization of the drilling
operation. The variables that are collected cover both
topside measurements (like flow rates) and down-hole
measurements (like, for instance, gamma rate). For
the discussions to be concrete, we will tie the develop-
ment to the task of activity recognition in this paper.
The drilling of a well is a complex process, which con-
sists of activities that are performed iteratively as the
length of the well increases, and knowing which ac-
tivity is performed at any time is important for the
further event detection.

Motivated by this problem setting, a generative mod-
el called dynamic latent classification models (dLCM)
[12] for dynamic classification in continuous domains
is proposed to help the drilling engineers by automati-
cally analyzing the data stream and classify the situa-
tion accordingly. Dynamic latent classification models
are Bayesian networks which could model the complex
system process and identify its system state.

A dynamic latent classification model can be seen as
combining a näıve Bayes model with a mixture of fac-
tor analyzers at each time point. The latent variables
of the factor analyzers are used to capture the state-
specific dynamics of the process as well as modeling
dependencies between attributes. As exact inference
for the model is intractable, an approximate inference
scheme based on Gaussian collapse is proposed in our
previous study [12]. Although the previous experi-
ments demonstrated that the proposed approximate
inference is functioned well the learning of dynamic
latent classification models as well as the classification
work, we further investigate the approximation’s prop-
erties by introducing alternative sampling techniques.

The remaining of the paper is organized as follows. In
Section 2, we introduce the detail of dLCM. The im-
portance of Gaussian collapse in the inference of dLCM

is discussed in Section 3. Next, alternative sampling
techniques are proposed for dLCM in Section 4. After
the experiment results are illustrated and discussed in
Section 5, the conclusion of the paper is presented in
Section 6.

2 Dynamic Latent Classification

Models

Dynamic Latent classification models [12] are dynamic
Bayesian networks, which can model the complex sys-
tem process and identify its system state. The com-
plex system process is highly dynamical and complex,
which makes it difficult to model and idetentify with
the static models and standard dynamic model. The
framework of dLCM is specified incrementally by ex-
amining its expressivity relative to the oil drilling data.

The dLCM is established from näıve Bayes model (N-
B), which is one of the simplest static models. In the
first step, temporal dynamics of the class variables (a
first order Markov chain) is added as considerable cor-
relation between the class variable of consecutive time
slices are evidenced from the oil drilling data [12]. This
results in a dynamic version of näıve Bayes, which is al-
so equivalent to a standard first order hidden Markov
model (HMM) shown in Figure 1, where Ct denotes
the class variable at time t and Y t

i denotes the i-th at-
tribute at time t. This model type has a long history
of usage in monitoring, see e.g. [10].

C
t−1 Ct

Y
t−1
1

Y
t−1
2

Y
t−1
3

Y
t−1
4 Y t

1
Y t

2
Y t

3
Y t

4

Figure 1: An example of dynamic version of näıve
Bayes with 4 attributes using 2-time slice dynam-
ic Bayesian networks representation (2TDBN). At-
tributes are assumed to be conditionally independent
given the class variable.

This model is described by a prior distribution over
the class variable P (c0), a conditional observation dis-
tribution P (yt|ct), and transition probabilities for the
class variable P (ct|ct−1); we assume that the mod-
el is stationary, i.e., P (yt|ct) = P (yt−1|ct−1) and
P (ct|ct−1) = P (ct+1|ct), for all t. For the continuous
observation vector, the conditional distribution may
be specified by a class-conditional multivariate Gaus-
sian distribution with mean µct and covariance matrix
Σct , i.e., Y |{Ct = ct} ∼ N(µct ,Σct)

In a standard HMM, it assumes that the class vari-

able and attributes at different time points are inde-
pendent given the class variables at the current time,
which is violated in many real world setting. In our
oil drilling data, there is also a strong correlation be-
tween attributes given the class [12]. Modeling the
dependence between attributes is then the next step
in creating the dLM.

Following [7], we introduce latent variables to en-
code conditional dependence among the attributes.
Specifically, for each time step t we have the vector
Zt = (Zt

1, . . . , Z
t
k) of latent variables that appear as

children of the class variable and parents of all the at-
tributes (see Figure 2). It can be seen as combining
the NB model with a factor analysis model at each
time step.

C
t−1 C

t

Z
t−1
1

Z
t−1
2 Zt

1
Zt

2

Y
t−1
1

Y
t−1
2

Y
t−1
3

Y
t−1
4 Y

t

1
Y

t

2
Y

t

3
Y

t

4

Figure 2: An example model by adding latent vari-
ables to dynamic version of näıve Bayes using 2TDB-
N, where the dimension of latent space is 2 and the
dimension of attribute space is 4. In each time step,
the conditional dependencies between the attributes
are encoded by the latent variables (Zt

1, . . . , Z
t
k).

The latent variableZt is assigned a multivariate Gaus-
sian distribution conditional on the class variable and
the attributes Y t are assumed to be linear multivari-
ate Gaussian distributions conditional on the latent
variables:

Zt|{Ct = ct} ∼ N(µct ,Σct),

Y t|{Zt = zt} ∼ N(Lzt +Φ,Θ),

whereΣct andΘ are diagonal covariance matrix and L

is the transition matrix, Φ is the offset from the latent
space to attribute space; note that the stationarity
assumption encoded in the model.

In this model, the latent variables capture the depen-
dence between the attributes. They are conditionally
independent given the class but marginally dependen-
t. Furthermore, the same mapping, L, from the latent
space to the attribute space is used for all classes, and
hence, the relation between the class and the attributes
is conveyed by the latent variables only.

At this step, the temporal dynamics of the model is as-
sumed to be only captured at the class level. When the
state specification of the class variable is coarse, then
this assumption will rarely hold. This assumption does
not hold in our oil drilling data, as the conditional cor-
relation of the attribute in successive time slices is evi-
dent [12]. we address this by modeling the dynamics of
the system at the level of the latent variables. The s-
tate specific dynamics is encoded by assuming that the
latent variable at the current time slice follows a lin-
ear Gaussian distribution conditioned on previous time
slice. Specifically, we encode the state specific dynam-
ics by assuming that the multivariate latent variable
Zt follows a linear Gaussian distribution conditioned
on Zt−1, and the transition dynamics between latent
variable is denoted by a diagonal matrix Act :

Zt|{Zt−1 = zt−1, Ct = ct} ∼ N(Actz
t−1,Σct)

A graphical representation of the model is given in
Figure 3.

C
t−1 Ct

Z
t−1

1
Z

t−1

2 Zt

1
Zt

2

Y
t−1
1

Y
t−1
2

Y
t−1
3

Y
t−1
4 Y t

1
Y t

2
Y t

3
Y t

4

Figure 3: An example model by incrementally adding
dynamics on latent variables using 2TDBN, where the
dimension of latent space is 2 and the dimension of
attribute space is 4. The state specific dynamics are
encoded at the level of the latent variables.

A discrete mixture variable M is further introduced to
the model at each time slice for the purpose of reduc-
ing the computational cost while maintaining the rep-
resentational power [12]. Similar situation is done by
[7] for static domains, and in the dynamic domains can
be seen from [3, 6] where a probabilistic model called
switching state-space model is proposed that combin-
ing discrete and continuous dynamics. In this case,
the mixture variable follows a multinomial distribution
conditioned on the class variable. and the attributes
Y t follow a multivariate Gaussian distribution condi-
tioned on the latent variables and the discrete mixture
variable,

M t|{Ct = ct} ∼ P (M t|Ct = ct),

Y t|{Zt = zt,M t = mt} ∼ N(Lmtzt +Φmt ,Θmt),

where 1 ≤ mt ≤ |sp (M)| (|sp (M)| denotes the dimen-
sion of variable M space), P (M t = mt|Ct = ct) ≥ 0

and
∑|sp(M)|

mt=1 P (M t = mt|Ct = ct) = 1 for all 1 ≤
ct ≤ |sp (C)|, Φmt is the offset from the latent space
to attribute space.

The final model is then called dynamic latent classi-
fication model which is shown in Figure 4. The dy-
namic latent classification model is shown to be effec-
tive and efficient through the experiment with our oil
drilling data, and the significant improvement is al-
so demonstrated when comparing dLCM with static
models (such as NB or decision tree) and HMM [12].

C
t−1 Ct

Z
t−1
1 M

t−1 Z
t−1
2 Zt

1 M t Zt

2

Y
t−1
1

Y
t−1
2

Y
t−1
3

Y
t−1
4 Y t

1
Y t

2
Y t

3
Y t

4

Figure 4: An example of dynamic latent classification
model using 2TDBN, where the dimension of latent
space is 2 and the dimension of attribute space is 4.

3 Approximate inference in dLCM

The exact inference for dLCM is intractable. To make
dLCM applicable and effective in practice, approxi-
mate inference is then proposed.

3.1 Intractability of exact inference in dLCM

Seen from the dLCM in Figure 4, an equivalent prob-
abilistic model is

p(y1:T , z1:T ,m1:T , c1:T) =

p(y1|z1,m1)p(z1|c1)p(m1|c1)p(c1) ·
T∏

t=2

p(yt|zt,mt)p(zt|zt−1, ct)p(mt|ct)p(ct|ct−1).

In dLCM, exact filtered and smoothed inference is
shown to be intractable (scaling exponentially with
T [8]) as neither the class variables nor the mixture
variables are observed: At time step 1, p(z1|y1) is

a mixture of |sp (C)| · |sp (M)| Gaussian. At time-
step 2, due to the summation over the classes and
mixture variables, p(z2|y1:2) will be a mixture of

|sp (C)|
2
·|sp (M)|

2
Gaussian; at time-step 3 it will be a

mixture of |sp (C)|
3
· |sp (M)|

3
Gaussian and so on un-

til the generation of a mixture of |sp (C)|T · |sp (M)|T

Gaussian at time-point T . To control this explosion
in computational complexity, approximate inference
techniques are adopted to the inference of dLCM.

3.2 Approximate inference: Forward pass

The structure of the proposed dLCM is similar to
the linear dynamical system (LDS) [2], the stan-
dard Rauch-Tung-Striebel (RTS) smoother [9] and
the expectation correction smoother [3] for LDS pro-
vide the basis for the approximate inference of dL-
CM. As for the RTS, the filtered estimate of dLCM
p(zt,mt, ct|y1:t) is obtained by a forward recursion,
and then following a backward recursion to calculate
the smoothed estimate p(zt,mt, ct|y1:T). The infer-
ence of dLCM is then achieved by a single forward
recursion and a single backward recursion iteratively.
Gaussian collapse is incorporated into both the for-
ward recursion and the backward recursion to form
the approximate inference. The Gaussian collapse in
the forward recursion is equivalent to assumed density
filtering [4], and the Gaussian collapse in the backward
recursion mirrors the smoothed posterior collapse from
[3].

During the forward recursion of dLCM, the filtered
posterior p(zt,mt, ct|y1:t) is computed with a recursive
form. By a simple decomposition,

p(zt,mt, ct|y1:t) = p(zt,mt, ct,yt|y1:t−1)/p(yt|y1:t−1)

∝ p(zt,mt, ct,yt|y1:t−1).

Dropping the normalization constant p(yt|y1:t−1),
p(zt,mt, ct|y1:t) is proportional to the new joint prob-
ability p(zt,mt, ct,yt|y1:t−1), where

p(zt,mt, ct,yt|y1:t−1) = p(yt, zt|mt, ct,y1:t−1)·

p(mt|ct,y1:t−1)p(ct|y1:t−1).
(1)

To build the forward recursion, a recursive form for
each of the factors in Equation 1 is required. Giv-
en the filtered results of the previous time-step, the
recursive form for each of the factors are shown to
be feasible [12]. On the way to devise the recursive
form, one term p(zt−1|mt−1, ct−1,y1:t−1) is required,
which can be directly obtained since it is the filtered
probability from the previous time step. However, the

number of mixture components of p(zt−1|yt−1) is in-
creasing exponentially over time as we discussed ear-
lier, so is the case for p(zt−1|mt−1, ct−1,y1:t−1). In
our Gaussian collapse implementation [12], the ter-
m p(zt−1|mt−1, ct−1,y1:t−1) is collapsed into a single
Gaussian, parameterized with mean νmt−1,ct−1 and co-
variance Γmt−1,ct−1 , and then propagate this collapsed
Gaussian for next time slice. With this approximation,
the recursive computation of the forward pass becomes
tractable.

3.3 Approximate inference: Backward pass

Similar to the forward pass, the backward pass al-
so relies on a recursion computation of the smoothed
posterior p(zt,mt, ct|y1:T). In detail, p(zt,mt, ct|y1:T)
is computed from its smoothed result of the previous
step p(zt+1,mt+1, ct+1|y1:T), together with some oth-
er quantities obtained from forward pass. The first s-
moothed posterior is p(zT ,mT , cT |y1:T), which can be
directly obtained as it is also the last filtered posterior
from the forward pass. To compute p(zt,mt, ct|y1:T),
factorize it as

p(zt,mt, ct|y1:T)

=
∑

mt+1,ct+1

p(zt,mt, ct,mt+1, ct+1|y1:T)

=
∑

mt+1,ct+1

p(zt|mt, ct,mt+1, ct+1,y1:T) ·

p(mt, ct|mt+1, ct+1,y1:T)p(mt+1, ct+1|y1:T).

Due to the fact that
zt⊥⊥{yt+1:T ,mt+1, ct+1}|{zt+1,mt, ct}, the term
p(zt|mt, ct,mt+1, ct+1,y1:T) can be found from

p(zt|mt, ct,mt+1, ct+1,y1:T)

=

∫
z
t+1

p(zt|zt+1,mt, ct,y1:t) ·

p(zt+1|mt, ct,mt+1, ct+1,y1:T)dzt+1.

To complete the backward recursive form, two es-
sential assumptions are further made in the back-
ward pass that makes the approximate inference
applicable and effective. The first assumption
is to approximate p(zt+1|mt, ct,mt+1, ct+1,y1:T) by
p(zt+1|mt+1, ct+1,y1:T) [3]. This is due to that al-
though {mt, ct} 6⊥⊥zt+1|y1:T , the influence of {mt, ct}
on zt+1 through zt is ’weak’ as zt will be mostly influ-
enced by y1:t. The benefit of this simple assumption
lies in that p(zt+1|mt+1, ct+1,y1:T) can be directly ob-
tained from the previous backward recursion. Mean-
while p(zt+1|mt+1, ct+1,y1:T) is a Gaussian mixture
whose components increase exponentially in T − t.

The second assumption is also a Gaussian collapse pro-
cess. p(zt+1|mt+1, ct+1,y1:T) is collapsed into a single
Gaussian and then pass this collapsed Gaussian for the
next step. This will guarantee that the back propa-
gated term p(zt|mt, ct,y1:T) will be Gaussian mixture
with fixed |sp (C)| · |sp (M)| components at next time
step. With this Gaussian collapse process at each time
slice, a tractable recursion in backward pass is estab-
lished.

3.4 The importance of approximate inference

The exact inference is not applicable in practise as
its computation cost is increasing exponentially over
time. The approximate inference is then essential to
dLCM. Gaussian collapse is adopted during building
the recursive form for both forward and backward pass.
At the same time, p(zt+1|mt, ct,mt+1, ct+1,y1:T) is al-
so approximated by p(zt+1|mt+1, ct+1) in dLCM. As
the approximations are made within the inference, the
quality of the overall learning and inference for dL-
CM is rather sensitive to these approximations. Our
experimental results [12] showed that the overall per-
formance of dLCM is satisfactory, which indicate that
the chosen approximations are reasonable.

Even though the proposed approximate inference in
dLCM is satisfactory, is there any improvement space
with alternative approximation methods? With this
question in mind, we decide to investigate the ap-
proximation’s properties by incorporating new approx-
imation method. The traditional sampling techniques
(e.g., [5]) are commonly used in a similar approxima-
tion situation. Next section we will briefly introduce
sampling technique, and then we will explain how it is
integrated in dLCM. Meanwhile the approximation of
p(zt+1|mt, ct,mt+1, ct+1,y1:T) by p(zt+1|mt+1, ct+1)
is kept unchanged.

In general, we will replace Gaussian collapse by sam-
pling in the approximate inference of dLCM, and fur-
ther investigate the effectiveness and efficiency of this
proposal through a comparison experiment between
original Gaussian collapse based dLCM and sampling
techniques based dLCM.

4 Sampling

4.1 Background

The sampling is to select a subset of samples from
within a population to estimate the characteristics of
the original population. There is a commonly known
tradeoff in sampling. When less samples are select-
ed from within a population, which means the sam-
pling process takes shorter time, the estimation of the

characteristics to the original population is relatively
worse. On the other hand, if more samples are select-
ed from within the same population, which of course is
much more time consuming, the characteristics of the
original population is better estimated. The efficien-
cy (time consuming) and effectiveness (characteristics
estimation) are the essential concerns in the sampling
techniques. In general, more samples should be select-
ed within the tolerable time, and the better estimation
of characteristics of the population can be expected.

This feature of traditional sampling techniques makes
it attractive to the approximate inference of dLCM,
a balance between efficiency and effectiveness is ex-
pected to be achieved according to application require-
ment. Meanwhile sampling can approximate any dis-
tribution as long as the sample number is sufficient.
Sampling is expected to replace the Gaussian collapse
for the approximation in the both forward and back-
ward pass. We introduce particle filtering next, which
will further motivate our discussion on the utilizations
detail of the sampling in the inference of dLCM.

4.2 Particle Filtering

Particle filtering (PF) [1] is a technique for implement-
ing a recursive Bayesian filter by Monte Carlo simu-
lation, which is an efficient statistical method to esti-
mate the system state. The Monte Carlo simulation
relies on repeated random sampling techniques.

In particle filtering, let a weighted particle set
{(stn,π

t
n)}

N
n=1 at each time t denotes an approximation

of required posterior probability of the system state.
Each of N particles has the state stn and its weight
πt
n, the weights are normalized such that

∑
n π

t
n = 1.

The particle filtering has three operation stages: sam-
pling (selection), prediction and observation. In the
sampling stage, N particles are chosen from the prior

probability according to the set {(s
(t−1)
n ,πt−1

n)}Nn=1.
Then predict the state of the chosen particles by the
dynamic model p(st|st−1). In observation stage, the
predicted particles are weighted according to observa-
tion model p(yt|st) . After obtaining the weights of
particles, the state at time t can be estimated based
on the weighted particle set.

4.3 Sampling in the dCLM

The sampling process that we required for the infer-
ence of dCLM is similar to the PF. In the forward pass,
we know that the mixture components of p(zt−1|yt−1)
is increasing exponentially over time in the exac-
t inference. Instead of a recursive approximation
on p(zt−1|mt−1, ct−1,y1:t−1) in the Gaussian collapse
scheme, an recursive approximation on p(zt−1|y1:t−1)
by sampling is adopted. With the obtained approxi-

mated distribution p(zt−1|y1:t−1) at time slice t−1, N
weighted samples {(st−1

n ,πt−1
n)}Nn=1 are selected from

this approximated distribution. These selected sam-
ples are propagated to the next time slice t with a lin-
ear transition dynamicsAct . As the discrete class vari-
able Ct has the size of |sp (C)|, then each of the select-
ed samples will become |sp (C)| new samples. These
|sp (C)| ·N propagated samples are further updated by
the observation yt. The updating rule is the same as
the Kalmar filter updating [11]. Due to the mixture
component has size of |sp (M)|, each of these propa-
gated samples will become |sp (M)| new samples again.
In general, the N selected samples from time slice t−1
will become |sp (C)| · |sp (M)| · N samples at time s-
lice t and its weight are updated accordingly. The

weighted sample set {(f t
n,γ

t
n)}

|sp(C)|·|sp(M)|·N
n=1 is then

the approximation to p(zt|y1:t). For next time step re-
cursion, a new weighted sample set {(stn,π

t
n)}

N
n=1 con-

taining N samples will be selected from the approxi-
mated p(zt|y1:t). The recursive process is summarized
in Algorithm 1.

Algorithm 1 Sampling in the forward pass

1: for t = 2 : T do
2: Select N samples from the previous appx-

oximated distribution p(zt−1|y1:t−1) to form a
weighted sample set {(st−1

n ,πt−1
n)}Nn=1

3: Propagate these selected samples to the next
time slice t by a transition dynamics Act

4: Update the propagated samples by the obser-
vation Y t.

5: Then the updated samples form a new weight-

ed sample set {(f t
n,γ

t
n)}

|sp(C)|·|sp(M)|·N
n=1 , which is

an approximation of p(zt|y1:t)
6: end for

In the backward pass, with a similar sampling pro-
cess as the forward pass, samples are firstly select-
ed from the approximated distribution p(zt+1|y1:T).
p(zt+1|y1:T) is approximated by a weighted sample
set denoted as {(bt+1

n ,ρt+1
n)}n=1. Next, the select-

ed samples are then back-propagated to the previous
time slice t (which is the next step of the backward
pass) with the reverse transition dynamics of At

c. The
back-propagated samples is later updated by the ob-
servation Y t−1 [11]. Similar to the forward pass, the
approximation to p(zt|y1:T). p(zt|y1:T) is a weighted

sample set {(gt
n, τ

t
n)}

|sp(C)|·|sp(M)|·N
n=1 . For the recursive

calculation of next time slice, a new weighted sample
set {(btn,ρ

t
n)}

N
n=1 containing N samples will be select-

ed from this approximated distribution. The required
term p(zT |cT ,y1:T) at the beginning of the backward
pass is also the last time step result from the forward

pass, which indicates that {(gT
n , τ

T
n)}

|sp(C)|·|sp(M)|·N
n=1 is

the same sample set as {(fT
n ,γT

n)}
|sp(C)|·|sp(M)|·N
n=1 . Fi-

nally the approximate inference for dLCM is complete-
ly established with sampling technique based scheme.

The number of samples selected from the approximat-
ed distribution at each step is fixed which is dependen-
t on the time consumption requirement and estima-
tion quality requirement of corresponding application.
There is a balance need to be addressed according to
the practical application requirement. Generally, the
more samples we select, the more time it costs while
the estimation quality is better.

In the discussion of this section, the approximate in-
ference of dLCM based on sampling is established by
mimicking the particle filtering process both in the for-
ward and backward pass. To investigate the effective-
ness and efficiency of sampling based dLCM, a com-
parison experiments test will be conducted in the next
section.

5 Experiment Results

In this section, the comparison experiments on simula-
tion data and oil drilling data are conducted and their
results are discussed.

5.1 Experiments on simulation data

A set of simulation data is firstly generated from dL-
CM, and we investigate the classification accuracy and
time-consumption between Gaussian collapse scheme
and sampling scheme.

5.1.1 Experiments settings on simulation
data generation

The simulation data-set are generated from dLCM
with parameters that is chosen by a “semi random”
process. The model parameters of dLCM have two
parts: model structure and model parameters with
fixed model structure. For each time slice, the model
structure is decided by four factors: the size of class
variable C (activity state), the dimension of laten-
t variable space Z, the dimension of attribute space
Y and the size of mixture components M . These val-
ues are fixed as described in Table 1. After choosing
the model structure, its associated model parameters
were randomly generated. The above process of choos-
ing model structure and model parameters together is
the ”semi random” process. We then generate a data
set with this model.

For convenience we call the model structure and its
parameters as model parameters in the remaining of
the paper. The generated data set and the model pa-
rameters are used as true model for the classification
test purpose next. A comparison experiment between

data |sp (C)| |sp (M)| |sp (Z)| |sp (Y)| T
set1 2 1 12 6 500
set2 2 2 18 9 1000

Table 1: The simulation data set with its model struc-
ture information.

Gaussian collapse and sampling is then conducted.

5.1.2 Results and discussion

The comparison experiment is conducted with both
Gaussian collapse based and sampling based dLCM.
Among sampling based scheme, there are three cho-
sen sample sizes 40, 200, 1000 respectively. The classi-
fication results on simulation set1 and set2 are sum-
marized in Table 2. The classification accuracy re-
sults scheme are recorded with the average results of
ten runs of each scheme, and it shows that Gaus-
sian collapse based dLCM performs better than three
sampling based dLM in both set1 and set2. Among
sampling based scheme, scheme with larger sample
size achieves better classification accuracy in a general
sense.

scheme (samples) set1/accuracy set2/accuracy
Gaussian collapse 99.60% 99.90%
Sampling (40) 96.75% 95.55%
Sampling (200) 97.60% 97.95%
Sampling (1000) 97.75% 98.40%

Table 2: The average classification accuracy on simu-
lation data set with Gaussian collapse based and sam-
pling based (varying the number of samples) dLCM.

After investigating the effectiveness of each scheme,
we continue to discuss the efficiency. The efficiency of
each scheme is evaluated by the average time-cost of
ten run that is required to accomplish the classification
task, and the time-cost detail is shown in Table 3. In
set1, the classification task is accomplished 0.47 second
with Gaussian collapse, whereas the sampling scheme
with 40 samples cost 2.01 second. The larger sample
size in sampling scheme, the more time it costs to ac-
complish the classification task. Meanwhile it is clear
that Gaussian collapse requires much less time to ac-
complish the classification task.

Compared to sampling based scheme, Gaussian col-
lapse based scheme achieves comparable (slightly bet-
ter) classification results with much less time on sim-
ulation data test.

5.2 Experiments on oil drilling data

Next the same comparison experiment is conducted
with the oil drilling data from North sea.

scheme (samples) set1/time-cost set2/time-cost
Gaussian Collapse 0.47(s) 1.91(s)
Sampling (40) 2.01 (s) 5.97(s)
Sampling (200) 7.31(s) 17.56 (s)
Sampling (1000) 36.24 (s) 80.70 (s)

Table 3: The average time-cost (second) on simulation
data set with both Gaussian collapse based and sam-
pling based (varying the number of samples) dLCM.

5.2.1 Experiment settings on oil drilling data

As we mentioned in the introduction section, we will
tie the development to the task of activity recognition

in this paper. In total, there are 5 drilling acclivi-
ties in the dataset used for classification task. These
activities are “drilling”, “connection”, “tripping in”,
“tripping out” and “other”. The original oil drilling
data contains more than 60 variables. Advised by oil
drilling domain expert, 9 variables for the classification
task here. There are two chosen data set, which con-
tains 80000 and 50000 time slices with all 5 activities
presented respectively.

For classification purpose in this paper, we combine
these 5 activities into 2 activities and conduct the
classification test on the combined data set. Three
activities including “drilling”, “connection” and “oth-
er” activities are combined as one activity, and we do
the similar combination for “tripping in” and “trip-
ping out” activities. The reason behind is that these
combined actives are physically close and may have
quite similar dynamics. This combination also sim-
plify our experiments with the oil drilling data, while
maintaining the comparison experiment purpose.

Before we can compare the inference of each scheme
on the oil drilling data set, we learn a dLCM with the
learning method proposed in [12] with the oil drilling
data set containing 80000 time slices. The model
structure is chosen by experience, with 2 mixture com-
ponent and 16 latent variables. After learning its pa-
rameters with the chosen model structure, the dLCM
for further classification experiment is then finalized.
With the learnt dLM, the classification experiment will
be conducted on another oil drilling data set contain-
ing 50000 time slices.

5.2.2 Results and discussion

With the fixed dLCM, the average (by ten runs)
classification accuracy and average time-cost for each
scheme are obtained. There are 4 scheme are pre-
sented, Gaussian collapsed based scheme and sampling
techniques based scheme with 40, 200, 1000 samples re-
spectively. The experiments results are summarized in
Table 4.

scheme (samples) accuracy time-cost
Gaussian Collapse 82.9% 110.15(s)
Sampling (40) 69.87%) 335.93(s)
Sampling (200) 76.56% 1130.85 (s)
Sampling (1000) 79.07% 4469.33 (s)

Table 4: The average classification accuracy and time-
cost (second) on oil drilling data set with both Gaus-
sian collapse based and sampling based (varying the
number of samples) dLCM.

Among the sampling techniques based scheme, more
samples achieves higher classification accuracy. How-
ever, with more samples in sampling techniques based
scheme, the computation cot for the classification task
is much more expensive. It is clearly shown in the table
that sampling with 1000 samples requires more than
one hour to accomplish the classification task which is
around 40 times than that of Gaussian collapse, and
they achieve a similar classification accuracy. In gener-
al Gaussian collapse still achieves comparable result-
s (slightly better than Sampling), while keeping the
computation cost in a rather low standard compared
to sampling based scheme.

6 Conclusion

In the approximate inference of the dLCM, the Gaus-
sian collapse is originally adopted as the core of the
approximation method. In this paper, alternatively
sampling technique is proposed to do the approxima-
tion. A process similar to particle filtering, utilizing
sampling as the basis, is then incorporated into the
approximate inference of the dLCM. We then conduct
the comparison experiment results on both simulated
data and real oil drilling data. The experimental re-
sults from both sets show that the approximate scheme
based on Gaussian collapse is computationally more
efficient than sampling, while offering comparable ac-
curacy results.

Acknowledgements

I would like to thank Helge Langseth who helped a
lot during the whole process of organizing and writing
this paper.

References

[1] Sanjeev Arulampalam, Simon Maskell, Neil Gor-
don, and Tim Clapp. A tutorial on particle fil-
ters for on-line non-linear/non-gaussian bayesian
tracking. IEEE Transactions on Signal Process-

ing, 50:174–188, 2001.

[2] Yaakov Bar-Shalom and Xiao-Rong Li. Estima-

tion and Tracking: Principles, Techniques and

software. Artech House Publishers, 1993.

[3] David Barber. Expectation correction for s-
moothed inference in switching linear dynamical
systems. Journal of Machine Learning Research,
7:2515–2540, 2006.

[4] Xavier Boyen and Daphne Koller. Approximate
learning of dynamic models. In Advances in

Neural Information Processing Systems 12, pages
396–402, 1999.

[5] Stuart Geman and Donald Geman. Stochastic
relaxation, Gibbs distribution and the Bayesian
restoration of images. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 6:721–
741, 1984.

[6] Zoubin Ghahramani and Geoffrey E. Hinton.
Variational learning for switching state-space
models. Neural Computation, 12:963–996, 1998.

[7] Helge Langseth and Thomas D. Nielsen. La-
tent classification models. Machine Learning,
59(3):237–265, 2005.

[8] Uri Lerner. Hybrid Bayesian networks for reason-
ing about complex systems. PhD thesis, Dept. of

Comp. Sci. Stanford University, Stanford, 2002.

[9] H.E. Rauch, F. Tung, and C. T. Striebel. Maxi-
mum likelihood estimates of linear dynamic sys-
tems. AIAA Journal, 3:1445–1450, 1965.

[10] Padhraic Smyth. Hidden Markov models for fault
detection in dynamic system. Pattern Recogni-

tion, 27(1):149–164, 1994.

[11] Greg Welch and Gary Bishop. An introduction to
the kalman filter. Technical report, University of
North Carolina at Chapel Hill, 1995.

[12] Shengtong Zhong, Helge Langseth, and
Thomas D. Nielsen. Bayesian networks
for dynamic classification. Working Paper,
http://idi.ntnu.no/~shket/dLCM.pdf, 2012.

