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Abstract— In the past decade, Statistical Relational Learning 

(SRL) has emerged as a new branch of machine learning for 

representing and learning a joint probability distribution over 

relational data. Relational representations have the necessary 

expressive power for important real-world problems, but until 

recently have not supported uncertainty. Statistical relational 

models fill this gap. Among the languages recently developed for 

statistical relational representations is Multi-Entity Bayesian 

Networks (MEBN). MEBN is the logical basis for Probabilistic 

OWL (PR-OWL), a language for uncertainty reasoning in the 

Semantic Web. However, until now there has been no 

implementation of MEBN learning. This paper describes the first 

implementation of MEBN learning. The algorithm learns a 

MEBN theory for a domain from data stored in a relational 

Database. Several issues are addressed such as aggregating 

influences, optimization problem, and so on. In this paper, as our 

contributions, we will provide a MEBN-RM (Relational Model) 

Model which is a bridge between MEBN and RM, and suggest a 

basic structure learning algorithm for MEBN. And the method 

was applied to a test case of a maritime domain in order to prove 

our basic method. 
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I.  INTRODUCTION  

Statistical Relational Learning (SRL) is a new branch of 
machine learning for representing and learning a joint 
distribution over relational data [1, 2]. As its name suggests, it 
combines statistical and relational knowledge representations. 
A relational model represents a domain as a collection of 
objects that may have attributes and can participate in 
relationships with other objects. Relational representations are 
expressive enough for important real-world problems, but until 
recently have not supported uncertainty. This gap has been 
filled by SRL methods. Statistical relational knowledge 
representations combine statistical and relational approaches, 
allowing representation of a probability distribution over a 
relational model of a domain. SRL methods allow such 
representations to be learned from data.  

Examples of representation languages for SRL include 
Probabilistic Relational Models (PRMs), Markov Logic 
Networks (MLNs), Relational Dependency Networks (RDNs), 
Bayesian Logic Programs (BLPs), Join Bayes Net (JBN), and 
Multi-Entity Bayesian Networks (MEBN) [2, 3, 4, 5, 6, and 7]. 

A comparison of some of the above models is given in [1]. 
Typically, SRL models provide a representation for relational 

knowledge, along with methods for both induction and 
deduction. Relational representations provide both class and 
instance models. A class model describes statistical information 
that applies to classes of objects. For example, a class model 
might describe the false positive and false negative rates for a 
class of sensor. The instance model is generated from the class 
model by a deduction method. For example, the instance model 
would be used to infer the probability that a given detection is a 
false positive. An induction method learns structure and 
parameters of a domain theory from observations. For example, 
induction would be used to learn the false positive and false 
negative rates from a data set annotated with ground truth. 

SRLs have been applied to problems such as Object 
Classification, Object Type Prediction, Link Type Prediction, 
Predicting Link Existence, Link Cardinality Estimation, Entity 
Resolution, Group Detection, Sub-graph Discovery, Metadata 
Mining, and so on [2].  

This paper is concerned with the Multi-Entity Bayesian 
Networks (MEBN), a relational language that forms the logical 
basis of Probabilistic OWL (PR-OWL), a language for 
uncertainty reasoning in the Semantic Web [7, 8]. PR-OWL 
has been extended to PR-OWL 2, which provides a tighter link 
between the deterministic and probabilistic aspects of the 
ontology [9]. MEBN extends Bayesian networks to a relational 
representation. A MEBN Theory, or MTheory, consists of a set 
of Bayesian network fragments, or MFrags, that together 
represent a joint distribution over instances of the random 
variables represented in the MTheory [7].  

However, until now there has been no implementation of 
induction or learning for MEBN or PR-OWL. This paper 
describes such an implementation. We follow an approach used 
by other SRL models [1] and use Relational Database (RDB) to 
store the observations from which the representation is learned.  

This paper focuses a basic learning algorithm that addresses 
the following issues:  

 
1. Developing a bridge of MEBN and RDB; 

2. Developing basic structure and parameter learning for 
MEBN. 
 

Ultimately, a relational learning algorithm should address 
issues such as aggregation of data, reference uncertainty, type 
uncertainty, and continuous variable learning. These issues will 
be considered for future research. 

Our learning method is exact, and assumes discrete random 
variables, and complete data. It will be evaluated by the 
inference accuracy test. 



In Section 2, we give a brief definition of MEBN and RM 
as background. In the Section 3, we introduce the MEBN-RM 
Model. In Section 4, we present the basic structure learning 
algorithm. The application of the algorithm is described in the 
Section 5.  

 

II. MULTI-ENTITY BAYESIAN NETWORKS (MEBN) AND 

RELATIONAL MODEL (RM) 

A. Multi-Entity Bayesian Networks (MEBN) 

MEBN extends Bayesian Networks (BNs) to represent 
relational information. BNs have been very successful as an 
approach to representing uncertainty about many interrelated 
variables. However, BNs are not expressive enough for 
relational domains. MEBN extends Bayesian networks to 
represent the repeated structure of relational domains. 

MEBN represents knowledge about a domain as a 
collection of MFrags, an MFrag is a fragment of a graphical 
model that is a template of probabilistic relationships among 
instances of its random variables. Random variables in an 
MFrag can contain ordinary variables which can be filled in 
with domain entities. And MFrag includes context, input, and 
resident node for restriction of entity, reference of node, and 
random variable respectively. We can think of an MFrag as a 
class which can generate instances of BN fragments, which can 
then be assembled into a Bayesian network [7].   

 

B. Relational Model (RM) 

In 1969, Edgar F. Codd proposed RM as a database model 
based on first-order predicate logic [10]. RM is composed of 
Relation, Attribute, Key, Tuple, Instance, and Cell. Relational 
database which is the most popular database is based on RM.  

 

III. MEBN-RM MODEL 

As a bridge of MEBN and RM, we suggest MEBN-RM 
Model which provides a specification for how to match 
elements of MEBN to elements of RM. Key nodes in MEBN 
are the context and resident node. To understand this easily, we 
use the following example of the university relational model.  

 
Course 

 
Registration 

 
Student 

 
Professor 

Key Difficulty 

 
Course Key Student Key Grade 

 
Key Advisor 

 
Key Major 

c1 low 

 
c1 s1 low 

 
s1 p4 

 
p1 SYST 

c2 high 

 
c1 s2 high 

 
s2 p2 

 
p2 OR 

c3 high 

 
c2 s2 high 

 
s3 p3 

 
p3 OR 

c4 low 

 
c2 s4 low 

 
s4 p1 

 
p4 CS 

c5 med 

 
c3 s5 med 

 
s5 p5 

 
p5 SYST 

c6 low 

 
c4 s6 low 

 
s6 null 

 
p6 OR 

 Table 1. Example of university relational model 

A. Context Node 

In MFrags, context terms (or nodes) are used to specify 
constraints under which the local distributions apply. Thus, it 
determines specific entities on an arbitrary situation of a 
context. In MEBN-RM model, we define four types of data 
structure corresponding to context nodes: Isa, Slot-filler, 
Value-Constraint, and Entity-Constraint type. 

 

Type Name Example 

1 Isa  Isa( Person, P ), Isa( Car, C ) 

2 Value-Constraint Height( P ) = high 

3 Slot-Filler P = OwnerOf( C ) 

4 Entity-Constraint  Friend( A, B ) 

Table 2. Context Node Types on MEBN-RM Model 

1)  Isa 
In MEBN, the Isa random variable represents the type of an 

entity. In a RM, an entity table represents a collection of 
entities of a given type. Thus, an entity table corresponds to an 
Isa random variable in MEBN. Note that a relationship table 
whose primary key is composed of foreign keys does not 
correspond to an Isa RV. A relationship table will correspond 
to the Entity-Constraint type of Context Node. 

 

2)  Value-Constraint 
In a case, a value of attribute can limit keys which are 

related with only the value. For example, Consider Table 1, in 
which we have the course table with the difficulty attribute. (In 
our definition, Attribute is descriptive Attribute and Key is 
Primary Key) 

The course table has instances of the key (e.g., c1, c2, c3, 
c4, c5, and c6). And if we want to focus on a case of the entity 
with “high” value of the attribute, it will be {c2, c3}. In this 
case, for the entity, any group of elements related with any 
attributes can be derived. We encode this into “Difficulty 
(Course) = high” in MEBN. 

 

3)  Slot-Filler 
In the table 1, the professor key is used on the student table 

by a foreign key, Advisor. The foreign key is not primary key 
in the student table. In this case, the connection will be 
expressed by “Professor = Advisor (Student)” in MEBN. And 
its instance will be that s1’s advisor is p4 and so on. 
 

4)  Entity-Constraint 
The registration table is a relationship table which is a 

bridge between the course and student entity. In this case, 
obviously, the registration table will be an intersection group. 
And this is described as “Registration (Course, Student)” in 
MEBN. 

 

B. Resident Node 

In MFrags, Resident Node can be described as Function, 
Predicate, and Formula of FOL with a probability distribution. 
FOL Function consists of arguments and an output, while FOL 
Predicate consists of arguments and no output, but Boolean 
output. We define the following relationship between elements 
of RM and MEBN. 

 
RM Resident Node 

Attribute Function/ Predicate 

Key Arguments 

Cell of Attribute Output 

Table 3. Resident Node Types of MEBN-RM Model 

 
For example, in the table 1, the grade of the registration 

table is the function having the course and student keys as 



arguments. Its output will be the cell of the grade such as low, 
med, and high. On the other hand, if the domain type of the 
grade is Boolean, it will be the predicate in MEBN.   

 

IV. THE BASIC STRUCTURE LEARNING FOR MEBN  

To address the issues in Section 1, we suggest a basic 
structure learning algorithm for MEBN. The initial ingredients 
of the algorithm are a dataset of RM, a Bayesian Network 
Structure searching algorithm, and a size of chain. For the 
parameter learning, we only use Maximum Likelihood 
Estimation (MLE). The algorithm focuses on discrete variables 
with complete data. We utilize a standard Bayesian Network 
Structure searching algorithm to generate a local BN from the 
joined dataset of RM. To avoid infinite loops, we employed the 
size of chain. Thus, the process of searching structure will 
finish in the size of chain.  

Firstly, the algorithm creates the default MTheory. All keys 
of DB are defined as entities of MEBN theory. One default 
reference MFrag is created. For the all of tables of DB, the 
dataset for each table is retrieved and, by using the BN 
structure searching algorithm, a graph is generated from the 
dataset. If the graph has a cycle and undirected edge, a 
knowledge expert for the domain sets the arc direction. Based 
on the revised graph, an MFrag is created. Until the size of 
chain is reached, the joined datasets which are derived by 
“Join” command in SQL are retrieved. The graphs related to 
the joined datasets are generated in the same way as the above. 
If any nodes of the new generated graph are not used in any 
MFrags, create the resident node having the name of the dataset 
of the graph on the default reference MFrag and the new 
MFrag for the dataset. If not, only make edges between resident 
nodes in the different MFrags. Lastly, for all resident nodes in 
the MTheory, LPDs are generated by MLE.  

 

V. CASE STUDY 

To evaluate the algorithm, we used a dataset which came 
from the PROGNOS (Probabilistic OntoloGies for Net-centric 
Operation Systems) [11, 12]. The purpose of the system is to 
provide higher-level knowledge representation, fusion, and 
reasoning in the maritime domain.  

The PROGNOS includes a simulation which provides the 
ground truth information for the system. The simulation uses a 
given single entity Bayesian Network (we use this term to 
discriminate the SSBN from Multi Entity Bayesian Networks) 
in order for sampling data. The simulation generates 85000 
persons, 10000 ships, and 1000 organization entities with 
various values of attributes. The data for these entities are 
stored in the relational database.  

For the evaluation of the model, the training and test dataset 
was generated by the simulation. Using the basic structure 
learning for MEBN, the PROGNOS MTheory was derived as 
shown in Figure 2. In the model, a total of four MFrags were 
generated such as the default reference, org_members, person, 
and ship MFrag. 

To generate a SSBN from this MTheory, we assume that 
we have one person, ship, and organization. They are related as 
ship_crews (Ship S, Person P) and org_members( Organization 
O, Person P). We queried the isShipOfInterest node with the 

several evidence nodes located in the leaf nodes. Figure 3 
presents the result SSBN in which the nodes of the ship and 
person entity are connected each other.  

To compare the accuracies of the results, we used the single 
entity Bayesian Network which was used for the sampling. 
Thus, the single network provided another query result with the 
same evidence. Figure 1 shows the Receiver Operating 
Characteristic (ROC) Curve which describes accuracy of the 
result of the learned MTheory and single entity Bayesian 
Network. The areas under curves are shown in Table 4. 

  
 Model AUC 

Learned MTheory 0.874479929 

Single Entity Bayesian Network 0.87323784 

Table 4. AUC of Learned MTheory and Single Entity Bayesian Network 

 

 

Figure 1. ROC of Learned MTheory and Single Entity Bayesian Network 

 

As we can see from Figure 1 and Table 4, the results of 
accuracy of the learned MTheory and the single entity 
Bayesian Network are almost the same. This means that the 
learned MTheory well reflected the data of the relational 
database which was sampled using the single entity Bayesian 
Network.  

In this paper, we only compared the learned MTheory to the 
true model which was the single entity Bayesian Network. This 
result proves that our approach reflects the true model correctly. 
However, the result of this paper is only the beginning and 
baseline for a full MEBN Learning method, because we didn’t 
address the aggregating influence problem which is the 
important issue in SRL models.   

 

VI. DISCUSSION AND FUTURE WORK 

Because of a flood of complex and huge data, efficient and 
accurate methods are needed for learning expressive models 
incorporating uncertainty. In this paper, we have introduced a 
learning approach for MEBN. As a bridge between MEBN and 
RM, MEBN-RM Model was introduced. For induction, the 
Basic Structure Learning for MEBN was suggested.  

Recently, we are studying about a heuristic approach which 
called as the Framework of Function Searching for LPD (FFS-
LPD) to address the aggregating influence problem. We plan to 
expand the learning algorithm in order to include continuous 
random variables.  
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Figure 2. Generated PROGNOS MTheory 

 
Figure 3. Generated SSBN of PROGNOS MTheory 


