
Short Paper: Assessing Procedural Knowledge in Open-

ended Questions through Semantic Web Ontologies

Eric Snow, Chadia Moghrabi and Philippe Fournier-Viger

Département d’informatique, Université de Moncton, Moncton, Canada

{eric.snow,chadia.moghrabi,philippe.fournier-viger}@umoncton.ca

Abstract. This paper presents a novel approach for automatically grading stu-

dents’ answers to open-ended questions. It is inspired by the OeLE method,

which uses ontologies and Semantic Web technologies to represent course ma-

terial. The main difference in our approach is that we add a new category of

concepts, named functional concepts, which allow specifying an ordering rela-

tion between concepts. This modification allows assessing procedural

knowledge in students’ answers by grading the ordering of these concepts. We

present an example for grading answers in a course about computer algorithms,

and report the corresponding results.

Keywords: E-Learning, Computer-Assisted Assessment (CAA), Ontology,

Semantic Web, Procedural Knowledge.

1 Introduction

Assessing the students’ learning in an e-learning environment often relies on multiple

choice or fill-in-the-blank questions, which only trigger the lowest level (Knowledge)
of Bloom’s taxonomy [1] of knowledge acquisition. As we shall see in Section 2,

several attempts have been made to incorporate open-ended questions in online as-

sessment, which would possibly trigger the higher levels of Bloom’s taxonomy (Syn-

thesis and Evaluation) in the students’ learning.

However, grading open-ended questions by hand can be time-consuming. To build

an e-learning environment that can automatically grade free-text answers, a variety of

techniques have been used, such as Information Extraction (IE) [4-5], Natural Lan-

guage Processing (NLP) [6-11], or statistical techniques [13-15].

Our approach resembles that of the OeLE system [2]. This system also uses NLP to

assess the level of understanding of the students. Course material is represented in an

ontology and encoded in the Web Ontology Language (OWL). The use of Semantic

Web technologies allows the sharing and reusing of course ontologies, thus potential-

ly reducing the time spent designing the ontologies. This allows for a deeper under-

standing of the text than more superficial statistical techniques. Automatic assessment

is much faster, and hopefully done more objectively, than manual scoring. The OeLE

system has been used in two online courses, Design and Evaluation of Didactic Me-

dia, and Multimedia Systems and Graphical Interaction.

OeLE successfully assesses the semantic content of the students’ answers if the an-

swers contain static expressions of facts about didactic media or multimedia systems.

However, when applying it to the assessment of a computer algorithms course, we

observed that the ordering of the elements in students’ answers is not taken into ac-

count. It is crucial that this ordering be considered because to describe how an algo-

rithm works, certain concepts should be stated in a specific order. In this paper, we

address this challenge by proposing a new approach in which we introduce the idea of

functional concepts. The course ontology then incorporates ordering information

about a subset of these functional concepts. The assessment process is modified to

take into account the ordering of these concepts in the students’ answers and adjust

their grade accordingly. The novelty of our work is in applying a hybrid approach

combining the OeLE system with functional concepts to assess students’ answers in

domains using highly procedural knowledge.

Section 2 of this paper is a review of other automatic free-text assessment systems.

We only focus here on short-answer assessment systems where reference texts are

tailored to the course material, although some other systems have also been developed

for essay scoring, where more general texts about a topic are used for training. Sec-

tion 3 presents the general methodology, followed by our preliminary results in Sec-

tion 4. We conclude the paper in Section 5 with some future work which we are in-

vestigating.

2 Related Work

This section presents previous and ongoing research in automatic short-answer as-

sessment. A good review of many of these systems can be found in [3]. Although

these systems do not take advantage of Semantic Web ontologies, they contain none-

theless functionalities and techniques useful to our system.

Some systems compare students’ answers to the ideal answer supplied by the

teacher. For instance, Automated Text Marker [4] uses a pattern-matching technique.

It has been tested in courses on Prolog programming, psychology and biology. Au-

tomark [5] uses IE techniques to grade students’ answers by comparing them to a

mark scheme template provided by the teacher. It achieved 94.7% agreement with

human grading for six of the seven science-related questions asked on a test exam.

Some systems require teachers to provide training sets of marked student answers.

For example, Auto-marking [6] uses NLP and pattern-matching techniques to com-

pare students’ answers to a training set of marked student answers. This system ob-

tained 88% of exact agreement with human grading in a biology course. Bayesian

Essay Test Scoring System (BETSY) [7] uses naive Bayes classifiers to search for

specific features in students’ answers. In a biology course, it achieved up to 80% ac-

curacy. CarmelTC [8] uses syntactic analysis and naive Bayes classifiers to analyze

essay answers. On an experiment with 126 physics essays, it obtained 90% precision

and 80% recall. The Paperless-School Marking Engine (PS-ME) [9] is commercially

available and requires a training set of marked answers. The system uses NLP to

grade the students’ answers in addition to implementing Bloom’s taxonomy heuris-

tics. However, the exact implementation is not disclosed. C-rater [10] uses a set of

marked training essays to determine the students’ answers grade using NLP. In a

large-scale experiment of 170,000 answers to reading comprehension and algebra

questions, it achieved 85% accuracy. In [11], a combination of NLP and Support Vec-

tor Machines is used to classify answers into two classes (above/below 6 points out of

10). It obtains an average of 65% precision rate (the only reported metric).

The MultiNet Working Bench system [12] uses a graphical tool to represent the

students’ knowledge visually. It compares the semantic network extracted from the

student answer to that submitted by the teacher. Verified parts of the network are

displayed in green, while wrong or unverified parts (not supported by logic inference)

are displayed in red.

Other systems rely on Latent Semantic Analysis (LSA). For example, Research

Methods Tutor [13] uses LSA to compare the students’ answers to a set of expected

answers. If the student answers incorrectly, the system guides the student into obtain-

ing the right answer. The Willow system [14] requires several unmarked reference

answers for each question. It also uses LSA to evaluate students’ answers written in

English or Spanish. In a computer science course, it achieved on average 0.54 correla-

tion with the teacher’s grading. A system currently in use at the University of Witwa-

tersrand [15] uses LSA and clustering techniques. It achieves between 0.80 and 0.95

correlation with the teacher’s grading.

3 Methodology

In this section, we briefly present the work on OeLE [2] and how we have adapted it

and expanded on it in our system. Our focus has been on grading students’ answers to

questions in a computer algorithms course taught in French.

3.1 Natural Language Processing

For each of the online exam’s questions in OeLE [2], the ideal answer provided by the

teacher and the students’ answers are processed similarly. The GATE software per-

forms most of the NLP tasks, and the Protégé software is used to build the course

ontology and encode it in OWL. While OeLE is written in Java and uses the Jena

framework to process the encoded ontology, our system is done in PHP and we de-

veloped our own ontology-processing code. It is important to note that OeLE and our

system use OWL for knowledge representation, but do not utilize its inference ser-

vices. In this paper, we use the same terminology as [2]. We refer to OWL classes as

concepts, to object properties as relations, and to data properties as attributes. Also,

entity is used as a generic term for concept, relation, or attribute, while property is

used for relation or attribute.

The NLP consists of three phases: Preparation, Search, and Set in a context. The

Preparation phase consists of spell-checking, sentence detection, tokenization and

POS tagging. In the Search phase, the linguistic expressions are detected and matched

against the course ontology. Finally, the Set in a context phase associates the attrib-

utes and values to their respective concept, and also identifies which concepts partici-

pate in a relation.

In OeLE, the texts are annotated semiautomatically, meaning that the teacher only

needs to manually annotate the fragments unknown to the system or incorrectly

tagged. In our system, the natural language processing is done manually for the mo-

ment, as GATE does not sufficiently support French (out-of-the-box) for our purpos-

es. Performing automatic French annotation is planned as a future work.

As an example, we use an actual question from a computer algorithms course given

at our university: “Describe Depth-First Search (DFS)”. Table 1 shows the annotation

set (at the end of the NLP phase) of the partial student’s answer: “Depth-First Search

(DFS) is an exhaustive algorithm that explores a graph...” The ideal answer supplied

by the teacher is similarly annotated; however, for every annotated entity, a numerical

value ought to be supplied specifying the relative importance of that entity within the

question.

Table 1. Example annotated answer of a student to describe DFS.

Category Description

Concept DepthFirstSearch

Concept Algorithm

Concept Graph

Attribute Exhaustive

Relation IsA

Relation Explores

3.2 Conceptual Grading

The grading stage consists of calculating the semantic distance between the annota-

tion sets (obtained in Section 3.1) of each student’s answer and that of the teacher’s

ideal answer, with respect to the course ontology. Because of space limitations, we

cannot give detailed calculations for the example. The reader is advised to see the full

explanation in the original publication [2], or an easy-to-follow example in [16].

The formulas used in [2] for calculating the semantic distances are given below. In

every function, teacher-provided constants allow for certain elements to be weighted

more or less heavily according to their importance. The best combination of these

constants is problem-dependent and should be discovered empirically. The “linguistic

distance” between the textual representation of the entities in the student and teacher’s

answer is also taken into account. All functions return values in the [0,1] interval.

Concept similarity. To calculate the concept similarity (CS) between concepts and

 , the following function is used:

 () () () () (1)

The constants , , indicate the relative importance of the corresponding

elements. Also, and .

The concept proximity (CP) is calculated using the taxonomy formed in the ontol-

ogy by the class hierarchy defined in OWL. Note that the <is-a> relation is explicitly

added to the course ontology (with the class as domain and the subclass as image)

where rdfs:subClassOf is used:

<owl:Class rdf:about="DepthFirstSearch">

 <rdfs:subClassOf rdf:resource="Algorithm"/>

</owl:Class>

If the concepts and have no taxonomic parent (other than the root), this value

is zero, otherwise it is defined as such:

 ()
| ()|

| |
 (2)

where | ()| is the number of concepts separating and through the

shortest common path through the taxonomic tree, and | | is the total number

of concepts in the ontology. A shorter path thus indicates a stronger similarity be-

tween the two concepts.

The properties similarity (PS) calculates the similarity between the set of properties

associated with and . The properties of a concept c are the union of the set of

attributes that have c as domain, and the set of relations that have c as domain or im-

age.

Lastly, () uses the Levenshtein distance between the string representation

of concepts and , written below, and is defined as follows:

 ()

 (3)

Attribute similarity. The attribute similarity between two attributes and of two

concepts is calculated by a similar function:

 () ()

 () () (4)

Here also, the non-negative constants , , must add up to 1. The function

 returns the (most specific) concept which is in the domain of a. The function

 () is defined as such:

 ()
| |

| {| |}|
 (5)

that is, the similarity of their value sets. The function returns the image of

the attribute a.

Relation similarity. The relation similarity between two relations and is calcu-

lated in a similar manner:

 () ()

 () () (6)

It is required that the sum of the non-negative constants , be 1. The function

 returns the most specific concept in the domain of r, while returns

the most specific concept in the image of r. The concept similarity is calculated twice,

to compare the domains of the relations and (obtained by) and the

images of the relations (obtained by), respectively.

Global evaluation. In order to accomplish the evaluation of a question, each of the

concepts of the student’s answer is associated with the closest concept of the ideal

answer, given that each concept can only be used once. The similarity between each

pair of concepts is then calculated and is multiplied by the relative numerical value of

the concept in the ideal answer. The similarity is then added to the final grade. The

same process is repeated for relations and attributes.

3.3 Procedural Knowledge Grading

Our system uses the same grading algorithm as OeLE [2]. The students’ answers are

compared to the teacher’s ideal answer. The grades are calculated based on the most

similar entity in the expected answer. In OeLE, the order of the entities is not factored

in the grade and any permutation of the linguistic expressions of the student’s answer

yields the same grade.

However, this is not appropriate for assessing procedural knowledge in our system.

If the above method is applied to evaluate text describing procedural knowledge such

as algorithms-related answers, the grade calculation ought to take into account the

relative order of a subset of concepts expressing procedural knowledge.

Functional concepts. In order to address this issue, we propose to add functional

concepts to the course ontology. A functional concept represents a global procedure, a

sequence of sub-procedures or individual steps to accomplish a given task.

Let us consider the following example algorithm, DepthFirstSearch, given in

pseudocode:

procedure DepthFirstSearch

 VisitRoot

 VisitFirstChildNode

 VisitOtherSiblings

end

procedure VisitRoot [...]

procedure VisitFirstChildNode [...]

procedure VisitOtherSiblings [...]

For every procedure or sub-procedure, we create a corresponding functional con-

cept: DepthFirstSearch, VisitRoot, VisitFirstChildNode, and VisitOtherSiblings. The

last three sub-procedures could in turn be further decomposed.

The functional concepts allow for a high-level description of the algorithm and

mask implementation details, which would be difficult to express in the ontology

using relations or attributes. Further decomposition of VisitRoot into individual steps

could be stated in any of the following ways:

DepthFirstSearch <visits> Root [using relation <visits>]

VisitRoot <visits> Root [same relation with a more specific concept]

Root.visited=true [the value of the attribute <visited> becomes true]

Representing functional concepts in OWL. Relationships between functions are

defined as meta-functions in [17]. These meta-functions are implemented in our sys-

tem as relations between two functional concepts. In this example, two instances of

the <is-preceded-by> relation are needed. One instance is needed between Visit-

FirstChildNode and VisitRoot, because the root has to be visited first, and another

between VisitOtherSiblings and VisitFirstChildNode, because the first child node

should be visited first. Similarly, three instances of the <is-achieved-by> relation are

used between VisitRoot and each of the remaining functional concepts.
The same idea is found in [18], where the relation preceded_by is defined similarly

to <is-preceded-by> and can be used to order any pair of classes P and P1. In other

words, P preceded_by P1 is defined as “Every P is such that there is some earlier P1”.

This relation is defined as transitive, and is neither symmetric, reflexive nor antisym-

metric.

In [19], an irreflexive and transitive relation precedes is used when “the sequence

of the related events is of utmost importance for the correct interpretation”. This paper

also defines the inverse relation follows.

Similarly, the working draft: “Time Ontology in OWL” [20] of the World Wide

Web Consortium (W3C) states that: “There is a before relation on temporal entities,

which gives directionality to time. If a temporal entity T1 is before another temporal

entity T2, then the end of T1 is before the beginning of T2.” This relation is part of the

time namespace.

In our implementation, the functional concepts and the <is-preceded-by> relation

are defined as such in OWL:

<owl:Class rdf:about="FunctionalConcept"/>

<owl:Class rdf:about="DepthFirstSearch">

 <rdfs:subClassOf rdf:resource="FunctionalConcept"/>

</owl:Class>

<owl:Class rdf:about="VisitRoot">

 <rdfs:subClassOf rdf:resource="DepthFirstSearch"/>

</owl:Class>

<owl:Class rdf:about="VisitFirstChildNode">

 <rdfs:subClassOf rdf:resource="DepthFirstSearch"/>

</owl:Class>

<owl:Class rdf:about="VisitOtherSiblings">

 <rdfs:subClassOf rdf:resource="DepthFirstSearch"/>

</owl:Class>

<owl:ObjectProperty rdf:about="IsPrecededBy"/>

Note that the <is-achieved-by> relation is implied by the class hierarchy rooted at

the concept FunctionalConcept, just as the <is-a> relation is implied by the class

hierarchy in OeLE.

For every algorithm, a separate (meta) ontology lists the required orderings specific

to that algorithm. Although there exists many algorithms for graph exploration, we

only need to define the functional concepts once in the course ontology, and their

ordering can then be declared in a separate ontology. For instance, the Breadth-

FirstSearch algorithm can be defined with the same functional concepts as above,

only ordered differently.

For DepthFirstSearch, the meta-ontology is as follows:

VisitFirstChildNode <is-preceded-by> VisitRoot

VisitOtherSiblings <is-preceded-by> VisitFirstChildNode

Note that the following relation is also inferred by the transitive property:

VisitOtherSiblings <is-preceded-by> VisitRoot

Grading with functional concepts. In our approach, the question evaluation process

remains mostly unchanged. No special treatment is given to the functional concept

class hierarchy rooted at the concept FunctionalConcept, even though its implied

relation is <is-achieved-by>, rather than the <is-a> relation implied for the other

concepts. This takes into account function nesting and composition, while allowing

calculating the proximity of the functional concepts.

However, the global evaluation of a student answer R takes into account the algo-

rithm-specific orderings of the meta-ontology. The new evaluation function is given

below:

 () (7)

The final grade (FG) for the student answer R is proportional to the global evalua-

tion of the answer, , obtained from Section 3.2. Here, is a constant in the

interval [0,1] allowing the teacher to adjust the relative importance of the correct or-

dering of concepts in the global evaluation. The ordering factor of the answer, ,

is defined as follows:

| |
 (8)

where represents the number of functional concepts having the right order-

ing in the student answer R, and | | the number of functional concepts or-

derings in the meta-ontology.

It should be noted that if functional concepts in the student’s answer are ordered

with the opposite relation (that is, <is-followed-by>), the evaluation algorithm inverts

the relation between the functional concepts.

Also, the individual student grades are affected by the number of defined order-

ings. If there are only a few orderings, as demonstrated below, students are strongly

penalized for every mistake. This is also the case with the concept proximity defined

in Formula 2, where the number of concepts in the ontology affects students' grades.

However, we can assume that the course ontology is fixed during evaluation, and that

the students' grades are therefore affected similarly (in a linear fashion).

4 Working Example and Results

Using Depth-First Search as an example, we can quantify the effect of the new evalu-

ation function on a student’s answer. To simplify, we omit the conceptual grading of

the answer and concentrate on the functional grading. Since the same entities are pre-

sent in both the student and teacher’s answers, the conceptual grade is 100%. The

ideal functional answer could be as follows: “Depth-First Search first visits the root

[of a graph], then [recursively] visits its first child node before visiting its other sib-

lings.” Table 2 shows the produced functional concepts.

Table 2. Example annotation of ideal answer to describe DFS (using only functional concepts).

Category Description

(Functional) Concept DepthFirstSearch

(Functional) Concept VisitRoot

(Functional) Concept VisitFirstChildNode

(Functional) Concept VisitOtherSiblings

Any permutation of this ideal answer taken as input by the original approach would

yield a grade of 100%. Now, consider the following student’s answer: “Depth-First

Search visits the root [of a graph], then [recursively] visits its first child node after

visiting its other siblings.” Here, “after” inverts the ordering of the two last concepts

(highlighted in bold below), yielding the following answer:

Table 3. Example annotation of student’s answer for DFS (using only functional concepts).

Category Description

(Functional) Concept DepthFirstSearch

(Functional) Concept VisitRoot

(Functional) Concept VisitOtherSiblings

(Functional) Concept VisitFirstChildNode

The student gave here the incorrect ordering:

VisitFirstChildNode <is-preceded-by> VisitOtherSiblings

However, these two student orderings are correct:

VisitFirstChildNode <is-preceded-by> VisitRoot [inferred]

VisitOtherSiblings <is-preceded-by> VisitRoot

As stated above, the conceptual grading of this answer, as performed by OeLE, is

100%. By using the new evaluation function (Formula 7), the final grade (FG) be-

comes:

 () (9)

where the global evaluation (GE) is 100%, the ordering factor (DF) is 66.67%, and

the constant is given a value of 1.0. Considering that the ideal answer to this algo-

rithm contains only three orderings for pairs of functional concepts (one is inferred)

and that a third is out of order, this low grade seems acceptable, or at least a reasona-

ble improvement over the former grade of 100% that would have been attributed had

we only used the conceptual grading system.

5 Conclusion and Future Work

The work presented in this paper adapts the OeLE system to include procedural

knowledge. The example was taken from an algorithms course given at Université de

Moncton. This approach could be used in other domains where procedural knowledge

is central to processing the text. For example, [18] and [19] apply similar methods to

biomedical ontologies.

The approach put forth in this paper introduces functional concepts to represent

procedural knowledge in ontologies. The class hierarchy of functional concepts is

considered as a series of instances of the relation <is-achieved-by> instead of <is-a>.

For every computer algorithm (or procedure, for other domains), a series of instances

of the relation <is-preceded-by> specify an ordering for pairs of functional concepts.

In this paper, the texts were annotated manually. We are considering annotating the

French texts semiautomatically as future work. The detection of the orderings (detect-

ing keywords such as “first”, “before”, “after” in the example of Section 4) could also

be performed automatically.

In the case where the student answer uses the opposite ordering relation (<is-

followed-by>), the relation between the functional concepts is inverted prior to evalu-

ation. Some more complex answers could require more inversions, for example if the

student wrote “X and Y should be done after Z”.

Future work could also consider flow control structures, such as loops or branches,

although the textual representation of those structures without proper indentation or

braces could be ambiguous. For example, the VisitOtherSiblings functional concept

can be decomposed into the following loop: (for every other sibling, VisitNode).

Another idea that could be explored would be to add the notion of recursive proce-

dures, such as Depth-First Search. VisitFirstChildNode and (every VisitNode of) Visi-

tOtherSiblings should include recursive calls. As an ideal answer, the teacher could

give either: DFS.isRecursive=true, or VisitFirstChildNode.isRecursive=true and Visi-

tOtherSiblings.isRecursive=true. Depending on the ideal answer given and their own

answer, students could be unjustly penalized.

References

1. Bloom, B.S.: Taxonomy of Educational Objectives, Handbook 1: The Cognitive Domain.

David McKay Co Inc., New York (1956)

2. Castellanos-Nieves, D., Fernández-Breis, J.T., Valencia-García, R., Martínez-Béjar, R.,

Iniesta-Moreno, M.: Semantic web technologies for supporting learning assessment.

Information Sciences 181(9), 1517-1537 (2011)

3. Pérez-Marín, D., Pascual-Nieto, I., Rodríguez, P.: Computer-assisted assessment of free-

text answers. The Knowledge Engineering Review 24(4), 353-374 (2009)

4. Callear, D., Jerrams-Smith, J., Soh, V.: CAA of short non-MCQ answers. In: Proceedings

of the 5th International CAA Conference, Loughborough, UK (2001)

5. Jordan, S., Mitchell, T.: e-Assessment for learning? The potential of short-answer free-text

questions with tailored feedback. British Journal of Educational Technology 40(2), 371-

385 (2009)

6. Sukkarieh, J., Pulman, S., Raikes, N.: Auto-marking: using computational linguistics to

score short, free text responses. In: Proceedings of the 29th IAEA Conference,

Philadelphia, USA (2003)

7. Rudner, L. & Liang, T.: Automated essay scoring using Bayes’ theorem. In: Proceedings

of the Annual Meeting of the National Council on Measurement in Education, New

Orleans, LA (2002)

8. Rosé, C., Roque, A., Bhembe, D., VanLehn, K.: A hybrid text classification approach for

analysis of student essays. In: Proceedings of the HLT-NAACL Workshop on Educational

Applications of NLP, Edmonton, Canada (2003)

9. Mason, O., Grove-Stephenson, I.: Automated free text marking with paperless school. In:

Proceedings of the 6th International CAA Conference, Loughborough, UK (2002)

10. Burstein, J., Leacock, C., Swartz, R.: Automated evaluation of essays and short answers.

In: Proceedings of the 5th International CAA Conference, Loughborough, UK (2001)

11. Hou, W.-J., Tsao, J.-H., Li, S.-Y., Chen, L.: Automatic Assessment of Students’ Free-Text

Answers with Support Vector Machines. LNCS 6096, 235-243 (2010)

12. Lutticke, R.: Graphic and NLP Based Assessment of Knowledge about Semantic

Networks. In: Proceedings of the Artificial Intelligence in Education conference, IOS Press

(2005)

13. Wiemer-Hastings, P., Allbritton, D., Arnott, E.: RMT: A dialog-based research methods

tutor with or without a head. In: Proceedings of the 7th International Conference on

Intelligent Tutoring Systems, Springer-Verlag, Berlin (2004)

14. Pérez-Marín, D., Alfonseca, E., Rodríguez, P., Pascual-Nieto, I.: Willow: Automatic and

adaptive assessment of students free-text answers. In: Proceedings of the 22nd

International Conference of the Spanish Society for the Natural Language Processing

(SEPLN), Zaragoza, Spain (2006)

15. Klein, R., Kyrilov, A., Tokman, M.: Automated Assessment of Short Free-Text Responses

in Computer Science using Latent Semantic Analysis. In: ITiCSE ‘11 Proceedings of the

16th annual joint conference on Innovation and technology in computer science education,

New York, USA, pp. 158-162 (2011)

16. Fernández-Breis, J.T., Valencia-García, R., Cañavate- Cañavate, D., Vivancos-Vicente,

P.J., Castellanos-Nieves, D. OeLE: Applying ontologies to support the evaluation of open

questions-based tests. In: Proceedings of the KCAP’05 WORKSHOP. SW-EL’05:

Aplications of Semantic Web Technologies for E-Learning (in conjunction with 3rd

International Conference on Knowledge Capture (KCAP’05)), Banff, Canada (2005)

17. Aroyo, L., Dicheva, D.: Courseware authoring tasks ontology. In: Proceedings of the

International Conference on Computers in Education, pp. 1319-1320. (2002)

18. Smith, B., Ceusters W., Klagges, B., Köhler, J., et al.: Relations in biomedical ontologies.

Genome Biology 6(R46) (2005)

19. Schulz, S., Markó, K., Suntisrivaraporn, B. Formal representation of complex SNOMED

CT expressions. BMC Medical Informatics and Decision Making 8(1) (2008)

20. World Wide Web Consortium (W3C), http://www.w3.org/TR/2006/WD-owl-time-

20060927/, last accessed 2012-11-21.

http://www.w3.org/TR/2006/WD-owl-time-20060927/
http://www.w3.org/TR/2006/WD-owl-time-20060927/

