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Abstract. The treatment of many-valued data with FCA has been
achieved by means of scaling. This method has some drawbacks, since
the size of the resulting formal contexts depends usually on the number
of different values that are present in a table, which can be very large.
Pattern structures have been proved to deal with many-valued data,
offering a viable and sound alternative to scaling in order to represent
and analyze sets of many-valued data with FCA.
Functional dependencies have already been dealt with FCA using the
binarization of a table, that is, creating a formal context out of a set of
data. Unfortunately, although this method is standard and simple, it has
an important drawback, which is the fact that the resulting context is
quadratic in number of objects w.r.t. the original set of data.
In this paper, we examine how we can extract the functional dependen-
cies that hold in a set of data using pattern structures. This allows to
build an equivalent concept lattice avoiding the step of binarization, and
thus comes with better concept representation and computation.
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1 Introduction and Motivation

In the relational database model there are different types of dependencies ([1,18]).
Functional dependencies are among the most popular. The reason is that they
are important in order to explain the normalization of a database scheme in the
Relational Database Model. Functional Dependencies (FD’s) have their own set
of axioms ([5,18]), which, in turn, are also shared by other dependencies. For
instance, implications share the same axioms as functional dependencies ([2]),
which are basically reflexivity, augmentation and transitivity.

These axioms state how functional dependencies behave in the presence of a
set of dependencies of the same kind. For instance, we can decide whether a set
of functional dependencies Σ implies a single FD σ, that is, Σ |= σ
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We can also find a minimal set of functional dependencies that implies a
given set of them, that is, we can compute Σ′ such that Σ′ |= Σ, where Σ′ is
minimal. In this case, we also say that Σ′ is the minimal generating set of Σ.
These two problems have been studied in [1] and [16], and algorithms have been
proposed. Yet, it is important to note that this calculation is performed starting
from a set of dependencies, not a set of data.

In this paper, we aim at finding a characterization of functional dependencies
that hold in a set of data using Formal Concept Analysis and pattern structures.

The lattice characterization of a set of Functional Dependencies is studied in
[6,7,8,9], and the characterization with a formal context in [3,12]. This charac-
terization is based on a binarization, which is the transformation of the original
set of data into a binary context.

In fact, the primary concern when computing the characterization of a set of
functional dependencies with FCA is that, generally, the dataset is many-valued,
and not binary. This means that the set of data must be somehow transformed
to obtain a binary context.

Applying conceptual scaling (without information loss) results either in a
larger set of objects in the resulting formal context, or a larger set of attributes.

On another hand, pattern structures ([11,14]) have emerged as a valid alter-
native to work with non binary contexts and specially with numerical contexts,
as well as to avoid the complexity drawbacks that are present in scaling.

Therefore, we have two different methods of computing the characterization
of a set of functional dependencies that hold in a set of data:

1. Binarizing or scaling the original set of data, and obtaining a formal context.

2. Using pattern structures.

The purpose of this paper is twofold. On the one hand, we propose using
pattern structures as a way to compute the characterization of a set of functional
dependencies that hold in a set of data. The interest is to prove that pattern
structures is a flexible mechanism that may encode the semantics of functional
dependencies without adding further penalty to the resulting formal context. On
the other hand, we aim at setting up a solid connection between the formalism of
pattern structures and the finding of other different kinds of dependencies that
may hold in a given set of data.

The paper is organized as follows. Firstly, the definitions of functional de-
pendencies and their axioms are explained in Section 2 together with the scaling
procedure allowing one to derive a formal context from a numerical dataset that
characterize FD. Then, Section 3 presents the general formalism of pattern struc-
tures. Section 4 gives the core of this article: it shows how to define a pattern
structure that holds the same concept lattice than with the introduced scaling. It
follows experiments in Section 5 showing the interest of using pattern structures.
Finally, the conclusion draws attention to perspectives of research.
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2 Motivating Example

This example shows how functional dependencies can be extracted using FCA
(this is based on [4]). The main idea behind this method is called binarization,
and consists in transforming (implicitly) a many-valued set of data into a binary
context. This transformation allows us to build a formal context.

Before explaining this process, we first introduce functional dependencies
(FD’s). Let U be a set of attributes, and let Dom be a set of values (a domain).
For the sake of clarity, we assume that Dom is a numerical set. A tuple t is
a function t : U 7→ Dom, and a table T is a set of tuples. Usually tables are
presented as a matrix, as in the following example:

id A B C D

t1 1 3 7 2
t2 1 3 4 5
t3 3 5 2 2
t4 3 3 4 8

where the set of tuples (or objects) is { t1, t2, t3, t4 } and U = {A,B,C,D }
is the set of attributes.

Given a tuple t ∈ T , we say that t(X) (for all X ⊆ U) is the restriction of
the tuple t in the attributes X ⊆ U , this is the values of t in the attributes X.
For instance, we have that t2({A,C }) is { 1, 4 }. We drop the set notation and
say that t2(AC) is { 1, 4 }.

Definition 1 ([18]). Let T be a set of tuples, and X,Y ⊆ U . A functional
dependency (FD) X → Y , holds in T if:

∀ti, tj ∈ T : ti(X) = tj(X)⇒ ti(Y ) = tj(Y )

For instance, we have that the functional dependency C → B holds in T ,
whereas the functional dependency A→ B does not, because t3(A) = t4(A) but
t3(B) 6= t4(B).

We are now ready to explain how to extract the set of functional dependencies
that hold in a set of data, using FCA:

1. We define a formal context derived from the original many-valued data T .
2. We extract the implications that hold in the concept lattice associated to

that context ([12]).
3. We see that the implications that hold in the concept lattice are the func-

tional dependencies that hold in the original table T .

In order to define a formal context, we need to define first the set of objects:

G = { (ti, tj) | i < j and ti, tj ∈ T }

It corresponds to the set of all pairs of tuples from T (excluding symmetry
and reflexivity). The relation of the context is defined as:
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3 Pattern Structures in Formal Concept Analysis

We assume the reader to be familiar with basic notions of formal concept analy-
sis. We use the standard notations from [12]. Our interest lies in handling numer-
ical data within FCA. Hence, we recall here the formalism of pattern structures
that can be understood as a generalization towards complex data, i.e. objects
taking descriptions in a partially ordered set.

A pattern structure is defined as a generalization of a formal context de-
scribing complex data [11]. Formally, let G be a set of objects, let (D,⊓) be a
meet-semi-lattice of potential object descriptions and let δ : G −→ D be a map-
ping associating each object with its description. Then (G, (D,⊓), δ) is a pattern
structure. Elements of D are patterns and are ordered by a subsumption relation
⊑: ∀c, d ∈ D, c ⊑ d ⇐⇒ c ⊓ d = c. A pattern structure (G, (D,⊓), δ) gives rise
to two derivation operators (·)�:

A� =
l

g∈A

δ(g) for A ⊆ G

d� = {g ∈ G|d ⊑ δ(g)} for d ∈ (D,⊓).

These operators form a Galois connection between (2G,⊆) and (D,⊓). Pattern
concepts of (G, (D,⊓), δ) are pairs of the form (A, d), A ⊆ G, d ∈ (D,⊓), such
that A� = d and A = d�. For a pattern concept (A, d), d is a pattern intent
and is the common description of all objects in A, the pattern extent. When
partially ordered by (A1, d1) ≤ (A2, d2) ⇔ A1 ⊆ A2 (⇔ d2 ⊑ d1), the set
of all concepts forms a complete lattice called pattern concept lattice. Existing
FCA algorithms [15] can be used with slight modifications to compute pattern
structures, in order to extract and classify concepts (details in [11,14]).

4 Finding FD with Partition Pattern Structures

As introduced in Section 2, an existing binarization allows to build a concept
lattice from which a set of FDs can be characterized [12]. However, this formal
context tends to be very large, even when the initial data are of reasonable size.
We show here how the formalism of pattern structures can be instantiated to
obtain an equivalent concept lattice. The so called partition pattern structures
come with several advantages among which computation and interpretation of
the resulting lattice.

4.1 Preliminaries on the partition lattice

Partition of a set. Given a set E, a partition over E is a set P ⊆ ℘(E) s.t.:

–
⋃

pi∈P

pi = E

– pi ∩ pj = ∅, for any pi, pj ∈ P with i 6= j.
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In other words, a partition covers E and is composed of disjoint subsets of E.

Equivalence relation. A partition P over a set E is an equivalence relation RP

on E. The 1-1-correspondence between P andRP is given by (e, e′) ∈ RP iff e and
e′ belongs to the same class of P [6,13]. For example, given P = {{1, 2, 3}, {4}},
one has the relation RP = {(1, 2), (1, 3), (2, 3), (1, 1), (2, 2), (3, 3), (4, 4)} (omit-
ting symmetry for the sake of readability).

Ordering relation. A partition P1 is finer than a partition P2 (P2 coarser than
P1), written P1 ⊑ P2 if any subset of P1 is a subset of a subset in P2. For
example,

{{1, 3}, {2}, {4}} ⊑ {{1, 2, 3}, {4}}

Meet of two partitions. It is defined as the coarsest common refinement. In
other words, it is the intersection of the respective equivalence relations:

{{1, 3}, {2, 4}} ⊓ {{1, 2, 3}, {4}} = {{1, 3}, {2}, {4}}

or {(1, 3), (2, 4)} ∩ {(1, 2), (1, 3), (2, 3)}

Join of two partitions. It is defined as the finest common coarsening. In
other words, it is the transitive closure of the union of the respective equivalence
relations.

{{1, 3}, {2}{, 4}} ⊔ {{1, 2}, {3}{4}} = {{1, 2, 3}, {4}}

or transitive closure({(1, 3), (4, 4)} ∪ {(1, 2)(3, 3), (4, 4)})

Finally, one should notice that the property P1 ⊓ P2 = P1 ⇔ P1 ⊑ P2

naturally holds (and the dual for join). Thus the set of all partitions over a set
forms a lattice (D,⊓,⊔) and can be used as a description space of a pattern
structure.

4.2 Partition pattern structure

Consider a numerical table as a many-valued context (G,M,W, I) where G cor-
responds to the set of objects (”rows”), M to the set of attributes (”columns”),
W the data domain (”all distinct values of the table”) and I ⊆ G ×M ×W a
relation such that (g,m,w) ∈ I also written m(g) = w means that attribute m
takes the value w for the object g [12]. In Table 1 (left), we have D(4) = 8.

We show how a partition pattern structure can be defined from a many-valued
context (G,M,W, I) and show that its concept lattice is equivalent to the concept
lattice obtained after binarization (see Section 2). Intuitively, formal objects of
the pattern structure are the attributes of the numerical dataset. Then, given an
attribute m ∈ M , its description δ(m) is given by a partition over G such that
any two elements g, h of the same class take the same values for the attribute m,
i.e. m(g) = m(h). The result is given in Table 1 (middle). As such, descriptions

180 Jaume Baixeries, Mehdi Kaytoue and Amedeo Napoli





Proof. Consider both structures (M,B2(G), I) and (M, (D,⊓,⊔), δ). They both
hold the same set of ”formal objects” M (attributes in the many-valued con-
text). In the pattern structure, elements of M are described by a partition over
G. In the formal context, elements are described by pairs of objects, that is, by
definition, the representation of the same partitions. As such, elements of M are
described in an equivalent way. Furthermore, intersections in both representa-
tions are equivalent too. Indeed, the meet operation between two partitions is
known to be the intersection of their equivalence class representation. Since it is
known that derivation operations are defined in pattern structures in the same
way than in formal contexts, the proposition naturally holds.

Example. The pattern concept ({B}, {{1, 2, 4}, {3}}) is equivalent to the formal
concept ({B}, {(1, 2), (2, 4), (1, 4)}).

From this example, one should remark that pattern structures offer more
concise intent representation when the set of object becomes very large, i.e.
storing a partition instead of all pairs of objects that are together in a same
class of the partition. This leads us to the next section, where the attention is
drawn to a computational comparison of both approaches.

5 Experiments

We showed how pattern structures can alternatively represent the formal con-
text (M,B2(G), I) by means of partition patterns. Both concept lattices are
equivalent and thus can be used to characterize FD. To assess the usefulness of
introducing partition pattern structures, we applied both methods to well known
UCI datasets5. To compute with formal contexts, we wrote a simple procedure
to scale the many-valued context into a formal context, and applied the (C++)
closed itemset mining algorithm LCM (version 2 [17]). Whereas this algorithm
only computes concept intents, it is known to be one of the most efficient for
that task. To compute with pattern structures, we turned the many-valued con-
text into a set of partitions over G (one for each attribute m ∈M) and applied
a slight (Java) modification of the algorithm CloseByOne [15]. Indeed, the lat-
ter can be easily adapted by changing the definition of both intersection and
subsumption test, used for closures computation (a detailed explanation for an-
other instance of pattern structures can be found in [14]). As such, this method
computes pattern concepts, i.e. both pattern extent and intent.

Table 2 gives the details of the datasets and their derived formal context we
experiment with. Note that in column |B2(G)|, formal objects (g, h) with empty
description, i.e. {(g, h)}′ = ∅ for any g, h ∈ G, are not taken into account. Table 3
gives the execution time of both methods. For pattern structures, execution
times include the reading of the data, their process to a set of partitions and
the CloseByOne execution. Concerning formal contexts, execution times include
data reading and process with LCM, while the time to build the formal context
is not taken into account. In both case, algorithms only output the number of

5 http://archive.ics.uci.edu/ml/datasets.html
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patterns. The experiments were carried out on an Intel Core i7 CPU 2.40 Ghz
machine with 5 GB RAM.

(G,M,W, I) (B2(G),MI)

Dataset |G| |M | |B2(G)| Avg. |g′| Density

iris 150 5 4,363 1.38 27.56%
hepatitis 155 20 11,935 9.02 45.08%

glass 214 10 19,601 1.74 17.43%
imports-85 205 26 20,904 6.24 23.99%

balance-scale 625 5 143,236 1.67 33.35%
crx 690 16 236,633 5.53 43.54%

flare 1,066 13 567,645 8.79 67.60%
abalone 4,177 9 3,752,318 1.19 13.18%

krkopt-25% 7,013 7 20,115,505 1.84 26.26%
krkopt-50% 14,027 7 76,547,447 1.72 24.59%
krkopt-75% 21,040 7 171,199,419 1.66 24.22%

krkopt-100% 28,056 7 299,171,478 1.67 23.88%

adult-25% 8,140 15 33,124,730 6.32 42.14%
adult-50% 16,280 15 132,507,392 6.34 42.28%
adult-75% 24,320 15 295,709,848 6.34 42.20%

adult-100% 32,561 15 530,077,524 6.33 42.21%
Table 2. Datasets and their characteristics

From Table 3, it can be observed than computing with formal contexts is
faster for the smallest datasets, even abalone that holds more than 3 millions
of formal objects. However, with bigger datasets, from 20 to 530 millions of
objects, partition pattern structures are the only able to compute the set of
concepts. This holds for 7 numerical attributes already, and is bolder with 15.
It is indeed already known that complexity of computing FD is highly related
with the number of numerical attributes M .

As already suggested in [14,11] in different settings, the explanation is that
when working with simple descriptions (i.e. vectors of bits), computing an in-
tersection is more efficient than when working with more complex descriptions.
Indeed, partitions are encoded in our algorithm as vectors of bitvectors (i.e. par-
titions) and both intersections or inclusion tests computation require to consider
all pairs of sets between the two partitions in argument. Although we used opti-
mizations avoiding an exhaustive computation between all pairs (by considering
a lectic order on parts), those operations are more complex than standard inter-
sections and inclusion tests between sets. However, we need to compute much
less intersections, thus the following trade-off. Pattern structures perform better
with larger datasets. Formal objects (numerical attributes) map to concise de-
scriptions (partitions) whereas they map with the equivalence class of the same
partitions in the case of formal contexts. Consequently, pattern structures are
preferred to formal contexts when the number of possible pairs of objects that
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CloseByOne LCMv2

Dataset Pattern concepts Time (ms) Concept intents Time (ms)

iris 26 13 26 4
balance-scale 30 30 30 76

flare 4,096 258 4,096 650
glass 133 373 133 41
crx 9,528 4,367 9,528 112

abalone 252 5,887 252 692
hepatitis 95,576 11,178 95,576 122

imports85 205,623 228,877 205,623 112

krkopt-25% 126 195 126 5,441
krkopt-50% 126 352 N/A N/A
krkopt-75% 126 631 N/A N/A

krkopt-100% 126 896 N/A N/A

adult-25% 10,881 43,949 N/A N/A
adult-50% 12,398 152,242 N/A N/A
adult-75% 13,133 316,250 N/A N/A

adult-100% 13,356 520,431 N/A N/A

Table 3. Comparing pattern structures and formal context representations. N/A
means that the computation was intractable for memory issues.

agree for one or more attributes is high (|B2(G)|). Finally, let us recall that exe-
cution times for formal contexts do not include the scaling procedure time, since
such procedure is highly dependent of I/O performances. We simply remark
that conceptual scaling lengths more than 5 minutes for the dataset adult-100%
resulting in a text-file of more than 10 giga-bytes (in the standard format of
itemset mining algorithms: each line corresponds to an object described by the
indexes of its attributes separated by a space).

To conclude, even with a simple Java implementation of CloseByOne (com-
puting both extents and intents of pattern concepts), we gave here a proof of
concept that pattern structures reveal themselves as a good trade off to over-
come scaling difficulties, i.e. for computing the set of concepts whose lattice is
equivalent to the one obtained after conceptual scaling.

6 Conclusions

We have presented a method to compute the characterization of a set of func-
tional dependencies that hold in a set of many-valued data, based on formal
concept analysis plus pattern structures. From this characterization, it is simply
a matter of applying well-known algorithms to compute the minimal set of de-
pendencies that imply the whose set (otherwise known as the Duquenne-Guigues
basis). There was already methods to compute the characterization of those de-
pendencies using FCA: One possibility is using conceptual scaling, which is the
classical method to deal with many-valued data in FCA. This paper proposes to

184 Jaume Baixeries, Mehdi Kaytoue and Amedeo Napoli



use pattern structures, because they have already been used successfully to deal
with many-valued data ([14]).

The empirical results compare an algorithm based on scaling versus another
based on pattern structures, and show that scaling is faster for small datasets,
whereas pattern structures perform better for large datasets, precisely where the
scaling-based algorithm is not able to compute the output. This indicates that
this new paradigm is more scalable in terms of time and memory. Since datasets
tend to become larges and contain more attributes, this scalability may be a
much important feature than speed in small datasets.

The results in this paper present a new paradigm for computing a char-
acterization of functional dependencies that outperforms algorithms based on
the classical conceptual scaling, which shows the interest of pattern structures
for dealing with many-valued data within FCA. We think that the results that
have been presented open the possibility to adapt this pattern structures based
framework to other kinds of dependencies, namely, multi-valued dependencies
and similar constraints that may be found in different fields.
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