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Abstract. The aim of this paper is to present experimental results on
a recently developed method of factor analysis of data with graded,
or fuzzy, attributes. The method utilizes formal concepts of data with
graded attributes. In our previous papers, we described the factor model,
the method, an algorithm to compute factors, and provided basic exam-
ples. In this paper, we perform a more extensive experimentation with
this method. In particular, we apply the method to factor analysis of
sports data. The aim of the paper is to demonstrate that the method
yields reasonable factors, explain in detail how the factor model and the
factors are to be understood, and to put forward new issues relevant to
the method.

1 Introduction

1.1 Aim of This Paper

Recently, a considerable effort was devoted to the development of factor analysis
and related methods for new types of data such as Boolean (binary) or ordinal. In
our previous papers, we developed a method of factor analysis of Boolean data
[5], i.e. data with Boolean attributes, and extended the problem and method
to data with graded attributes [4, 6]. In the present paper, we use the method
as well as the algorithm from [4, 6]. Due to the limited scope and the aim of
this paper, we only provide a brief, mainly informal overview of the key notions
involved, illustrate these notions by examples and refer the reader to [4, 6] for
technical details. Our aim is to provide information sufficient to understand the
experiments described in this paper. A full version of this paper will contain a
detailed description of the method, a more comprehensive experimental section,
formal treatment of some issues that we only discuss informally in this paper
(cf. also Section 3), as well as a section putting the method being discussed into
perspective of related methods of data analysis.
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1.2 The Method, Factors, and Their Interpretation

In a broad sense, our method may be considered as implementing the general
idea of factor analysis [1, 12]: Given an n × m object-attribute matrix I, one
finds a decomposition

I = A ◦B (1)

of I into a product of an n×k object-factor matrix A, a k×m matrix B, reveal-
ing thus k factors, i.e. new, possibly more fundamental attributes (or variables),
which explain the original m attributes. We want k < m and, in fact, k as small
as possible to achieve parsimony: The n objects described by m attributes via
I may then be described by k factors via A, with B representing a relation-
ship between the original attributes and the factors. Contrary to classic factor
analysis, which uses the calculus of real-valued matrices, we use the calculus of
matrices over residuated lattices. That is, the entries of matrices involved are el-
ements of a residuated lattice L = 〈L,∧,∨,⊗,→, 0, 1〉, i.e. Iij , Ail, Blj ∈ L. The
elements of L represent truth degrees, 0 and 1 are the smallest and largest one
and correspond to “(fully) false” and “(fully) true”; ∧ and ∨ denote the infimum
and supremum, and ⊗ and → denote the truth functions on many-valued logic
connectives of conjunction and implication. The product ◦ in (1) is defined by

(A ◦B)ij =
∨k

l=1Ail ⊗Blj . (2)

Importantly, the entries of I, A, and B are interpreted the following way:

Iij is the truth degree of the proposition “object i has attribute j”,

Ail is the truth degree of the proposition “factor l applies to object i”,

Blj is the truth degree of “attribute j is one of the manifestations of factor l”.

For the moment, think of i, j, and l as a particular athlete (object), good per-
formance in long jump (attribute), and good speeding ability (factor). Using
the principles of fuzzy logic [11], (2) and hence the whole factor model has the
following meaning (this is even easy to see using intuition knowing that “exists”
and “and” are modeled by

∨

and ⊗):

object i has attribute j if and only if

there exists factor l such that i has l (or, l applies to i) (3)

and j is one of the particular manifestations of l.

In principle, our method works as follows. We compute from I, using a greedy
approximation algorithm from [6], a set

F = {〈C1, D1〉, . . . , 〈Ck, Dk〉} ⊆ B(X,Y, I) (4)

of formal fuzzy concepts of I, which gives us the decomposition as follows. Put

(AF )il = (Cl)(i) and (BF )lj = (Dl)(j), (5)

i.e. AF is an n × k matrix in which the lth column consists of grades assigned
to objects by the lth concept extent Cl and BF is a k × m matrix in which
the lth row consists of grades assigned to attributes by the lth intent Dl. Then
I = AF ◦ BF , i.e. the matrices AF and BF induced by F provide us with
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a decomposition of I. Moreover, the optimal decompositions (i.e. with least k
possible) may in principle be obtained this way, in which sense using formal
concepts as factors is an optimal strategy. Note however, that our algorithm
computes suboptimal decompositions since the problem to compute an optimal
decomposition is an NP-hard optimization problem.

We revisit these notions, particularly in Section 2.1, where we explain the
notions involved using a particular example.

2 Examples and Experiments

Our aim in this section is to present the results of selected analyses, and thus to
demonstrate a usefulness of the method, as well as to explain in detail the process
of analysis, possibly even for a user who is not familiar with the technicalities of
the method.

First, we point out some features common to the examples presented below.
As the complete residuated lattice, we use as five-element  Lukasiewicz chain.
That is, the matrix degrees are taken from the set

L = {0, 0.25, 0.5, 0.75, 1}

and the operation ⊗ is given by

a⊗ b = max(0, a+ b− 1).

Many other choices are available, see e.g. [10]. We represent the degrees by shades
of gray as follows (this also emphasizes the fact that the truth degrees have a
symbolic, rather than numerical, meaning):

✵✿✵✵ ✵✿✷� ✵✿�✵ ✵✿✼� ✶✿✵✵ .
Note that due to the well-known Miller’s 7±2 phenomenon [15], small scales

with up to 7±2 degrees are preferable to use because humans can understand and
use such scales easily. For a reader not familiar with basics of many-valued logics
let us note that the  Lukasiewicz ⊗ (such as other many-valued conjunction) may
be seen as a natural conjunction-like aggregation: the higher the truth values a
and b of propositions A and B, the higher the truth value a⊗b of the conjunction
A&B.

2.1 2004 Olymphic Games Decathlon—Top 5

We start with a detailed description of factor analysis of top 5 athletes in the
2004 Olympic Decathlon and use this example as a reference example in the sub-
sequent sections (this data is also used in [6], but our analysis here is slightly dif-
ferent since we use a different transformation of the athletes’ results to grades).
Our method is particularly suitable for analyzing such data for the following
reasons. The raw data, i.e. the actual results in the ten disciplines of decathlon,
can naturally be transformed to data with graded attributes, i.e. to a matrix I.
Namely, for every discipline d, one may consider a graded attribute “good perfor-
mance in d”. That is, such an attribute applies to an athlete (object) to a degree
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to which we consider the performance of the athlete a good performance. This
is a natural, generally applicable idea. However, in our case, the IAAF (Interna-
tional Association of Athletics Federations) provides us with decathlon scoring
tables (http://www.iaaf.org, IAAF Scoring Tables for Combined Events) using
which one transforms the actual results to scores from an ordinal scale, namely
the interval of integers [0, 1, . . . , 1400], which is common to all disciplines. For
example, the result of 10.75sec in 100m gets 962 points, the result of 204cm in
high jump gets 927 points, etc. A table with actual scores may then be trans-
formed to a matrix I with graded attributes using an appropriate set L of truth
degrees and an appropriate transformation function.

The top table in Tab. 1 contains the results of top 5 athletes according to the
IAAF scoring tables. The second table from the top contains the corresponding
matrix I, i.e. the matrix with degrees from the five-element scale L, and the
bottom table contains its graphical representation. The transformation from the
table with scores to the matrix with degrees from L = {0, 0.25, 0.5, 0.75, 1} is
accomplished using functions

sj : [0, . . . , 1400] → L defined by sj(p) = round

(

p− Lj

Hj − Lj

)

where j is an attribute (discipline), and Lj and Hj are the lowest and the highest
scores achieved by all the athletes (i.e. not only the top 5) who participated in
the competition, and round is the function rounding the numbers in [0, 1] to their
closest values in L. Note that in this competition, we have L10 = 746, Llj = 723,
Lsp = 657, Lhj = 644, L40 = 673, Lhu = 755, Ldt = 622, Lpv = 673, Ljt = 598,
L15 = 466, and H10 = 989, Hlj = 1050, Hsp = 873, Hhj = 944, H40 = 968,
Hhu = 978, Hdt = 905, Hpv = 1035, Hjt = 897, H15 = 791. Therefore, the degree
assigned to Sebrle in 400m is round( 892−673

968−673 ) = round(0.74 . . . ) = 0.75. The
matrix I allows us to interpret the athletes’ results verbally. Namely, assigning
to the degrees from L linguistic labels such as “not at all” to 0, “little bit” to
0.25, “half” to 0.5, “quite” to 0.75, and “fully” to 1, or the like, one may say
that Sebrle’s performance in 400m was quite good. Even though we lose some
information using such rounding to five degrees, the information preserved still
allows us to perform a reasonable analysis, which is shown next.

The algorithm from [6] found a decomposition of I using six factors depicted
in Fig. 2. The corresponding decomposition I = AF ◦BF is depicted in Fig. 1. As
explained in Section 1, cf. (5), the columns of AF corresponding to Fl = 〈Cl, Dl〉
contain the degrees assigned to the athletes by Cl; likewise for the rows of BF ,
the attributes, and Dl.

Fig. 2 shows rectangular patterns using which the factors may be visualized.
Each rectangular pattern labeled Fl is actually the matrix Jl resulting as the
Cartesian product of the extent Cl and the intent Dl of Fl, i.e. we have (Jl)ij =
Cl(i) ⊗ Dl(j). (For readers familiar with the ordinary FCA, let us note that
these patterns are the rectangles corresponding to formal concepts and that in
the general situation with degrees, the concepts cannot be uniquely restored
from these patterns.)
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Table 1. 2004 Olympic Games Decathlon

Scores of Top 5 Athletes
10 lj sp hj 40 hu di pv ja 15

Sebrle 894 1020 873 915 892 968 844 910 897 680

Clay 989 1050 804 859 852 958 873 880 885 668

Karpov 975 1012 847 887 968 978 905 790 671 692

Macey 885 927 835 944 863 903 836 731 715 775

Warners 947 995 758 776 911 973 741 880 669 693

Matrix I with Graded Attributes (input to the method)

10 lj sp hj 40 hu di pv ja 15

Sebrle 0.50 1.00 1.00 1.00 0.75 1.00 0.75 0.75 1.00 0.75

Clay 1.00 1.00 0.75 0.75 0.50 1.00 1.00 0.50 1.00 0.50

Karpov 1.00 1.00 1.00 0.75 1.00 1.00 1.00 0.25 0.25 0.75

Macey 0.50 0.50 0.75 1.00 0.75 0.75 0.75 0.25 0.50 1.00

Warners 0.75 0.75 0.50 0.50 0.75 1.00 0.25 0.50 0.25 0.75

Graphical Representation of Matrix I

Legend: 10—100 meters sprint race; lj—long jump; sp—shot put; hj—high jump;
40—400 meters sprint race; hu—110 meters hurdles; di—discus throw; pv—pole
vault; ja—javelin throw; 15—1500 meters run.
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Fig. 1. Decomposition I = AF ◦BF . I, AF , and BF are the bottom-right, bottom-left,
and top matrix, respectively.

F1 F2 F3

F4 F5 F6

Fig. 2. Factor Concepts as Rectangular Patterns.
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Table 2. Factor Concepts

Fi Extent Intent

F1 {
.5/Sebrle,Clay,Karpov, .5/Macey, .75/Warners} {10, lj, .75/sp, .75/hj, .5/40, hu, .5/di, .25/pv, .25/ja, .5/15}

F2 {Sebrle,
.75/Clay, .25/Karpov, .5/Macey, .25/Warners} {.5/10, lj, sp, hj, .75/40, hu, .75/di, .75/pv, ja, .75/15}

F3 {
.75/Sebrle, .5/Clay, .75/Karpov,Macey, .5/Warners} {.5/10, .5/lj, .75/sp, hj, .75/40, .75/hu, .75/di, .25/pv, .5/ja, 15}

F4 {Sebrle,
.75/Clay, .75/Karpov, .75/Macey,Warners} {.5/10, .75/lj, .5/sp, .5/hj, .75/40, hu, .25/di, .5/pv, .25/ja, .75/15}

F5 {
.75/Sebrle, .5/Clay,Karpov, .75/Macey, .25/Warners} {.75/10, .75/lj, sp, .75/hj, 40, hu, di, .25/pv, .25/ja, .75/15}

F6 {
.75/Sebrle,Clay, .25/Karpov, .5/Macey, .25/Warners} {.75/10, lj, .75/sp, .75/hj, .5/40, hu, di, .5/pv, ja, .5/15}

Fig. 3 demonstrates what portion of matrix I is explained using the first l
factors for l = 1, . . . , k. In particular, the matrix labeled 56% just shows the
rectangular pattern J1 corresponding to F1. The number indicates that 56% of
the entries in I have the same value as in J1, i.e. 56% of the data is explained
by the first factor. The second matrix contains J1 ∨ J2, i.e. it illustrates what
happens when we add the second factor. As we can see, 82% of the data is
explained by the first two factors. Since the first three factors explain 91% of
the data, one might say that the first three factors account for most of the data,
are most important, and the rest of the factors may be omitted. Nevertheless,
adding further the factors we see that the first four, five, and six factors explain
95%, 98%, and 100% of the data (the latter fact is obviously true because the
factors completely decompose matrix I). Note also, that several of the 18% =
100%−82% of the entries not explained by the first two factors have values close
to the corresponding entries of I, so a measure of closeness of Jl and I which
takes into account also close entries, rather than exactly equal ones only, would
yield a number larger than 82%. In any case, we can conclude from the visual
inspection of the matrices that already the first two or three factors explain the
data reasonably well. Note that the fact that the revealed factors are reasonable
was confirmed to us by an experienced decathlon coach who also pointed out to
us that F2 (explosiveness) is known to be well-developed by the Czech school of
decathlon (hence Sebrle).

56% 82% 91%

95% 98% 100%

Fig. 3.
∨
-superposition of Factor Concepts

Let us turn to the interpretation of the factors. For this purpose, Fig. 2 is
crucial since it contains all the information about the factors. Note however that
Fig. 2 is also helpful as it shows the clusters corresponding to the factor concepts
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which draw together the athletes and their performances in the events. Factor
F1: F1 applies to Sebrle to degree 0.5, to both Clay and Karpov to degree 1, to
Macey to degree 0.5, and to Warners to degree 0.75. Furthermore, this factor
applies to attribute 10 (100 m) to degree 1, to attribute lj (long jump) to degree
1, to attribute sp (shot put) to degree 0.75, etc. This means that an excellent
performance (degree 1) in 100 m, an excellent performance in long jump, a very
good performance (degree 0.75) in shot put, etc. are particular manifestations of
this factor. On the other hand, only a relatively weak performance (degree 0.25)
in javelin throw and pole vault are manifestations of this factor. All the mani-
festations of this factor with degree 1 are 100 m, long jump, and 110 m hurdles.
This factor can be interpreted as the ability to run fast for short distances. Note
that this factor applies particularly to Clay and Karpov which is well known
in the world of decathlon. Factor F2: Similarly, since the manifestations of this
factor with degree 1 are long jump, shot put, high jump, and javelin, F2 can be
interpreted as the ability to apply very high force in a very short term (explo-
siveness). F2 applies particularly to Sebrle, and then to Clay, who are known for
this ability. Factor F3: Manifestations with grade 1 are high jump and 1500 m.
This factor is typical for lighter, not very muscular athletes. Macey, who is ev-
idently that type among decathletes (196 cm and 98 kg) is the athlete to whom
the factor applies to degree 1. These are the most important factors behind data
matrix I.

2.2 2004 Olympic Games Decathlon Top 5 By Their Best Results

In this example, we take the top 5 athletes of the 2004 Olympic Decathlon but
we take their best performances during their decathlon competitions, instead of
their actual performances in a single event such as the 2004 Olympics. Taking
best performances may be reasonable if we want to avoid a possible bad luck in
a particular discipline such as a bad start in 100 m. Tab. 3 contains the scores.
The corresponding matrix I and its decomposition into AF ◦ BF is depicted in
Fig. 4. Here, the transformation from points to degrees is defined as follows. For
discipline j, we put

sj(p) =























1 for p ∈ [Hj , Hj − 100),
0.75 for p ∈ [Hj − 100, Hj − 200),
0.5 for p ∈ [Hj − 200, Hj − 300),
0.25 for p ∈ [Hj − 300, Hj − 400),
0 for p ≤ Hj − 400,

where Hj is the highest score ever achieved during a decathlon competition for
discipline j. Note that H10 = 1042; Hlj = 1117; Hsp = 1048; Hhj = 1061;
H40 = 1025; Hhu = 1064; Hdi = 993; Hpv = 1152; Hja = 1040; H15 = 963.

It seems natural that the factors in this case are different from those in the
example in Section 2.1. Nevertheless, we can see that F1 applies to degree 1 to
Clay and Karpov in both examples and applies to the other athletes to similar
degrees in both examples as well. Nevertheless, the intents of the first factor are
different although a reasonable similarity is apparent as well (presence of long
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Table 3. 2004 Olympic Games Decathlon

Scores of Top 5 Athletes
10 lj sp hj 40 hu di pv ja 15

Sebrle 942 1089 880 944 921 1002 859 972 907 798

Clay 1010 1050 868 887 944 1022 993 941 920 670

Karpov 931 1073 910 915 968 984 929 1004 743 729

Macey 940 1002 841 944 998 931 836 849 799 990

Warners 947 1022 800 831 978 973 824 886 692 693
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Fig. 4. Decomposition I = AF ◦BF .

jump and hurdles to degree 1, presence of 100 m and high jump to high degrees).
A similar observation can be made on F2 (connects Sebrle and Clay) and F3

which is typical of Macey.

2.3 2004 Olympic Games Decathlon—Top 10

The results of the 5th–10th athletes in the 2004 Olympic Decathlon are depicted
in Tab. 4. The matrix I corresponding to the top 10 athletes, along with a
decomposition I = AF ◦ BF computed by the algorithm is depicted in Fig. 5.
The same transformation from scores to degrees was used as in Section 2.1.

Table 4. 2004 Olympic Games Decathlon

Scores of the 5th–10th Athletes
10 lj sp hj 40 hu di pv ja 15

Zsivoczky 881 847 809 915 842 856 780 819 790 748

Hernu 867 859 768 831 874 942 761 849 704 782

Nool 906 942 744 698 870 874 706 1035 758 704

Bernard 931 930 777 915 855 953 762 731 667 704

Schwarzl 865 932 729 749 826 942 714 941 683 721

Compared to the factors from Section 2.1, the factors in this example are
generally different although some similarities are apparent. For example, factor
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Fig. 5. Decomposition I = AF ◦BF .

F2 here is exactly the same (has same intent) as F1 in Section 2.1, F12 is the
same as F6 in Section 2.1, and F4 is almost the same as F3 in Section 2.1.

We might nevertheless be interested in the question of how well the factors
from Section 2.1 explain the new dataset regarding the top 10 athletes. A rea-
sonable way to proceed is the following. Consider the set of 6 concepts of the
new, 10 × 10 matrix I, namely,

G = {G1 = 〈P1, Q1〉, . . . , G6 = 〈P6, Q6〉}

obtained from the factors F1 = 〈C1, D1〉, . . . , F6 = 〈C6, D6〉 by

P1 = D↓
1 , Q1 = P ↑

1 , . . . , P6 = D↓
6 , Q6 = P ↑

6 ,

i.e. every factor Gl is the concept of the 10×10 matrix I generated by the intent
of Fl. This way, we do not have I = AG ◦ BG in general, as can be seen from
this example. Nevertheless, the first factor G1 explains 50% of the data, the first
two factors 69%, the first three factors 80%, the first four factors 86%, the first
five factors 89%, and all factors in G explain 91% of the data. Hence, one may
conclude that the factors of the top 5 athletes explain reasonably well also the
results of all the top 10 athletes. The matrices involved are depicted in Fig. 6.
Note that one may clearly observe the similarity between I (the original matrix)
and AG ◦BG (the matrix reconstructed from the factors in G).

2.4 2004 Olympic Games Modern Pentathlon

Another sport that contains several disciplines and may be interesting for fac-
tor analysis is the modern pentathlon. The five disciplines are, however, rather
diverse and it is therefore challenging to think of natural factors in this sport. Re-
call that modern pentathlon consists of pistol shooting, fencing, 200 m freestyle
swimming, show jumping, and a 3 km cross-country run. Except for the fencing
competition, athletes do not directly compete against one another in the five
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Fig. 6. Matrices AG ◦BG (bottom-right), AG (bottom-left), and BG (top).

events. Instead, a better absolute performance results in a higher score and the
sum of all the scores for the disciplines gives the overall total score of a given
athlete.

Tab. 5 contains the results of the 2004 Olympic Games modern pentathlon
of the top 10 athletes. The corresponding matrix I and its decomposition into
AF ◦BF is depicted in Fig. 7. To transform the scores of discipline j to degrees,
we used the function

sj(p) =























1 for p ∈ [Hj , Hj −
1
5 (Hj − Lj)),

0.75 for p ∈ [Hj −
1
5 (Hj − Lj), Hj −

2
5 (Hj − Lj)),

0.5 for p ∈ [Hj −
2
5 (Hj − Lj), Hj −

3
5 (Hj − Lj)),

0.25 for p ∈ [Hj −
3
5 (Hj − Lj), Hj −

4
5 (Hj − Lj)),

0 for p ≤ Hj −
4
5 (Hj − Lj),

where Hj and Lj are the highest and the lowest score achieve in discipline j in the
2004 Olympic Games modern pentathlon. Note that Hsh = 1168, Lsh = 892;
Hfe = 1000, Lfe = 664; Hsw = 1376, Lsw = 1140; Hri = 1172, Lri = 584;
Hru = 1116, Lru = 752.
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Fig. 7. Decomposition I = AF ◦BF .
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Table 5. 2004 Olympic Games Modern Pentathlon

Scores of Top 10 Athletes
sh fe sw ri ru

Moiseev 1036 1000 1376 1032 1036

Zadneprovskis 1000 916 1308 1088 1116

Capalini 1084 776 1336 1116 1080

Cerkovskis 1096 916 1252 1004 1088

Meliakh 1168 692 1332 1144 1004

Michalik 1108 888 1260 1144 932

Walther 952 832 1336 1116 1084

Balogh 1036 804 1240 1172 1044

Iagorashvili 988 916 1252 1172 948

Sabirkhuzin 1156 888 1216 908 1034

Legend: sh—shooting; fe—fencing; sw—swimming; ri—riding; ru—running.

Note that of all the factors computed, F2 is probably most interesting because
it is actually known in the world of modern pentathlon. Namely, F2’s manifes-
tations are riding and cross-country run which is typical for athletes who are in
a good physical shape and have good endurance. Each of the other factors more
or less corresponds to a single discipline which corresponds to the intuitive idea
that the disciplines are diverse and require diverse skills.

3 Concusions, Further Issues and Future Work

We presented several examples of factor analysis of sports data using a recently
developed method that utilizes formal concepts as factors. Our main aim was
to explain the method, to illustrate the key notions used in the method, and
to demonstrate how one can understand the results of the method. It turns out
from the examples that the method yields reasonable factors and that the results
of the method are easy to understand.

Due to the limited scope of this paper, we presented only a limited num-
ber of examples and limited comments on the presented examples. In addition
to the examples presented in this paper, we performed factor analyses of fur-
ther decathlon data (namely, the World Championships), figure skating, and ice
hockey players performance. We refrained from formalizing some of the issues
involved, such as “explanation of data by factors”, “similarity of factors”, how
well the factors of one dataset serve as good factors of another dataset, etc., and
used these notions with their informal meaning only. We therefore also skipped
theoretical results regarding these notions, as well as further notions and results
that may help us answer further natural questions that arise in the context of
the presented method, such as the influence of the choice of the scale of degrees,
the operation ⊗, the influence of the transformation from scores to degrees, and
the like.
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More examples with detailed comments as well as a detailed treatment of
some of issues mentioned above will appear in the full version of this paper. An
interesting question that is to be a subject of our future research is a compari-
son, experimental and possibly also theoretical, of relationships of the presented
method with related methods that involve matrix decomposition, notable the
non-negative matrix factorization [8, 14].
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