

A manifest for application generators: helping developers
with the Serenoa framework

Javier R. Escolar, Cristina G. Cachón, Ignacio Marín
Fundación CTIC

C/ Ada Byron, 39 – 33207 – Gijón, Asturias (Spain)
{javier.rodriguez,cristina.cachon,ignacio.marin@fundacionctic.org}

+34 984291212

ABSTRACT
The Serenoa framework proposes an open platform for
developing context-aware application Service Front-Ends.
It is based on a set of languages to define user interfaces
(UIs) in an abstract manner and rules to guide application
adaptation. After these languages, various software modules
(Runtime UI Generation Engine sub-modules) may
transform the abstract application definition to final user
interfaces to be rendered by actual devices for end-users to
interact with it. As each of the available RUIGE sub-
modules may be dedicated to the generation for specific
application domains, support different types and
technologies of adaptation and target different software
platforms, we consider that a mechanism to help Serenoa
developers to decide which sub-modules best suits their
needs. The proposed mechanism is a manifest file to be
provided by the developer of a specific RUIGE sub-
module, which must describe the application domains that it
covers, the interaction modalities supported, the hardware
and software platforms targeted, the adaptation types
considered (and which resources are adapted and to what
other type of resource they are transformed) and any other
piece of relevant information for developers to guess how
good each RUIGE sub-module is for them. Additionally, a
search engine (RUIGE Assistant for developers) is
suggested for developers to have an entry point and, thus,
be able to specify requirements and obtain a list of RUIGE
sub-modules to cover their needs.

Author Keywords
Context awareness; service front-end; adaptation; user
interface; search engine.

ACM Classification Keywords
D.2.2. Software engineering: Design tools and techniques.
D.2.6. Software engineering: Programming environments.
D.2.13. Software engineering: Reusable software. D.3.4.
Programming languages: Processors. H.5.m. Information

interfaces and presentation (e.g., HCI): Miscellaneous.

General Terms
Human Factors; Design; Languages.

INTRODUCTION
The Serenoa framework [1] is an open platform, which
intends to provide software developers with a set of
software tools which collaborate among them in order to
facilitate the development of context-aware Service Front-
Ends. A Service Front-End is the type of application that
the Serenoa framework can generate: a user interface which
provides access to local or remote service whose logic is
defined aside. Serenoa applications support a wide concept
of context by adapting to its different aspects, such as
device capabilities, user preferences and the various
conditions of the environment [2].

In order to achieve the previous goals, the Serenoa
framework is based on a modular architecture, as depicted
in Figure 1.

Figure 1. Serenoa architecture (as depicted in Serenoa
deliverable D.X.X)

The main idea on which the framework is based is the
definition of applications at a high abstraction level by
means of a language called AAL-DL (UI Design module of
the diagram in Figure 1), and a language named ASFE-DL
to express adaptation rules under the Event-Condition-
Action paradigm (used in the Design-time Adaptation
engine). Afterwards, the abstract application definition is
processed by the RUIGE (Runtime User Interface
Generation Engine) module, which corresponds to the
Runtime Engine module in Figure 1. This module is
actually composed of different sub-modules, each of them

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

in charge of the generation of the an abstract application
definition for different target platforms, domain
applications, audiences, or supporting different types of
adaptation or interaction modalities, for instance. It is not
necessary that all the RUIGE sub-module have to be
operated at the same time for a single application by a
developer. Actually, a typical situation may be that a
developer decides to work with only one or two RUIGE
sub-modules.

In order to facilitate the use of the framework by the
developer community, a set of assistive tools is provided.
The first available set of tools is focused on application
design by means of a web IDE to create and refine both the
specification of user interfaces (AAL-DL language) and of
adaptation rules (ASFE-DL language). We consider that
more work needs to be done in the creation of assistive
tools for developers using the Serenoa framework. At this
moment, there are several RUIGE sub-modules, such as
MARIAE (for desktop and mobile platforms and supporting
multimodal interaction), UsiXML (also focused on
multimodal multi-device applications) or MyMobileWeb
(for mobile web browsers), an avatar-based module (in
which the user interface is an avatar of a human being,
supporting voice and gesture interaction), LEONARDI
(specialized in business applications for native and web
clients on desktop and mobile platforms, in which the UI
must adapt to changes in the data model), and the
warehouse module (focused on multimodal interaction in a
specific scenario: operators in a warehouse). The number of
RUIGE sub-modules created so far already suggests the
need to present their characteristics in an organized manner
for application developers evaluating the Serenoa
framework. For example, there are RUIGE sub-modules
specialized in specific application domains (LEONARDI,
for business applications; or the warehouse module, for the
interaction of warehouse operators with their environment).
Some of them support resource (images, video, audio)
transcoding, but there is no formal specification about
which source and target formats are supported. These are
clear examples of information that developers intending to
use the Serenoa framework will need to know, with the
only chance to read an important amount of documents or
even having to contact the developer of the different
RUIGE sub-modules. This problem will become
increasingly relevant as new sub-modules are added to the
framework over time.

Therefore, we propose that each RUIGE sub-module is
annotated with a manifest file that indicates all the
information that may be relevant for application developers
in order to decide whether each sub-module is sufficiently
good for their purpose. In addition, we consider that
gathering the manifest descriptions of all the RUIGE sub-
modules in a repository, and allowing queries to this
repository after the application requirements provided by
developers, is an interesting assistive tools. In this way,
developers may know in advance whether one or more of

these sub-modules facilitate the creation of the application
that they want to implement.

The following paragraphs discuss the idea previously
proposed in the different sections of this document. After
this introduction, Section “Manifest file definition”
proposes the initial ideas for a definition of the manifest
file. Section “RUIGE assistant for developers” suggests the
fundamental concepts on which the search engine assistive
tool, which matches application requirements and RUIGE
sub-module features, would be based. Finally, Section
“Conclusion and future work” states the conclusion of this
work and advises new ideas for consideration in order to
refine the initial idea in this document.

MANIFEST FILE DEFINITION
The different concepts to be expressed in the manifest file,
as a means to describe the distinct RUIGE sub-modules
may be found in the Context-Aware Design Space (CADS)
and Context-Aware Reference Framework (CARF), defined
in [2] as part of the work of the Serenoa project.

The CADS is a theoretical method that provides
stakeholders a tool to support them in the phases of
implementation, analysis and evaluation of adaptive and
adaptable applications. The goal of CADS is helping
developers before implementing their applications to be
aware of possible dimensions and granularity levels for
performing adaptation, and after the implementation to
analyse, evaluate and compare these dimensions regarding
their respective coverage levels. As such the CADS
supports the analysis and the comparison of different
applications that execute adaptation and during their
complete development lifecycle. The concepts in CADS are
categorized in Meta-UI support level, level of adaptation,
UI component granularity, state recovery granularity, UI
deployment and technological space coverage.

The CARF is defined as a reference framework that
specifies the most relevant concepts to implement and
perform context-aware adaptation. This reference
framework has a graphical representation composed by
seven branches that contains potential instances for
implementing, performing and also analysing context-aware
adaptation. It may be represented by means of a mind-map,
with seven branches indicating the seven abstract concepts
involved in context-aware adaptation:

• Why, defining the main goals for the adaptation process.
For instance, adaptation may be performed to save
battery consumption at client-side.

• What, which describes the type of resources that may be
adapted, including presentation elements, media
resources such as audio or video, and navigation flow.

• Who, referring to the actor who triggers, manages or
executes an adaptation process.

• When, which represents the state when adaptation takes
place (e.g., design time, run time, or compilation time).

• Where, which indicates the virtual location where the
adaptation happens. Some examples of virtual location
are client side, server side or an intermediate proxy.

• To what, reflecting context information that justifies and
defines the adaptation process. For example, colour
adaptation to improve the contrast for users with low-
contrast vision.

• How, defines how the adaptation process is performed,
including the methods, strategies and techniques used.

Figure 2. Example of CARF instance with the most relevant
concepts for context-aware, as shown in [2]

The proposal in [3] to reflect CARF as a mind map has
been considered by the authors of this article as a good
starting point in order to represent the manifest file. This
conceptual model may be easily translated as an XML file
representing the tree structure associated to a mind map, or
even as a JSON file. More information required, in order to
add information from the CADS, would be added following
a tree structure by adding a root node, ancestor to the
adaptation root node in the CARF mind map, and then
adding CADS elements.

Leaving aside the manner in which the file (or an
alternative physical representation for the logical tree
structure) is formatted, the main problem to develop the
manifest file is the large amount of vocabularies required in
order to express all the information. This may be minimized
after an analysis of existing vocabularies. For instance:

• Internet Media Types [3], also known as MIME Media
Types [4], are the elements included in the listing curated
by the IANA (Internet Assigned Numbers Authority).
These elements are a two-part identifier for resources

available on the Internet. They are widely used in Internet
protocols, such as SMTP, POP3, IMAP, HTTP, RTSP,
RTP or SIP. It does not only cover content, such as audio,
video, text, images, animations, etc. (thus allowing,
supported formats by a RUIGE sub-module –for instance,
as source and target formats of an adaptation process),
but also messages and application formats. The latter is
very interesting in order to express, for example, the
format in which an application is generated by a RUIGE
sub-module –namely, “application/x-apple-diskimage”
for a Mac OSX disk image, or “application/x-winexe” for
a Windows binary executable.

• UAProf vocabulary [5], which allows the description of
software and hardware platforms, as required (for
example), in the “to what” branch of the CARF. Under a
more fine-grained CARF description, it also allows the
reference to hardware parts or software modules of an
operating system, including for example Bluetooth
profiles, radio communication technologies (such as
GPRS, EDGE, UMTS, HSDPA, and LTE).

• W3C Ontology for Media Resources [6], which defines
a core vocabulary for description of media resources, and
their mapping to elements from a set of existing metadata
formats. For instance, it supports the definition of the
author, creation/edition date and location, description,
keywords, genre, rating, relation with other resources,
copyright and policy information, fragment identification,
compression, format, and other metadata about each
resource. This opens more powerful expressivity in the
“what” branch, for instance.

• Ontologies for user description, with a large amount of
research efforts devoted to this topic in the last decade,
such as “Creating an Ontology for the User Profile:
Methods and Application” [7], FOAF [8] or SIOC [9].

These and other vocabularies, identified after a more
rigorous analysis of the state-of-the-art may provide support
to a great part of the complete vocabulary required to
express CARF and CADS properties. It must be also taken
into account that some other vocabularies would be simple
enough so a set of values would be sufficient for each
element in the vocabulary, as it can be seen for the “when”
or “where” branches in Figure 2 –at least for a non fine-
grained first approach. As commented before, a vocabulary
describing application domains would be required in order
to express business limitations for some RUIGE sub-
modules, such as “applicable only to warehouse picking
scenario” or “applicable only to business applications”, or
technological limitations, such as “targeted at mobile web
browsers”.

RUIGE ASSISTANT FOR DEVELOPERS
After each RUIGE sub-module is described by means of a
manifest file, a possible extension for Serenoa would be the
inclusion at the main page of the project of a link to what
we have called the “RUIGE assistant for developers”. The

idea behind this assistant is that a developer facing the
challenge of creating context-aware applications with
Serenoa can easily discover the best RUIGE sub-modules.

This assistant would be a web application in which
developers would set the main features of the applications
that they want to implement with Serenoa, checking them
against the information contained in the manifest file for
each RUIGE sub-module existing in the framework.
Developers would be advised for each feature with their
accepted values by means of a combo box or text auto-
completion.

• Application domain/business domain, so the results
returned by the assistant would recommend RUIGE sub-
modules for that specific domain. Alternatively, it would
also recommend those with no specific
application/business domain declared, considering that
those are generators of any type of application –but
sorting them later in the list of matching RUIGE sub-
modules.

• Resource adaptation formats desired would be, in its
simplest form, two lists including the Internet media
types accepted as source and target for adaptation
process. More advanced options would support different
source/target pairs, one per resource type: audio, images,
video, etc.

• Audience, so developers could express the set of users
targeted. For instance, colour-blind users.

• Target devices, in order to express software and
hardware platforms to be covered, including the
distribution format for the application –for instance, a
Flash application or an executable binary.

In general, developers should be able to query which CARF
and CADS features are supported by each RUIGE sub-
module and thus decide whether they match the
requirements for the application in scope.
Several questions may arise from this simple first approach
based on syntactic search, such as what to do when a
RUIGE sub-module matches the business domain required
by a developer, but another RUIGE sub-module (not
specialized in a single business domain) targets all the
devices desired by the developer.

CONCLUSION AND FUTURE WORK
The authors believe that an entry point clarifying the
possibilities of all the available RUIGE sub-modules to the
developer community is an interesting issue that needs to be
covered in some way by the Serenoa consortium. The
application of more complex information models to express

the manifest description would highly improve the
functionality of the RUIGE assistant for developers. For
instance, modelling the CARF and CADS in the CARFO
ontology would allow that the manifest was expressed by
means of RDF triples which would refer the entities
expressed in CARFO. By defining the appropriate
relationships, and perhaps adding a rule set to implement
the corresponding decisions, expressivity problems deriving
from the simplest syntactic search approach to implement
the assistant would be solved –for instance, to balance
different criteria as in the conflict expressed at the end of
the previous section.

ACKNOWLEDGEMENT
This work received funding from the European
Commission’s Seventh Framework Program under grant
agreement number 258030 (FP7-ICT-2009-5).

The authors wish to thank the participants in the Serenoa
project for the cession of material for this article.

REFERENCES
1. Serenoa project. http://serenoa-fp7.eu.
2. Motti, V. G. D2.1.2. CARF and CADS. Public

deliverable of the FP7 Serenoa project. 2012.
3. Bray, T. Internet Media Type registration, consistency

of use. World Wide Web Consortium.
http://www.w3.org/2001/tag/2002/0129-mime.

4. Internet Assigned Numbers Authority. MIME Media
Types. http://www.iana.org/assignments/media-
types/index.html.

5. The Open Mobile Alliance. WAG UAProf (2001).
http://www.openmobilealliance.org/tech/affiliates/wap/
wap-248-uaprof-20011020-a.pdf

6. Champin, P. et al. Ontology for Media Resources 1.0.
W3C Recommendation. 2012.
http://www.w3.org/TR/2012/REC-mediaont-10-
20120209/.

7. Golemati, M. et al. Creating an Ontology for the User
Profile: Methods and Applications. In Proceedings of
the First International Conference on Research
Challenges in Information Science. 2007.

8. The Friend Of a Friend project. http://www.foaf-
project.org.

9. The Semantically-Interlinked Online Communities
initiative. http://sioc-project.org.

