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Abstract. This paper presents a novel approach for automatically grading stu-

dents’ answers to open-ended questions. It is inspired by the OeLE method, 

which uses ontologies and Semantic Web technologies to represent course ma-

terial. The main difference in our approach is that we add a new category of 

concepts, named functional concepts, which allow specifying an ordering rela-

tion between concepts. This modification allows assessing procedural 

knowledge in students’ answers by grading the ordering of these concepts. We 

present an example for grading answers in a course about computer algorithms, 

and report the corresponding results.  

Keywords: E-Learning, Computer-Assisted Assessment (CAA), Ontology, 

Semantic Web, Procedural Knowledge.  

1 Introduction  

Assessing the students’ learning in an e-learning environment often relies on multiple 

choice or fill-in-the-blank questions, which only trigger the lowest level (Knowledge) 
of Bloom’s taxonomy [1] of knowledge acquisition. As we shall see in Section 2, 

several attempts have been made to incorporate open-ended questions in online as-

sessment, which would possibly trigger the higher levels of Bloom’s taxonomy (Syn-

thesis and Evaluation) in the students’ learning.  

However, grading open-ended questions by hand can be time-consuming. To build 

an e-learning environment that can automatically grade free-text answers, a variety of 

techniques have been used, such as Information Extraction (IE) [4-5], Natural Lan-

guage Processing (NLP) [6-11], or statistical techniques [13-15].  

Our approach resembles that of the OeLE system [2]. This system also uses NLP to 

assess the level of understanding of the students. Course material is represented in an 

ontology and encoded in the Web Ontology Language (OWL). The use of Semantic 

Web technologies allows the sharing and reusing of course ontologies, thus potential-

ly reducing the time spent designing the ontologies. This allows for a deeper under-

standing of the text than more superficial statistical techniques. Automatic assessment 

is much faster, and hopefully done more objectively, than manual scoring. The OeLE 

system has been used in two online courses, Design and Evaluation of Didactic Me-

dia, and Multimedia Systems and Graphical Interaction.  



OeLE successfully assesses the semantic content of the students’ answers if the an-

swers contain static expressions of facts about didactic media or multimedia systems. 

However, when applying it to the assessment of a computer algorithms course, we 

observed that the ordering of the elements in students’ answers is not taken into ac-

count. It is crucial that this ordering be considered because to describe how an algo-

rithm works, certain concepts should be stated in a specific order. In this paper, we 

address this challenge by proposing a new approach in which we introduce the idea of 

functional concepts. The course ontology then incorporates ordering information 

about a subset of these functional concepts. The assessment process is modified to 

take into account the ordering of these concepts in the students’ answers and adjust 

their grade accordingly. The novelty of our work is in applying a hybrid approach 

combining the OeLE system with functional concepts to assess students’ answers in 

domains using highly procedural knowledge.  

Section 2 of this paper is a review of other automatic free-text assessment systems. 

We only focus here on short-answer assessment systems where reference texts are 

tailored to the course material, although some other systems have also been developed 

for essay scoring, where more general texts about a topic are used for training. Sec-

tion 3 presents the general methodology, followed by our preliminary results in Sec-

tion 4. We conclude the paper in Section 5 with some future work which we are in-

vestigating.  

2 Related Work 

This section presents previous and ongoing research in automatic short-answer as-

sessment. A good review of many of these systems can be found in [3]. Although 

these systems do not take advantage of Semantic Web ontologies, they contain none-

theless functionalities and techniques useful to our system. 

Some systems compare students’ answers to the ideal answer supplied by the 

teacher. For instance, Automated Text Marker [4] uses a pattern-matching technique. 

It has been tested in courses on Prolog programming, psychology and biology. Au-

tomark [5] uses IE techniques to grade students’ answers by comparing them to a 

mark scheme template provided by the teacher. It achieved 94.7% agreement with 

human grading for six of the seven science-related questions asked on a test exam.  

Some systems require teachers to provide training sets of marked student answers. 

For example, Auto-marking [6] uses NLP and pattern-matching techniques to com-

pare students’ answers to a training set of marked student answers. This system ob-

tained 88% of exact agreement with human grading in a biology course. Bayesian 

Essay Test Scoring System (BETSY) [7] uses naive Bayes classifiers to search for 

specific features in students’ answers. In a biology course, it achieved up to 80% ac-

curacy. CarmelTC [8] uses syntactic analysis and naive Bayes classifiers to analyze 

essay answers. On an experiment with 126 physics essays, it obtained 90% precision 

and 80% recall. The Paperless-School Marking Engine (PS-ME) [9] is commercially 

available and requires a training set of marked answers. The system uses NLP to 

grade the students’ answers in addition to implementing Bloom’s taxonomy heuris-



tics. However, the exact implementation is not disclosed. C-rater [10] uses a set of 

marked training essays to determine the students’ answers grade using NLP. In a 

large-scale experiment of 170,000 answers to reading comprehension and algebra 

questions, it achieved 85% accuracy. In [11], a combination of NLP and Support Vec-

tor Machines is used to classify answers into two classes (above/below 6 points out of 

10). It obtains an average of 65% precision rate (the only reported metric).  

The MultiNet Working Bench system [12] uses a graphical tool to represent the 

students’ knowledge visually. It compares the semantic network extracted from the 

student answer to that submitted by the teacher. Verified parts of the network are 

displayed in green, while wrong or unverified parts (not supported by logic inference) 

are displayed in red.  

Other systems rely on Latent Semantic Analysis (LSA). For example, Research 

Methods Tutor [13] uses LSA to compare the students’ answers to a set of expected 

answers. If the student answers incorrectly, the system guides the student into obtain-

ing the right answer. The Willow system [14] requires several unmarked reference 

answers for each question. It also uses LSA to evaluate students’ answers written in 

English or Spanish. In a computer science course, it achieved on average 0.54 correla-

tion with the teacher’s grading. A system currently in use at the University of Witwa-

tersrand [15] uses LSA and clustering techniques. It achieves between 0.80 and 0.95 

correlation with the teacher’s grading.  

3 Methodology  

In this section, we briefly present the work on OeLE [2] and how we have adapted it 

and expanded on it in our system. Our focus has been on grading students’ answers to 

questions in a computer algorithms course taught in French.  

3.1 Natural Language Processing  

For each of the online exam’s questions in OeLE [2], the ideal answer provided by the 

teacher and the students’ answers are processed similarly. The GATE software per-

forms most of the NLP tasks, and the Protégé software is used to build the course 

ontology and encode it in OWL. While OeLE is written in Java and uses the Jena 

framework to process the encoded ontology, our system is done in PHP and we de-

veloped our own ontology-processing code. It is important to note that OeLE and our 

system use OWL for knowledge representation, but do not utilize its inference ser-

vices. In this paper, we use the same terminology as [2]. We refer to OWL classes as 

concepts, to object properties as relations, and to data properties as attributes. Also, 

entity is used as a generic term for concept, relation, or attribute, while property is 

used for relation or attribute.  

The NLP consists of three phases: Preparation, Search, and Set in a context. The 

Preparation phase consists of spell-checking, sentence detection, tokenization and 

POS tagging. In the Search phase, the linguistic expressions are detected and matched 

against the course ontology. Finally, the Set in a context phase associates the attrib-



utes and values to their respective concept, and also identifies which concepts partici-

pate in a relation.  

In OeLE, the texts are annotated semiautomatically, meaning that the teacher only 

needs to manually annotate the fragments unknown to the system or incorrectly 

tagged. In our system, the natural language processing is done manually for the mo-

ment, as GATE does not sufficiently support French (out-of-the-box) for our purpos-

es. Performing automatic French annotation is planned as a future work.  

As an example, we use an actual question from a computer algorithms course given 

at our university: “Describe Depth-First Search (DFS)”. Table 1 shows the annotation 

set (at the end of the NLP phase) of the partial student’s answer: “Depth-First Search 

(DFS) is an exhaustive algorithm that explores a graph...” The ideal answer supplied 

by the teacher is similarly annotated; however, for every annotated entity, a numerical 

value ought to be supplied specifying the relative importance of that entity within the 

question.  

Table 1. Example annotated answer of a student to describe DFS.  

Category Description 

Concept DepthFirstSearch 

Concept Algorithm 

Concept Graph 

Attribute Exhaustive 

Relation IsA 

Relation Explores 

3.2 Conceptual Grading  

The grading stage consists of calculating the semantic distance between the annota-

tion sets (obtained in Section 3.1) of each student’s answer and that of the teacher’s 

ideal answer, with respect to the course ontology. Because of space limitations, we 

cannot give detailed calculations for the example. The reader is advised to see the full 

explanation in the original publication [2], or an easy-to-follow example in [16].  

The formulas used in [2] for calculating the semantic distances are given below. In 

every function, teacher-provided constants allow for certain elements to be weighted 

more or less heavily according to their importance. The best combination of these 

constants is problem-dependent and should be discovered empirically. The “linguistic 

distance” between the textual representation of the entities in the student and teacher’s 

answer is also taken into account. All functions return values in the [0,1] interval.  

 
Concept similarity. To calculate the concept similarity (CS) between concepts    and 

  , the following function is used: 

   (      )        (      )        (      )        (      ) (1) 

The constants    ,    ,     indicate the relative importance of the corresponding 

elements. Also,               and        .  



The concept proximity (CP) is calculated using the taxonomy formed in the ontol-

ogy by the class hierarchy defined in OWL. Note that the <is-a> relation is explicitly 

added to the course ontology (with the class as domain and the subclass as image) 

where rdfs:subClassOf is used: 

<owl:Class rdf:about="DepthFirstSearch"> 

 <rdfs:subClassOf rdf:resource="Algorithm"/> 

</owl:Class> 

If the concepts    and    have no taxonomic parent (other than the root), this value 

is zero, otherwise it is defined as such: 

   (     )    
|     (      )|

|        |
 (2) 

where |     (      )| is the number of concepts separating    and    through the 

shortest common path through the taxonomic tree, and |        | is the total number 

of concepts in the ontology. A shorter path thus indicates a stronger similarity be-

tween the two concepts. 

The properties similarity (PS) calculates the similarity between the set of properties 

associated with    and   . The properties of a concept c are the union of the set of 

attributes that have c as domain, and the set of relations that have c as domain or im-

age. 

Lastly,   (      ) uses the Levenshtein distance between the string representation 

of concepts    and   , written           below, and is defined as follows: 

   (      )  
 

            
  (3) 

Attribute similarity. The attribute similarity between two attributes    and    of two 

concepts is calculated by a similar function: 

  (      )        (      ) 

        (      )        (                 ) (4) 

Here also, the non-negative constants    ,    ,     must add up to 1. The function 

        returns the (most specific) concept which is in the domain of a. The function 

  (      ) is defined as such: 

   (      )  
|                   |

|        {|        |}|
  (5) 

that is, the similarity of their value sets. The function         returns the image of 

the attribute a. 

 

Relation similarity. The relation similarity between two relations    and    is calcu-

lated in a similar manner: 



  (      )        (      ) 

        (                   )    (                   ) (6) 

It is required that the sum of the non-negative constants    ,     be 1. The function 

         returns the most specific concept in the domain of r, while          returns 

the most specific concept in the image of r. The concept similarity is calculated twice, 

to compare the domains of the relations    and    (obtained by         ) and the 

images of the relations (obtained by         ), respectively. 

 

Global evaluation. In order to accomplish the evaluation of a question, each of the 

concepts of the student’s answer is associated with the closest concept of the ideal 

answer, given that each concept can only be used once. The similarity between each 

pair of concepts is then calculated and is multiplied by the relative numerical value of 

the concept in the ideal answer. The similarity is then added to the final grade. The 

same process is repeated for relations and attributes.  

3.3 Procedural Knowledge Grading 

Our system uses the same grading algorithm as OeLE [2]. The students’ answers are 

compared to the teacher’s ideal answer. The grades are calculated based on the most 

similar entity in the expected answer. In OeLE, the order of the entities is not factored 

in the grade and any permutation of the linguistic expressions of the student’s answer 

yields the same grade.  

However, this is not appropriate for assessing procedural knowledge in our system. 

If the above method is applied to evaluate text describing procedural knowledge such 

as algorithms-related answers, the grade calculation ought to take into account the 

relative order of a subset of concepts expressing procedural knowledge.  

 

Functional concepts. In order to address this issue, we propose to add functional 

concepts to the course ontology. A functional concept represents a global procedure, a 

sequence of sub-procedures or individual steps to accomplish a given task. 

Let us consider the following example algorithm, DepthFirstSearch, given in 

pseudocode: 

procedure DepthFirstSearch 

 VisitRoot 

 VisitFirstChildNode 

 VisitOtherSiblings 

end 

procedure VisitRoot [...] 

procedure VisitFirstChildNode [...] 

procedure VisitOtherSiblings [...] 



For every procedure or sub-procedure, we create a corresponding functional con-

cept: DepthFirstSearch, VisitRoot, VisitFirstChildNode, and VisitOtherSiblings. The 

last three sub-procedures could in turn be further decomposed. 

The functional concepts allow for a high-level description of the algorithm and 

mask implementation details, which would be difficult to express in the ontology 

using relations or attributes. Further decomposition of VisitRoot into individual steps 

could be stated in any of the following ways: 

DepthFirstSearch <visits> Root [using relation <visits>] 

VisitRoot <visits> Root [same relation with a more specific concept] 

Root.visited=true [the value of the attribute <visited> becomes true] 

Representing functional concepts in OWL. Relationships between functions are 

defined as meta-functions in [17]. These meta-functions are implemented in our sys-

tem as relations between two functional concepts. In this example, two instances of 

the <is-preceded-by> relation are needed. One instance is needed between Visit-

FirstChildNode and VisitRoot, because the root has to be visited first, and another 

between VisitOtherSiblings and VisitFirstChildNode, because the first child node 

should be visited first. Similarly, three instances of the <is-achieved-by> relation are 

used between VisitRoot and each of the remaining functional concepts.  
The same idea is found in [18], where the relation preceded_by is defined similarly 

to <is-preceded-by> and can be used to order any pair of classes P and P1. In other 

words, P preceded_by P1 is defined as “Every P is such that there is some earlier P1”. 

This relation is defined as transitive, and is neither symmetric, reflexive nor antisym-

metric.  

In [19], an irreflexive and transitive relation precedes is used when “the sequence 

of the related events is of utmost importance for the correct interpretation”. This paper 

also defines the inverse relation follows. 

Similarly, the working draft: “Time Ontology in OWL” [20] of the World Wide 

Web Consortium (W3C) states that: “There is a before relation on temporal entities, 

which gives directionality to time. If a temporal entity T1 is before another temporal 

entity T2, then the end of T1 is before the beginning of T2.” This relation is part of the 

time namespace.  

In our implementation, the functional concepts and the <is-preceded-by> relation 

are defined as such in OWL: 

<owl:Class rdf:about="FunctionalConcept"/> 

<owl:Class rdf:about="DepthFirstSearch"> 

  <rdfs:subClassOf rdf:resource="FunctionalConcept"/> 

</owl:Class> 

<owl:Class rdf:about="VisitRoot"> 

  <rdfs:subClassOf rdf:resource="DepthFirstSearch"/> 

</owl:Class> 

<owl:Class rdf:about="VisitFirstChildNode"> 

  <rdfs:subClassOf rdf:resource="DepthFirstSearch"/> 

</owl:Class> 



<owl:Class rdf:about="VisitOtherSiblings"> 

  <rdfs:subClassOf rdf:resource="DepthFirstSearch"/> 

</owl:Class> 

<owl:ObjectProperty rdf:about="IsPrecededBy"/> 

Note that the <is-achieved-by> relation is implied by the class hierarchy rooted at 

the concept FunctionalConcept, just as the <is-a> relation is implied by the class 

hierarchy in OeLE. 

For every algorithm, a separate (meta) ontology lists the required orderings specific 

to that algorithm. Although there exists many algorithms for graph exploration, we 

only need to define the functional concepts once in the course ontology, and their 

ordering can then be declared in a separate ontology. For instance, the Breadth-

FirstSearch algorithm can be defined with the same functional concepts as above, 

only ordered differently. 

For DepthFirstSearch, the meta-ontology is as follows: 

VisitFirstChildNode <is-preceded-by> VisitRoot 

VisitOtherSiblings <is-preceded-by> VisitFirstChildNode  

Note that the following relation is also inferred by the transitive property: 

VisitOtherSiblings <is-preceded-by> VisitRoot  

Grading with functional concepts. In our approach, the question evaluation process 

remains mostly unchanged. No special treatment is given to the functional concept 

class hierarchy rooted at the concept FunctionalConcept, even though its implied 

relation is <is-achieved-by>, rather than the <is-a> relation implied for the other 

concepts. This takes into account function nesting and composition, while allowing 

calculating the proximity of the functional concepts.  

However, the global evaluation of a student answer R takes into account the algo-

rithm-specific orderings of the meta-ontology. The new evaluation function is given 

below: 

                  (       )  (7) 

The final grade (FG) for the student answer R is proportional to the global evalua-

tion of the answer,      , obtained from Section 3.2. Here,    is a constant in the 

interval [0,1] allowing the teacher to adjust the relative importance of the correct or-

dering of concepts in the global evaluation. The ordering factor of the answer,      , 

is defined as follows: 

       
     

|         |
 (8) 

where       represents the number of functional concepts having the right order-

ing in the student answer R, and |         | the number of functional concepts or-

derings in the meta-ontology.  



It should be noted that if functional concepts in the student’s answer are ordered 

with the opposite relation (that is, <is-followed-by>), the evaluation algorithm inverts 

the relation between the functional concepts.  

Also, the individual student grades are affected by the number of defined order-

ings. If there are only a few orderings, as demonstrated below, students are strongly 

penalized for every mistake. This is also the case with the concept proximity defined 

in Formula 2, where the number of concepts in the ontology affects students' grades. 

However, we can assume that the course ontology is fixed during evaluation, and that 

the students' grades are therefore affected similarly (in a linear fashion). 

4 Working Example and Results  

Using Depth-First Search as an example, we can quantify the effect of the new evalu-

ation function on a student’s answer. To simplify, we omit the conceptual grading of 

the answer and concentrate on the functional grading. Since the same entities are pre-

sent in both the student and teacher’s answers, the conceptual grade is 100%. The 

ideal functional answer could be as follows: “Depth-First Search first visits the root 

[of a graph], then [recursively] visits its first child node before visiting its other sib-

lings.” Table 2 shows the produced functional concepts.  

Table 2. Example annotation of ideal answer to describe DFS (using only functional concepts).  

Category Description 

(Functional) Concept DepthFirstSearch 

(Functional) Concept VisitRoot 

(Functional) Concept VisitFirstChildNode 

(Functional) Concept VisitOtherSiblings 

 

Any permutation of this ideal answer taken as input by the original approach would 

yield a grade of 100%. Now, consider the following student’s answer: “Depth-First 

Search visits the root [of a graph], then [recursively] visits its first child node after 

visiting its other siblings.” Here, “after” inverts the ordering of the two last concepts 

(highlighted in bold below), yielding the following answer:  

Table 3. Example annotation of student’s answer for DFS (using only functional concepts). 

Category Description 

(Functional) Concept DepthFirstSearch 

(Functional) Concept VisitRoot 

(Functional) Concept VisitOtherSiblings 

(Functional) Concept VisitFirstChildNode 

 

The student gave here the incorrect ordering: 

VisitFirstChildNode <is-preceded-by> VisitOtherSiblings 



However, these two student orderings are correct: 

VisitFirstChildNode <is-preceded-by> VisitRoot [inferred] 

VisitOtherSiblings <is-preceded-by> VisitRoot 

As stated above, the conceptual grading of this answer, as performed by OeLE, is 

100%. By using the new evaluation function (Formula 7), the final grade (FG) be-

comes: 

            (               )         (9) 

where the global evaluation (GE) is 100%, the ordering factor (DF) is 66.67%, and 

the constant    is given a value of 1.0. Considering that the ideal answer to this algo-

rithm contains only three orderings for pairs of functional concepts (one is inferred) 

and that a third is out of order, this low grade seems acceptable, or at least a reasona-

ble improvement over the former grade of 100% that would have been attributed had 

we only used the conceptual grading system.  

5 Conclusion and Future Work  

The work presented in this paper adapts the OeLE system to include procedural 

knowledge. The example was taken from an algorithms course given at Université de 

Moncton. This approach could be used in other domains where procedural knowledge 

is central to processing the text. For example, [18] and [19] apply similar methods to 

biomedical ontologies.  

The approach put forth in this paper introduces functional concepts to represent 

procedural knowledge in ontologies. The class hierarchy of functional concepts is 

considered as a series of instances of the relation <is-achieved-by> instead of <is-a>. 

For every computer algorithm (or procedure, for other domains), a series of instances 

of the relation <is-preceded-by> specify an ordering for pairs of functional concepts.  

In this paper, the texts were annotated manually. We are considering annotating the 

French texts semiautomatically as future work. The detection of the orderings (detect-

ing keywords such as “first”, “before”, “after” in the example of Section 4) could also 

be performed automatically. 

In the case where the student answer uses the opposite ordering relation (<is-

followed-by>), the relation between the functional concepts is inverted prior to evalu-

ation. Some more complex answers could require more inversions, for example if the 

student wrote “X and Y should be done after Z”.  

Future work could also consider flow control structures, such as loops or branches, 

although the textual representation of those structures without proper indentation or 

braces could be ambiguous. For example, the VisitOtherSiblings functional concept 

can be decomposed into the following loop: (for every other sibling, VisitNode).  

Another idea that could be explored would be to add the notion of recursive proce-

dures, such as Depth-First Search. VisitFirstChildNode and (every VisitNode of) Visi-

tOtherSiblings should include recursive calls. As an ideal answer, the teacher could 



give either: DFS.isRecursive=true, or VisitFirstChildNode.isRecursive=true and Visi-

tOtherSiblings.isRecursive=true. Depending on the ideal answer given and their own 

answer, students could be unjustly penalized.  
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