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Abstract: In this paper, we introduce the dependence graph of a lattice
defined on the set of its join-irreducible elements. This graph, issued from the
dependence relation on a lattice, is a nice structure encoding together the min-
imal generators and the canonical direct basis of a lattice. Then, we propose a
new generation algorithm.
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1 Introduction

From the year 2000, the increasing interest into Formal Concept Analysis (FCA)[7]
in various domains of computer science, such as data-mining and knowledge rep-
resentation, as well as the fields of ontology or databases, has brought to light
the structure of concept lattice. A concept lattice can be introduced as a directed
acyclic graph with the lattice property, defined from data described by a binary
table object x attribute, named a context. The nodes of the graph are concepts -
a concept is a maximal subset of objects possessing common attributes. This lat-
tice composed of concepts connected by a generalization- specialization relation,
supplies a very intuitive representation of the data.

FCA’s increasing importance has many reasons. For one, new scientific ar-
eas have recently begun to incorporate computer technologies on a large scale
through data-bases, whence a large production of data and the need for handling
them. Secondly, the increasing power of computers permits the automatization
of tasks that might have, in the worst case, exponential time-space costs. Among
them, the typical problems from FCA related to the representation of a lattice
that could have exponential size relative to the size of the original data.

In data mining, the problem of classification is naturally related to the notion
of concept from FCA. Unsupervised classification consists in grouping objects
that have close attributes while separating those having distant attributes; su-
pervised classification groups objects having a same label (called class), while it
distinguishes those having different labels. The notion of concept is then repeat-
edly used in applications to classify data, in a supervised or unsupervised way.
Dependencies between attributes are classically represented by rules. Associative
rules, well-known in data mining, can be either exact or approximate rules. For
relational data-bases, systems of rules are known under the name of functional
dependencies. The combinatorial explosion of the number of rules and the grow-
ing volume of data to be handled have made the use of concise representations,
called bases, necessary.
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In lattice theory, a fundamental representation theorem establishes that ev-
ery lattice is the concept lattice of its binary table [1] defined from irreducible
elements of the lattice - particular elements that are not a join or a meet of other
elements. A second and less known representation theorem states that every fi-
nite lattice is isomorphic to a lattice of closed sets, where the closure operator
can be defined by a basis of rules defined on the join-irreducible elements of the
lattice.

There can be many equivalent bases, where two bases are equivalent if they
give rise to the same closed set lattice. The canonical direct basis is the only
one that is direct, meaning that the closure of an arbitrary set can be computed
by just one application of the rules to the set, and that, at the same time, is
minimal among the direct systems. Moreover, it has been shown in [2] that this
basis is equivalent to five other bases whose rules are called minimal functional
dependency in the domains of relational databases [10], and proper implications
in the data-mining area research [13] whose premises are minimal generators of
the lattice.

In this paper, we introduce the dependence graph as a representation of a
lattice defined on the set of its join-irreducible elements. This graph, issued from
the dependence relation on a lattice [1], is a nice structure encoding together the
minimal generators and the canonical direct basis of a lattice. Representation of
a lattice in the form of an edge-labeled graph was first suggested in [11]. This
OD-Graph is closely associated to the D-relation on the set of join-irreducibles
of a lattice, subset of the dependence relation, that was crucial in the study of
free and lower bounded lattices [6].

After a first section of definitions, we define the dependence graph of a lat-
tice. In the last section, we discuss about existing generation algorithms of the
dependence graph, and we propose a new generation algorithm.

2 Definitions

Lattice. In lattice theory, the structure of lattice can been introduced either as an
algebraic structure provided with two operators named lower and upper bounds,
or as an ordered structure defined by the existence of particular elements called
upper and lower bounds [3].

More formaly, a lattice is an order relation ≤ on a set S (i.e. a reflexiv,
antisymmetic and transitiv relation) where every couple of elements has a a join
and a meet. The meet (resp. join) of x and y, denoted x∧ y (resp. x∨ y), is the
unique greatest lower bound (resp. least upper bound) of x and y.

Meet and join elements are defined in a more general but identical manner
for a subset X ⊆ S: the meet of X, noted ∨X, is the unique greatest element
of the predecessors of X, while the join of X, noted ∧X, is the unique least
element of the successors of X. As a direct consequence, any lattice admits a
unique maximal element called top and denoted ⊤ or 1, and a unique minimal
element called bottom and denoted ⊥ or 0.
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The strict order relation of any order relation ≤, denoted <, is an antisym-
metric, transitive and irreflexive relation defined by x < y if x ≤ y and x 6= y.
It corresponds to the reflexive reduction of ≤. The cover relation of ≤, denoted
≺, is an antisymmetric relation defined by x ≺ y if x < y, and there is no z so
that x < z < y. We then say that y cover x. It corresponds to the reflexive and
transitive reduction of ≤. The Hasse diagram is a graphical representation of an
order where only the arcs of the cover relation ≺ are represented since reflexivity
and transitivity edges can be deduced.

Irreducibles elements. An element of a lattice is called reducible if it corresponds
to a meet and a join of two distinct elements. Otherwise, it is called irreducible.
More precisely, an element j is called a join-irreducible if for any subset X of
elements, j = ∨X implies that j ∈ X. An element m is called meet-irreducible
if for any subset X of elements, m = ∧X implies that m ∈ X. The set of join-
irreducibles of a lattice L is usually denoted JL, and the set of meet-irreducibles
ML. In particular, we have ⊥ = ∨∅ and ⊤ = ∧∅ implying that ⊥ is not a
join-irreducible, and ⊤ is not a meet-irreducible.

A nice characterization establishes that an element is a join-irreducible if,
and only if, it covers only one element, denoted j−, while an element is a meet-
irreducible if, and only if, it is covered by only one element, denoted m+.

Any element x ∈ S of a lattice L is the join of its predecessors, and the meet
of its successors. The latticial property implies a reduction to join-irreducible
predecessors and meet-irreducible successors:

x = ∨Jx = ∨{y ∈ JL : y ≤ x} (1)

x = ∧Mx = ∧{y ∈ML : y ≥ x} (2)

Therefore, irreducible elements are enough to build the lattice in its en-
tirety, using either join irreducibles for reconstruction by upper bound, or meet-
irreducibles for reconstruction by lower bound. Moreover, JL and ML are mini-
mal set allowing reconstruction.

Minimal generators. Consider one element x ∈ S. Although x is the join of Jx,
Jx is not always the minimal subset to define x as a join. A minimal subset to
obtain x as a join, including in Jx, is named a basis, a minimal generating set or
a minimal generator for x. More formally, a minimal generator of x is a subset
B of Jx such that x = ∨B and B is inclusion-minimal, i.e for all A ⊂ B, then
x 6= ∨A. The family Bx of minimal generators of x is then:

Bx = {B ⊆ Jx : x = ∨B and x 6= ∨A for all A ⊂ B} (3)

The dual observation for Mx is valid for a reconstruction of x as meet. The
number of minimal generators of x can be exponential in the cardinality of Jx
in the worst case.

Consider the example of lattice in Figure 1(a). Six elements possess a single
incoming arc, forming all join-irreducibles ; the meet-irreducibles, characterized
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(a) A lattice (b) The isomorphic lattice with the sets Jx and
Mx inside each node x

Fig. 1. Example of lattice

by a single outcoming arc, are heigth:

J = {a, b, c, d, e, f} (4)

M = {b, c, d, i, k, l,m, n} (5)

These irreducible elements are used to describe more precisely the elements of the
lattice (see Figure 1) where node of each element x contains its join-irreducible
predecessors Jx and its meet-irreducible successors Mx. Minimal generators are
given in Table 1. One can observe that each join-irreducible possesses itself as
unique minimal generator ; the top element possesses 4 minimal generators.

x a b c d e f g

Jx a b ac def e f ∅
Bx {a} {b} {c} {d} {e} {f} {∅}

x h i j k l m n

Jx ef adef abcdef aef bf af ae

Bx {ef} {ad} {ab, bc, bd, dc} {aef} {bf} {af} {ae}

Table 1. Minimal generators of the lattice in Figure 1(a)
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3 Dependence graph and canonical direct basis of a
lattice.

Dependence graph. The dependence graph of a lattice is defined on the set
JL of join-irreducible elements.It is an edge-labeled directed graph whose edges
corresponds to the dependence relation δ of a lattice [1], and are labeled by some
minimal generators, thus a size that can be exponential in the cardinality of JL.
More precisely, the dependence graph of a lattice L is a pair (δ, ω) where:

– δ is the dependence relation [1] defined on JL by jδj′ if there exists x ∈ S
such that j 6≤ x, j′ 6≤ x and j < j′ ∨ x. We note jδxj

′.

– ω is a label of the edges defined on P(JL), for each relation jδj′, by:

ω(j, j′) = {minimal generators of x : jδxj
′ and x minimal in the lattice

A pair (j, j′) ∈ δ can be denoted either jδxj
′ or jδBj

′, with B minimal generator
of x. Figure 2 represents the dependence graph of lattice in Figure 1(a).

Fig. 2. Dependence graph of the lattice in Figure 1(a)

The subgraph δ∅ of the dependence graph to the edges containing the empty
set as label corresponds to the subgraph of the lattice induced by its join-
irreducible, since j < j′ implies j < j′ ∨ ⊥ and ω(j, j′) = J⊥ = {∅}. As a
direct consequence, a lattice is distributive when edge-labels of its dependence
graph all are the empty set.
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Canonical direct unit basis. A set of unit implication (or rules) Σ is a binary
relation between P(S) and S where a rule (X, y), generaly denoted X → y,
means that X”implies” y, with X called the premisse and y the conclusion.

The dependence graph encodes a set of rules defined on the join-irreducibles
JL of a lattice, with a rule B + j′ → j for each (j, j′) ∈ δB . This set of rules
forms a particular basis of the lattice called the canonical direct unit basis, and
denoted Σcdb [2].

Morover, an important result establishes that every lattice is isomorphic to
the closed set lattice (F ,⊆) of its canonical direct basis, where F is a family on
JL. This family contains all the closures of the basis where a closure is a subset
X of JL verifying all rules, i.e. for each rule B → y, if B ⊆ X then y ∈ B.

Therefore, the dependence graph of a lattice encodes the canonical direct
basis from which the lattice reconstruction is possible as a closed set lattice.

4 Generation algorithm

Since the size of the dependence graph can be exponential in the size of the
lattice, this generation problem belongs to the more general class of problems
having an input of size n, and an output of size N bounded by 2n. For this
class of problems, a classical worst-case analysis makes them exponential, thus
NP-hard, with an exponential space. However, a more precise information can
be obtained by output-sensitive analysis techniques (see a survey in [9]). These
analyzes are relevant since the recent improvements in storage and processing
capacity increasingly often allow to handle some exponential data, what was
not possible even some time ago. The idea is to consider the time complexity
needed to generate only one element of the output (i.e. one rule or one minimal
generator in our case).

The time complexity per Σcdb-rule has then to be considered. Although the
most common algorithms have an exponential delay complexity, there exist some
algorithms with a polynomial delay complexity.

The definition of minimal generators for an element x induces an exponen-
tial generation since any subset of Jx as to be tested. Another strategy is issued
from the equivalence between minimal generators and minimal transversals of
a closed set, problem known to be exponential. This strategy has been capital-
ized by Pfaltz’s incremental algorithm [12], and by Jen’s algorithm [5] used in
data-mining to compute minimal generators. Jen’s algorithm computes minimal
generators from the faces of x defined by considering immediate predecessors of
x in the lattice.

However, in logic area, the algorithm attributable to Ibaraki et al. ([8]) com-
putes a Σcdb-rule - and thus the dependence graph - in polynomial time with a
family F of closed set as input.

Algorithm 1 generates the dependence graph with the same polynomial com-
plexity per rule or per minimal generator.
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Name: dependenceGraph
Data : A lattice L = (S,≤)

Result : The dependence graph of the lattice

begin
compute the set JL of join-irreducibles of the lattice;
initialize a graph G with join-irreducibles as nodes;
compute a topological sort T of the lattice;
foreach x ∈ T do

foreach (j, j′) ∈ J × J such that x ∨ j′ ≥ j do
add the edge (j, j′) in G;
compute the set Jx of join-irreducible predecessors of x;
initalize the empty family GMx;
let G′ subgraph of G induced by Jx on nodes and edges’s labels;
foreach edge (k, k′) of G′ do

foreach valuation B of the edge (k, k′) do
if B ∨ k′ = x then add the set B + k′ to the family GMx

end
end
if GMx is empty then GMx = {Jx};

end
end
label the edge (j, j′) with GMx;
return G;

end

Algorithm 1: Generation of the dependence graph of a lattice

The dependence graph of a lattice 229



Proposition 1. Algorithm 1 generates the dependence graph, the minimal gen-
erators, or the canonical direct basis of a lattice L = (S,≤) in O(|Σcdb||S||JL|

3),
i.e. in O(|S||JL|

3) per Σcdb-rule or per minimal generator.

Proof. First, computation of the relation δ on the join-irreducibles can be done
in O(|S|2|JL|

2) by determining, for each x ∈ S, if x is a minimal element in the
lattice such that jδxj

′.
Computation of edges’s labels is more difficult. One can observe that minimal

generators are recursively defined according to the relation ≤ in the lattice.
Indeed, if we consider two join-irreducibles such that jδxj

′ - with x an element
of the lattice - or equivalently jδBj

′ - with B minimal generator of x - then
B+ j′ is a minimal generator of x∨ j′, thus recursively defined from B. One can
distinguish between two cases:

– When B is strictly included in Jx, then B can be deduced from a minimal
generator of a predecessor of x.

– When B = Jx, then Jx is the only minimal generator of x.

Therefore, a travel of the lattice from the bottom to the top allows to recursively
compute minimal generators in O(|Σcdb||S||JL|

3).

The dependence graph of a lattice, and thus its canonical direct basis and its
minimal generators, can easily be generated with a binary table as input, after
its concept lattice generation. In particular, Bordat’s algorithm [4] generates the
Hasse diagram of the concept lattice of a binary table from the botom to the
top using a successor function. Therefore, another strategy would consists in
computing the dependence graph along with the lattice generation.

5 Conclusion

In this paper, we introduced the dependence graph as a representation of a
finite lattice encoding both its canonical direct basis and its minimal generators.
We propose a new generation algorithm with an improvment complexity. This
structure can be used in various domains of computer science, such as data-
mining and knowledge representation. Indeed, the canonical direct basis of rules
is a nice basis to represent dependencies between attributes, in a classification
task for example. The use of minimal generators could gives raise to an attributs
set reduction, usefull for data indexation for example.
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