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Abstract. Runtime Code Update is a technique to update a program while it
is running. Such a feature is often used so the developer can modify an appli-
cation without the necessity to restart the application and recover desired state
after restart. This saves time and lowers costs. Furthermore, there are applica-
tions which cannot be stopped, such as air traffic control systems or telephone
switches. Current virtual machines for Java programming language do not sup-
port non-trivial updates to the running code. We have modified STX:LIBJAVA – an
implementation of Java virtual machine within Smalltalk/X – to support arbitrary
changes to the running code. Beside changes to the fields and methods which are
already supported by the tools such as JRebel or Javaleon, we also support unre-
stricted changes to the class and interface hierarchy. Our Runtime Code Updates
scheme has been integrated into the Smalltalk/X IDE, thus providing interactive
environment where a developer can modify a Java application while it is running.

1 Introduction

The ability to dynamically update the code of a running application is interesting for
many domains. It can reduce downtime of long-running systems by eliminating the
need for stopping, redeploying and starting the application again. There are applications
that have to be maintained and improved but cannot be stopped. Financial transaction
processors, telephone switches, air traffic control systems, are all examples of such
applications.

Dynamic code updates can improve programmer productivity during programming
by giving instant feedback without the need to wait for rebuild and deployment (Shan
[12]). Kabanov and Vene [7] show that many of their clients have applications which
take more than 15 minutes to rebuild. It is clear that support for dynamic code updates
saves a lot of development time and reduces total cost of the software product. Fur-
thermore, runtime code update can improve debugging efficiency by not forcing the
programmer to restart the program and to recreate bug preconditions.

Updating the code of the running program has been researched in the past (Fabry
[3]) and is still investigated today (Dmitriev [1], Kabanov and Vene [7], Orso et al.
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[10], Redmond and Cahill [11], Subramanian et al. [13], Würthinger et al. [14]). Sup-
port for runtime code updates is common in VMs for dynamic languages, but not so
common in VMs for statically typed languages such as Java (Ebraert and Vandewoude
[2]). For example HotSpot VM3– the reference VM for Java– has only limited support
for runtime code update. Currently, only changes to the method bodies are allowed.

There are approaches for some types of runtime code updates for Java including:
JRebel4 and Javaleon5 – an application-level systems; Dynamic Code Evolution VM6 –
a modification of the HotSpot VM allowing runtime code changes; JVolve7 – a solution
based on the Jikes Research VM.

None of existing solutions supports all types of runtime code updates. HotSpot VM
has not been developed with runtime code updates in mind and has to be modified to
support this feature. Such modification requires a large amount of engineering work.

In this paper we present STX:LIBJAVA – a Java VM implementation for Smalltalk/X
VM – which has been modified to support all types of runtime code updates for Java.
We show solutions and implementation details which relate to the runtime code updates
which may be relevant to all Java virtual machines.

The contributions of this paper are (i) presentation of the system supporting all types
of runtime code updates for Java, (ii) identification of problems related to runtime code
update support in STX:LIBJAVA and (iii) description of solutions to runtime code update
problems in STX:LIBJAVA.

The paper is organized as follows: Section 2 describes the types of possible runtime
code updates. Section 3 gives an overview of STX:LIBJAVA, a Java VM implementa-
tion used. In Section 4 we present our solutions and important implementation details.
Section 5 discusses future work. In Section 6 we present related work and Section 7
concludes the paper.

2 Problem Description

2.1 Types of Runtime Code Updates

There are multiple types of runtime code updates, some of which are already imple-
mented in the HotSpot VM, or provided by 3rd party tools executing at the applica-
tion level, such as JRebel or Javaleon. More complex changes require modification
of the HotSpot VM, as shown by Dynamic Code Evolution VM (DCE VM) project
(Würthinger et al. [14]). Other relevant solutions make use of non-standard or research
VMs, e.g., JValve (Subramanian et al. [13]). A system providing full runtime code up-
dates should handle all types of updates in Table 1, also containing a comparison of
standard HotSpot VM, DCE VM, JRebel, Javaleon and JValve.

3 http://openjdk.java.net/groups/hotspot/
4 http://zeroturnaround.com/software/jrebel/
5 http://javeleon.com/index.php
6 http://ssw.jku.at/dcevm/
7 http://www.cs.utexas.edu/ suriya/jvolve/
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Feature HotSpot DCE VM JRebel Javaleon JValve
Changes to method Bodies X X X X X
Adding/removing fields x X X X X
Adding/removing methods x X X X X
Adding/removing constructors x X X X X
Adding/removing classes x X X X X
Replacing superclass x X x X x
Adding/removing implemented interfaces x X x X x
Custom migration of changed instances x x X X X
Custom migration of changed classes x x x x X

Table 1. Comparison of HotSpot, DCE VM, JRebel and Javaleon features

2.2 Update of the Method Body

Out of all code updates, update of the method body is the simplest and most often used
one. The signature of the method remains the same, only the code of the method is
modified, for example after fixing simple bug.

As an example of this change, consider code shown in Listing 1.1. In Ticket-
Controller, we modify the buyButtonClicked method. The changed method
is shown in Listing 1.2.

1 public class TicketController {
2

3 private TicketView view;
4 private TicketsSeller seller;
5 private TicketValidator validator;
6

7 ...
8

9 public void buyButtonClicked() {
10 Ticket ticket = view.getTicket();
11 seller.sellTicket(ticket);
12 }
13 }

Listing 1.1. Initial code before a method body update

1 public void buyButtonClicked() {
2 Ticket ticket = view.getTicket();
3 if (validator.isValid(ticket)) {
4 seller.sellTicket(ticket);
5 } else {
6 throw new RuntimeException();
7 }
8 }

Listing 1.2. Code of the method after the update of the method body
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2.3 Binary Compatible Update

Binary compatible update does not break the compatibility of the class with any exist-
ing code. Following types of updates fall into this category: adding a field8, adding a
method, adding a contructor, adding an implemented interface9.

Following on our example in Listing 1.1, consider adding an arbitrary method.
Adding this method does not break any existing code. No class depending on the
TicketController has to be modified. But, there is an opportunity to modify other
classes in the system to use newly added method (in e.g., button click handler). This way
the whole system can be improved and evolved at runtime.

2.4 Binary Incompatible Update

Binary incompatible update breaks compatibility with existing code. The following
types of updates fall into this category: removing a field, removing a method, chang-
ing a signature of a method, replacing a superclass, removing an implemented interface.
Such a situation has to be perceived and handled by the system. The runtime system can
rollback the update or apply the update and throw an exception when incompatibility
causes a problem.

Imagine we change the signature of the existing method. All dependent classes will
keep invoking the class with the old signature, but there is no such method present in the
updated class anymore. If the system allows such update, the NoSuchMethodError
should be raised.

2.5 Updates of the Instance Format

Adding and removing a field poses an unique problem. The layout of the object changes.
There may be live instances of the updated class. After the update, the instance format
expected by the class is different to the instance format on the heap. And simply adding
or removing the fields can bring the instance to the unexpected state not attainable by
the normal execution.

2.6 Updates of the Class and the Interface Hierarchy

Updates to the class and interface hierarchy are the most complex. The methods and
fields could be added or removed by updating the hierarchy therefore runtime system
must be prepared for such change. From the point of view of the type safety the type
correctness of the program could be broken by updating the hierarchy.

8 Adding a field is more complex, as elaborated in Section 2.5.
9 Adding an interface is also more complex change, as elaborated in Section 2.6
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3 STX:LIBJAVA

Java is 2nd most used language nowadays having more than 17% community share10.
Despite huge popularity, Java still lacks a runtime and development environment offer-
ing dynamic code reloading, interactive and incremental compilation. Also these fea-
tures are foundations of high programming productivity of Smalltalk developers (Shan
[12]).

STX:LIBJAVA is an implementation of the Java virtual machine built into the Smalltalk/X
environment. In addition to providing the infrastructure to load and execute Java code,
it also integrates Java into the Smalltalk development environment including browsers,
debugger and other tools.

STX:LIBJAVA aims at providing fully compatible Java VM implementation, which
is also capable of full interoperability with Smalltalk and vice versa. More about the
architecture and interoperability features can be read at Hlopko et al. [6].

3.1 Architecture of STX:LIBJAVA

In this section we will briefly outline STX:LIBJAVA’s internal architecture.
Unlike other projects which integrate Java with other languages, STX:LIBJAVA does

not use the original JVM in parallel with the host virtual machine, nor does it translate
Java source code or Java bytecode to any other host language. Instead, the Smalltalk/X
virtual machine is extended to support multiple bytecode sets and execute Java bytecode
directly.

Java runtime classes and methods are implemented as Smalltalk Behavior and
Method objects. In particular, Java methods are represented as instances of subclasses
of the Smalltalk Method class. However, they refer to the Java bytecode instead of
the Smalltalk bytecode. Execution of the Java bytecode is implemented in the virtual
machine. In the same way that the Smalltalk bytecode is handled by the VM, the Java
bytecode is interpreted and/or dynamically compiled to the machine code (jitted).

The main disadvantage of our approach (as opposed to having a separate original
JVM execute Java bytecodes) is that the whole functionality of the Java virtual machine
has to be reimplemented. This includes an extensive number of native methods, which
indeed involve a lot of engineering work. However, we believe that this solution opens
possibilities to a much tighter integration which would not be possible otherwise.

3.2 Reference Resolving

Among other information, Java classfile contains a Constant Pool, a pool of constants
and references used within the class (Lindholm and Yellin [9]). Constant Pool Reference
(CPR) can be of following types: ClassRef, MethodRef, InterfaceMethodRef, FieldRef
and StringRef. For example, ClassRef consists only of a single string constant, which
contains a Fully Qualified Domain Name (FQDN) of the referenced class (Lindholm
and Yellin [9]). MethodRef consists of a class ref, which identifies the class containing
the method, and the name and type of the method.

10 According to http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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Every class is compiled into separate classfile. In order for this class to be used by
the application, the classfile must be loaded and class needs to be linked. Superclass
and superinterfaces are (if not already) loaded and linked before the class is linked.
Final static fields have to be initialized to their constant value, and the static initializer
of the class must be called (possibly setting the values of nonfinal static fields). After
that the class is installed into the class registry.

1 public static String getNameAndParams() {
2 return String.format(
3 "%s?useUnicode=true",
4 databaseName);
5 }

Listing 1.3. An example of the method requiring further resolving

References are not only resolved during linking, they may be resolved also later in
the runtime. Consider the method at Listing 1.3. The method contains references to the
String class and its format method (used for string interpolation), but the method
is not called during static initialization of the class. These references are therefore not
resolved. They will be resolved, when the first invocation of the getNameAndParams
method occurs. This lazy resolving scheme is used by STX:LIBJAVA (and HotSpot VM,
DCE VM, Jikes RVM11, JVolve and others).

Now consider the state of the VM as shown in Figure 1. In the top left corner the
source code of the currently executed method is shown – the getPaidDatemethod of
the Ticket class. In the top right corner the bytecode of the getPaidDate method
is shown. 3 sections follow, first showing the state of the VM before the execution of the
GETFIELD instruction, second showing the state after the GETFIELD was executed.
The last one will be explained in Section 4.4. In each of sections on the left the constant
pool of the Ticket class is shown, in the middle the Java Metadata Area of the VM
with Ticket class and its field paidDate are shown. On the right the Java heap is
shown, currently containing only one instance of the Ticket class. The instance con-
sists of the header containing various fields needed by the runtime, garbage collection,
synchronization etc. These are not relevant to our problem. Instance also contains a
class pointer, pointing to the Java Metadata Area, where a runtime Java class represen-
tation resides. Finally, instance contains a slot for every field it should have. In our case,
the Ticket class only has 3 fields.

Consider the state of the VM from the Part A at Figure 1. ClassRefs and FieldRefs
(and the not shown MethodRefs as well) in the constant pool contain a cache field.
Initially, the field is empty, but when the reference is resolved for the first time, cache
is filled. Next time a reference needs to be resolved, cached value is returned immedi-
ately, without the need to lookup the class, method or field, which greatly improves the
performance.

When the execution advances, GETFIELD instruction is to be executed. The in-
stance which field is to be loaded is already on the stack, pushed by previous ALOAD_0
instruction. The reference identifying the field is stored in the constant pool at the index

11 http://jikesrvm.org/
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...
64: 'paidDate'
65: 'cz/.../Ticket' 
66: nameAndType {
      name         64
      type         65
    }
67: classRef {
      name:        65
      cache:       nil
    }
68: fieldRef {
      classRef:    67
      nameAndType: 66
      cache:       nil      
    }
...

Constant Pool

aload_0      //push this to the stack
getfield 68  //get value of the field 
               specified by FieldRef at CP[68]
areturn      //return the value of the field

public Date getPaidDate() {
    return paidDate;
}

JavaField

name: 'paidDate'
type: 'java/lang/Date'
offset: 3

JavaClass

name: 'cz/.../Ticket'

Java Metadata Area Java Heap

...
64: 'paidDate'
65: 'cz/.../Ticket' 
66: nameAndType {
      name         64
      type         65
    }
67: classRef {
      name:        65
      cache:       
    }
68: fieldRef {
      classRef:    67
      nameAndType: 66
      cache:         
    }
...

Constant Pool

JavaField

name: 'paidDate'
type: 'java/lang/Date'
offset: 3

JavaClass

name: 'cz/.../Ticket'

Java Metadata Area Java Heap

a Ticket instance

class pointer

numberOfSeats

paidDate

1

2

3

price

header

...
64: 'paidDate'
65: 'cz/.../Ticket' 
66: nameAndType {
      name         64
      type         65
    }
67: classRef {
      name:        65
      cache:       
    }
68: fieldRef {
      classRef:    67
      nameAndType: 66
      cache:  
    }
...

Constant Pool

JavaField

name: 'paidDate'
type: 'java/lang/Date'
offset: 3

JavaClass

name: 'cz/.../Ticket'
not-cacheable: true

Java Metadata Area Java Heap

a Ticket instance

class pointer

numberOfSeats

paidDate

1

2

3

price

header

a Ticket instance

class pointer

numberOfSeats

paidDate

1

2

3

price

header

a Ticket instance

class pointer

numberOfSeats

paidDate

1

2

3

price

header

4

contactName

JavaClass

name: 'cz/.../Ticket'
not-cacheable: true

JavaField

name: 'paidDate'
type: 'java/lang/Date'
offset: 4

???

???

A: Before the execution of the GETFIELD instruction

B: After the execution of the GETFIELD instruction

C: After update - contactName field added

Fig. 1. State of the STX:LIBJAVA in different resolving situations
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68 (68 is given as an argument to the instruction directly in the bytecode). Situation
after the processing of the instruction is shown in Part B at Figure 1. A cache field
of the ClassRef at index 67 points to the runtime representation of the Ticket class,
cache of the FieldRef points to the runtime representation of the paidDate field of
the Ticket class. In our situation, Ticket class has 3 fields, and the offset of the
paidDate field is 3. The GETFIELD instruction will retrieve instance data from the
heap and will jump to the 3rd slot, pushing the found value to the stack.

4 Implementation

Currently, runtime code update support in STX:LIBJAVA operates at the level of a class.
Due to the absence of an incremental compiler for Java, the whole class needs to be
recompiled on each update. Incremental compiler is able to compile single method, as
opposed to whole Java compilation unit, as is the case of the Standard javac com-
piler – a compiler currently used by STX:LIBJAVA. When update occurs, the difference
between the old and new versions of the class is found and the update is handled de-
pending on the type.

In this section we will revisit the types of runtime code updates. For each type
we will describe how STX:LIBJAVA supports the update and what were the problems
affecting the implementation.

4.1 Update of the Method Body

Updates of the method bodies (described in Section 2.2) are easiest to manage. No
existing code is broken and nothing on the heap has to change.

The update could cause changes in the constant pool by e.g., introducing new con-
stants or references in the method body. Therefore constant pool of the new version
of the class completely replaces the old constant pool. Also, bytecodes of all methods
must be replaced, as the indices into the constant pool may not be valid after the update.

In the case of Figure 1, when getPaidDate method changes, the constant pool
of the Ticket class is replaced, and the bytecodes of all its methods are replaced. The
change does not affect the TicketController or other classes which depend or use
the Ticket class.

There may be running invocations of the updated method. These invocations are not
modified and are left intact. There are attempts to replace the method as it is running
(Kabanov and Vene [7], Subramanian et al. [13]) by analyzing the update and migrating
the code of the method in the middle of its execution. However there are situations,
when the method cannot be transparently updated (Subramanian et al. [13]). There is a
large amount of engineering work involved in such an approach, and the results are not
always predictable by the programmer. STX:LIBJAVA therefore does not modify running
methods in favor of always accepting method body updates and predictable behavior.
Therefore only new invocations are affected by the update, similarly to the behavior of
the HotSpot VM (Dmitriev [1]).
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4.2 Binary Compatible Update

In STX:LIBJAVA, binary compatible updates (described in Section 2.3) are handled sim-
ilarly to the update of the method body. Whole constant pool and bytecodes of the
methods have to be replaced. In addition, new method must be installed into the class.

Another subtle issue may arise when dealing with overloaded methods. By adding a
method, an existing method could be overloaded. Java compiler is responsible to choose
best-matching method based on the static types of its arguments. There may be classes
in the system, which need to be recompiled and updated in order to correctly choose
one of overloaded methods.

By default, STX:LIBJAVA ignores these situations. The behavior can be compared to
the situation, when the application is compiled against a certain version of a particular
library, and then providing different version at runtime. However, dependent classes can
be recompiled when explicitly requested.

4.3 Binary Incompatible Update

The essential problem of this type of update is that it breaks existing code. An applica-
tion can try to invoke non-existing methods or to store a value to non-existing field. In
general, there are 2 solutions: Allowing the update, and throwing an exception, when
removed method is accessed. This corresponds to the behavior of the HotSpot VM in
the situation mentioned in Section 4.2, when a different version of a library is provided
in runtime. When a method existing in compile-time but non-existing in run-time is in-
voked, the NoSuchMethodError is thrown. Detecting the incompatibility and not
allowing the update at all (possibly rolling back other already applied updates). This
approach has an advantage that the system is always in compatible state.

In STX:LIBJAVA, these updates are allowed even when they break existing code.
When a legacy class tries to invoke a method, which has been removed by the update,
an exception is thrown. The exception can be caught and the problem can be fixed by
updating the system in runtime, e.g., by implementing missing method or by updating
the code calling removed method.

4.4 Update of the Instance Format

When a field is added or removed by the update, the instance format changes. In Sec-
tion 3.2 we showed, that the instance on the heap contains among other unrelevant fields
a single slot per declared field. After the layout changing update the fields declared by
the class would be different to what currently living instances contain. Additionally, as
there are resolved fields stored in the cache field of the FieldRef, the offset stored in
resolved field may no longer be valid. Existing classes which have already cached the
resolved field may access incorrect or unexisting slot, resulting in heap corruption and
in abnormal application termination. Therefore this issue must be addressed by the sys-
tem. There are 2 solutions – migrating the instances with update or allowing multiple
versions of a class to coexist and leave old instances intact.

Updating the class and migrating existing instances is the standard approach taken
by other dynamic code evolution projects for Java (Gregersen and Jørgensen [4], Ka-
banov and Vene [7], Subramanian et al. [13]), also due to the limitations of the HotSpot
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VM and Java class loading design decisions (Liang and Bracha [8]). The main problem
of this solution is how to ensure that the migrated instances are in the correct state. So-
lutions such as leaving added or changed fields uninitialized or initialized to the default
value are not practical and can cause the instance to be in a state not achievable by nor-
mal program execution. This approach should be and usually is accompanied with the
ability to specify custom migration logic (Gregersen and Jørgensen [4], Kabanov and
Vene [7], Subramanian et al. [13]).

Allowing multiple versions of a single class opens the possibility to leave old in-
stances to live with old class version, and new instances to use new class version. This
is the approach taken by STX:LIBJAVA and by DCE VM (Würthinger et al. [14]). When
a class is updated in such a way that the instance format changes, the old class version
is removed from the Java class registry (whis is used to lookup Java classes in STX:
LIBJAVA), but as the class is still referenced by the old instances it is not garbage col-
lected until all instances die naturally. New class version is installed into the registry
and all new instances are created using new class version after the installation. Advan-
tage of the approach is that the programmer is not forced to provide migration methods
for each update and still all the instances are in the valid state. In case the instances
need to be migrated immediatelly with the update, the developer can explicitly provide
a custom migration method and all instances will be migrated.

The migration must happen atomically, as there may be Java threads working with
affected instances. The standard solution is to wait for all threads to reach and wait in
a safe-point (Gregersen and Jørgensen [4], Kabanov and Vene [7], Subramanian et al.
[13]). Thread is in a safe-point when it can yield its execution – on every method invo-
cation, backward-jump and method return. After the migration, all threads are resumed.

Having more than one class version in runtime brings up an issue. As shown in
Figure 1, FieldRefs in the constant pool, once resolved, cache the field so when the
reference is accessed next time, the resolving phase can be skipped. When there are
multiple versions of a single class, the offset of the field can vary depending on the
class version of the current instance at runtime.

To illustrate this problem, consider Part C in Figure 1. After the update, which has
added contactName field to the Ticket class, there are multiple versions of the
class, as shown in Java Metadata Area. Both these versions contain paidDate field,
but in the new version, the offset of the field is 4, on contrary to 3 in old version. To
solve this problem, classes, which have multiple coexisting versions, are marked as
non-cacheable. When a FieldRef is resolved, the marked classes are detected and then
the resolved value is not cached. This way the resolving is performed every time.

While solving the problem, this solution is not perfect. As field access is very com-
mon operation, STX:LIBJAVA keeps the track of all old class versions in the weak
array12. Everytime a reference for non-cacheable class is resolved, the weak array is
checked. If the array contains only single item, it means there are no old class versions
anymore, the class is marked as cacheable and resolved value can be cached again.
Therefore the performance is hindered only for a limited time after the change. The
concrete performance measurements have not yet been taken and are part of the future
work, as mentioned in Section 5.

12 items in the weak array are free to be collected by the garbage collector
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4.5 Update of the Class and Interface Hierarchy

As described in Section 2.5, two issues must be addressed in order to handle updates to
the class and interface hierarchy.

In STX:LIBJAVA, we handle these updates similarly to updates of the instance format
(Section 4.4), by allowing both old and new versions of the class to coexist. In this case,
the type safety of the existing instances is not broken.

Type safety can be broken, when old instances are migrated by the update, and still
stored in fields of static type not type compatible with new type information. Gupta et al.
[5] states that the consistency problem is undecidable. Therefore in STX:LIBJAVA it is
a responsibility of the migration logic provided by the programmer to ensure that the
system will be in consistent state. When an update causes an error later in the runtime,
NoSuchFieldError, NoSuchMethodError, or ClassCastException are
raised.

5 Future Work

As the runtime code update support in STX:LIBJAVA is still under development, it has
not been tested in the real world yet. We expect and believe, that it would be possible
to evolve a Java project from initial version (e.g., first commit in the source code repos-
itory) to the latest version without the need to restart the application. Similarly, there is
no performance analysis of the runtime code update support in STX:LIBJAVA done yet.

A working incremental compiler for Java would enable us to implement fully inter-
active environment for Java where it would be possible to start the application before it
is completely finished, and to implement missing pieces in the runtime incrementally.
A work on such compiler is therefore also part of our future plans.

Currently, all instances are migrated immediately, blocking the execution of all
threads. While this is a solution taken by many (Gregersen and Jørgensen [4], Kabanov
and Vene [7], Subramanian et al. [13]), lazy migration of instances would be beneficial
for long-running applications. We are currently evaluating a solution where instances
would be migrated when they are resolved.

6 Related Work

6.1 JVM HotSwap

JVM Hot Swap is a feature of Java HotSpot VM which enables, albeit limited, dynamic
code updates. HotSpot VM is capable of handling changes to method bodies after im-
plementation of the first stage of Dmitrievs (Dmitriev [1]) four-step plan in the Java
platform. However, other steps have never been implemented, due to the amount of
the engineering effort needed. As elaborated by Dmitriev [1], HotSpot VM has been
designed for Java and with performance in mind, which makes runtime code update
implementation difficult. On contrary to STX:LIBJAVA, other types of updates are not
supported.
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6.2 Dynamic Code Evolution VM
Dynamic Code Evolution VM (DCE VM) is a modification of the Java HotSpot VM
that allows dynamic class redefinition at runtime. It allows for arbitrary code evolution
changes including changes to class and interface hierarchy.

DCE VM suffers from an issue, when the dynamic type of variable does no longer
match its static type, a problem described at Section 4.5 STX:LIBJAVA does not suffer
from this issue and allows for all types of dynamic code changes without breaking the
execution. These situations would end up raising a NoSuchMethodError.

6.3 JRebel, Javaleon, Javadaptor and other
There is a group of application level tools which operate on unmodified HotSpot VM,
while providing runtime code update support for various types of change. These solu-
tions make heavy use of HotSwap feature together with Java class loading. In general,
some kind of proxy service is installed and this service dispatches to concrete class
versions. By adding a proxy layer these solution bring certain overhead to the normal
execution, even when there are no updates applied. Because proxies

JRebel is commercial tool providing support for dynamic changes including adding/re-
moving methods and fields, but lacks the ability to dynamically change parents hierar-
chy (Kabanov and Vene [7]).

Javaleon is another commercial product allowing arbitrary changes to the running
Java application, including changes to the parent and interface hierarchies, but updates
take effect at the granularity level of components, thus Javaleon is usable only when an
application is developed on top of a component system, such as NetBeans Platform or
Eclipse Rich Client Platform. In order to operate, Javaleon have to preprocess the whole
standard library and all 3rd party libraries used by application.

Javadaptor takes a slightly different approach. Instead of loading classes with new
class loader, it performs renaming of the classes, therefore allowing them to be loaded
by the existing class loader. Similarly to Javaleon and JRebel, they use bytecode ma-
nipulation and dynamic proxying in order to achieve runtime code update.

The big advantage of these tools is that they execute on the standard, unmodified
HotSpot VM, allowing the runtime code updates to be used without the need to update
deployment machines. However, despite large amount of engineering effort put into
these projects (Kabanov and Vene [7]), they cannot be compared to customized VM
feature and(or) performance-wise.

7 Conclusion

Runtime code update as a technique to update a program while it is running has proven
to be valuable feature of a runtime system improving development and debugging speed
while lowering the costs and downtime of long-running applications. In this paper, we
presented runtime class update support in STX:LIBJAVA, a Java VM implementation
for Smalltalk/X VM. To our knowledge, STX:LIBJAVA is the only publicly available
virtual machine for Java that supports all types of runtime code updates. Runtime code
update support enables the STX:LIBJAVA to become the first fully interactive develop-
ment environment for Java.
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